
A Converged Service Plane for Virtual Infrastructure Containers

Ibrahim Kabiru Musa1 and Stuart Walker2

School of Computer Science and Electronic Engineering
University of Essex, Colchester, UK, CO4 3SQ

Abstract

The Infrastructure deployed in data centers to create cloud
services can be extremely large. As such, the magnitude
of these resources and the technologies required to enable
the cloud services raises various challenges. Composing
cloud services from a subset of the data centre as a virtual
infrastructure container is a viable option to meet these chal-
lenges. We present an efficient automation layer for virtual
infrastructure container. Biologically inspired models and al-
gorithms for virtual resource provisioning, service isolation,
and task allocation are presented and tested experimentally.
We formulate relational model for components interaction
in a virtual container. Large biological datasets are used to
generate initial inputs to our model. We then implement the
model in a simulation experiment to investigate the accuracy
of our model and measure the improvement on performance
of cloud services creation and delivery. The results from
the experiments shows significant significant reduction in
provisioning time and more effective resource utilization over
similar approaches.
Keywords: Virtual Infrastructure container, Datacen-
ter, Cloud Computing, virtualization, IAAS

1. Introduction

Infrastructure As A Service (IAAS) is one way of of-
fering cloud computing. IAAS offers low-level compo-
nents as Virtual Machines (VMs), which can be booted
with a user-defined hard-disk image, and network as
services. The IAAS deployment model allows network
and IT resources to be offered on a Pay Per Use basis
[1] [2]. Cloud computing provides a cost effective
and flexible model for performing computationally
intensive applications, data-intensive scientific appli-
cations such as large-scale numerical analysis [3], and

multimedia applications such as video streaming. This
approach is currently being pioneered by Amazon and
Microsoft [4]. In the model, Virtual Machines (VMs)
and storage are offered as services in arrangement that
allow flexible scaling.
To meet the requirements of scalability, resources
deployed in data centre to offer IAAS model can
be extremely large. A typical cloud data centre may
comprise thousands of network and IT resources.
The magnitude of these resources and technologies
to enable the cloud services, such as virtualization,
raise numerous challenges including efficient resource
utilization, flexibility, and scalability [5]. Numerous
proposals to meet these challenges are available in
the literature. Inspired by the concept of biological
cell [6], a new approach to meet these challenges
proposed in [7] envisions the acceptance of request
for a converged (network and IT) virtual infrastruc-
ture container similar to a biological cell. We refer
to this container as service cell offered in Virtual
Cells As A Service (vCAAS). vCAAS disambiguates
Communication As A Service (CAAS). Components in
biological cells (proteins, organelles) interact, based on
the organic characteristics of the interacting component
and the task to perform, to realise cell functions such
as regulation and protection. This type of interaction
is similar in context to the kind of interaction in cloud
environments. The proteins and their interaction here
are virtual machines and network links respectively.
vCAAS is similar to virtual private cloud (VPC).
However, while VPC focuses mainly on extending an
existing VPN and public cloud concepts to provide
secured private cloud services, vCAAS focuses on
allowing more control and flexibility over a set of
configurable virtual resources. In vCAAS, one or more
virtual machines interact to complete a user defined
task. To achieve this, VMs and storage resources are
abstracted and offered to customers as flexible con-
tainers. We refer to each of these containers as service
cell (vCell). The vCell owner can control the entire

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 375

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

network and IT components. Virtual resource (network
and IT) are viewed as a single unit thereby simplifying
management and other automation tasks. Furthermore,
container based approach to IAAS offers the capability
to reuse resources on each virtual machine that is
placed in the same container.
As a new approach to next generation IAAS, the
functional components of a typical IAAS architecture
may not be suitable for vCAAS. There is a need to
investigate new models, algorithms, and techniques for
container based cloud delivery. This paper proposes
a service automation plane suitable for vCAAS. We
begin with a description of architectural model for
vCAAS and then proceed with the description of our
proposed converged automation layer. We apply the
undirected graph exponential model (p2-model) to a
virtual machines Interaction Network (VIN). We assess
the node-specific parameters of the model and use them
to identify nodes that dominate the evolutions of the
vCell. This type of inference is well established [6] in
biological networks and used to predict protein-protein
interaction and in identifying virus mutation as well as
predicting its evolution [8]. Our major contributions
are the formulation of specifications and algorithms
required in effective service automation layer suitable
for vCAAS delivery. The layer is proposed with the
fundamental requirement to provide IAAS users with
the illusion of a unique self-healing and flexible in-
frastructure. All components are contained as single
entity and designed to meet specific requirements. The
rest of the paper is structured as follows. Section
2 review existing related works, section 3 describes
our chosen cloud architecture suitable for vCAAS,
Section 4 describes the proposed service layer for our
architecture, section 5 presents results of experiment,
and finally Section 6 concludes the chapter with a
summary of findings.

2. Related Works

Data centres host wide variety of applications each
with different requirements. To overcome the chal-
lenges of cloud applications, a service based orches-
tration of virtual resources to accommodate multitude
of users each with isolated view is proposed in [9]
by abstracting resource management and control func-
tions. The idea is to enable virtual private cloud (VPC)
through various distributed Network Resources Man-
agers (NRM) and Network Resource Brokers (NRB)
on a single service interface. The NRM performs
all virtualization of underlying physical infrastructure.

The architecture is designed based on the Open Ser-
vices Gateway initiative (OSGi) framework. The VPC
provides a set of libraries, installed on demand, to
enable multiple resource management views. Key mod-
ules in the proposed architecture are the control and
mediation layers. The mediation layer handles request
for virtual resources and performs bandwidth reser-
vation and allocation. Recently, Cells As A Service
(CAAS) proposed in [7], combined the visions of these
disparate ideas into a next generation cloud delivery
model. CAAS envisions the provision of compute,
storage, and network services to a large number of
multi-tenants each with specific performance criteria
such as delay, security, and flexibility all defined in
an Extensible Mark-up Language (XML) template.
Each service user is assign a view isolated from other
services.
Similar to the research initiatives in [7], this work
views virtual cloud service as a converged entity com-
prising network and IT resources. Unlike [7] which
demonstrated a simple realization of CAAS on a layer
three VPN with security as the main focus, we focus
on formulating converged flexible automation layer for
virtual infrastructure container. The layer is build on
well established cloud architectures. We also explore
biological techniques to realise the various functional-
ities of our proposed automation plane. The next sec-
tion describes an architecture for virtual infrastructure
container with the service automation layer proposed
in this work.

3. Architecture for virtual service con-
tainer

This section presents the cloud architecture for our
vCAAS. The architecture is depicted in figure 2
and is based on existing cloud architectures such as
NIST [10] and Open Group Reference Architectures
(OGRA) [11]. Similar to OGRA, we proposed a de-
coupling of NIST services layer into delivery and
service automation sub layers, leaving lower layers as
described by NIST amd OGRA. This way our archi-
tecture complies with a tested and standardized cloud
architecture. The various layers and modules interact
to create a cloud based virtual infrastructure container
- vCell. vCAAS envisages large number of virtual
resource. Each vCell is characterized with a service
level agreement (SLA) configured by users using a
service console (SC). The fundamental assumptions
made in our model are:

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 376

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Rt 1 : A vCell may request multiple virtual re-
sources in form of VMs and virtual storage.

Rt 2 : Virtual Machines allocation is bounded by
available capacity of host. vCAAS resources
(VMs) may spread across many physical
hosts.

Rt 3 : Virtual Machines interact with each other to
execute a task. Intra vCell communication in-
creases the total overheads. These overheads
are affected by nodes and link characteristics
connecting physical hosts.

Rt 4 : A vCAAS provider (Figure 3) may allocate
VMs from multiple host locations to achieve
business and functional objectives.

Rt 5 : Initial vCell allocations must minimize sub-
sequent services impairments and utilization
of resources.

Rt 6 : vCell performance is measured as aggregate
rather than separate for each component.

3.1. Various actors in vCAAS

In our proposed model, clear separation of actors
ensures flexibility of vCell creation and isolation.
Various actors and proposed roles are shown in Figure
3. Physical resources owned by vCAAS physical
Infrastructure Providers (vCAAS-PIP) are accessed
and virtualized by vCAAS Virtual Infrastructure
Provider (vCAAS-VIP) - also acting as a broker.
vCell service starts with submission of requests from
potential vCell owner to vCAAS-VIP. vCELL owners
submit request for specific composition of network
and IT to the vCAAS-VIP. vCAAS-VIP then query
all vCAAS-PIP and select one vCAAS-PIP. To meet
the requirements of the vCELL owner, vCAAS-
VIP evaluate existing resource pool and consults
vCAAS-PIP to appraise available resources suitable
for submitted request. vCAAS-VIP then virtualize and
offer the vCell to satisfy initial request (Fig. 3). Our
proposed architecture combined the functionalities
of the actors and is realised as an IAAS model
comprising vCAAS Delivery Layer (CDL), Service
Automation Layer (SAL), Control and Virtualization
Layer (CVL), and Physical Resource Layer (PRL).
Next we describe CDL, CVL briefly. Sections 4 will
describe SAL in detail, which is the main focus of
this paper.

Cloud Delivery layer (CDL): A distinguishing feature
of this layer from the common cloud delivery layer is

NIST Reference
Architecture

OGRA vCAAS Architecture

Service Layer
(Monitor, Deploy,
application service,
platform and configuration
service)

Service Catalogue Service Delivery
(service cell Interaction,
control, model services)

Service Automation
Layer
(Request Mgt., Capacity
Mgt., provisioning and
Performance mgt., Change
configuration, monitoring)

Service Automation
Layer
(Composition, Mediation,
provisioning, Model
transform)

Resource
Abstraction and
Control

Platform and
Virtualization Layer

Virtualization and
Control Layer

PRL PIL PIL

Fig. 1. Relating our proposed dynamic network architecture
for Virtual Infrastructure container, vCAAS, with other widely used
cloud architectures.

Physical Fabric Layer

 Virtualization and Control Layer

Delivery Layer

COM CIMModel
Services

Isolation
services

 Service Automation Layer

vCell
Connectivity

Model
Transformation

Core Management
Services

Utilization

Workload
Management

Capacity
Management

Scheduling

Notification

SLA
Management

Match
making

vCell Mediation

Service schedulerService
Discovery

Service Composition

Allocation provisioning

w
or

kl
oa

d

Optical Network Electrical NetworkComputation & Storage

vSwitches VIFSDN Controller

Fig. 2. Proposed dynamic network architecture for Virtual
Infrastructure container(vCAAS.)

the presence of a vCell Control Module (COM) and
vCell components interaction Module (CIM). COM
modules enable vCell users to have direct access to
control functionalities available for a vCell. This way,
configuration commands can be passed to the under-
lying SAL. CIM monitors all vCell components in-
teractions and vCell-vCell interactions. The combined
functionalities of COM and CIM provide a vCell with
adaptation and isolation capabilities.
Control and Virtualization Layer: In our model, a
virtual interface (VIF) is created for each VM. The VIF
connects a VM to a virtual switch (vSwitch) forming
a virtual link. Combinations of these virtual links and
connected virtual nodes constitute our definition of a
virtual network topology (VNT). We propose an adap-
tive vSwitch-based traffic shaping strategy for vCAAS
(Fig. 6). Each VM in a vCell is assigned a virtual
switch (vSwitch) port with initial bandwidth, based

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 377

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

VM

VM

VM

VM

Resources Pool

Compute Cloud

Storage Cloud

vCAAS PIP vCAAS PIP

……

Physical Resource

Network

Virtual Infrastructure
Providers

Network resources

vCell Owner

V
M

V
M

vCell

vCell User

Virtualize and offer physical
resources to vCAAS VIP

Submit request for creation,
modification, or tear-down of a vCell

to suitable vCAAS PIP
Submit a request for vCell including

specifications, negotiate SLA

Virtual

Physical

V
M

V
M

vCell

storage

vCAAS VIP
[Broker]

M
id

dl
ew

ar
e

Translation
Description
Allocation

Selection
Discovery

Reservation
provisioining

N
M

S
 a

nd
 A

ge
nt

s Fe
de

ra
tio

n

Request
VM & Storage

Query datacenters

Reply
Select, Virtualize, &

configure
Access parameters

Fig. 3. Main actors in our proposed cloud architecture and
the respective functionalities associated to each.

on request, and allowed to expand capacity relative to
unused bandwidth in the vCell. This way, VMs adapt
dynamically to various traffic conditions. To protect
SLA of each container, traffic isolation mechanisms
are applied at vSwitch level to police VM activity and
ensure activity in one vCell does not have adverse
effect on performance of other VMs in different vCell.
The module is responsible for dynamic reconfiguration
of various virtual components of a vCell. It provides
a transparent mechanism for upper layers. Virtual
topology is controlled by this layer. Network and com-
putation components are dynamically controlled using
openflow controller and virtual resources management
application interfaces respectively. Our model adopts
the use of a dedicated supervisory channel to facilitate
communication between the network components and
the controller. This way, control messages are not
affected by activities of data flow.
Physical Resource Layer: This consist of heteroge-
neous physical network and IT resources. Under the
control of physical Infrastructure Provider (PIP), ac-
cess to the physical fabric is through management in-
terface such as Network Management System (NMS),
Optical User-to-Network Interface (OUNI), and in-
frastructure agents. The layer resides in PIP domain
and extends to other provider domains using Optical
Network-Network Interface (O-NNI).

3.2. Typical vCAAS Scenario

A typical scenario for a cloud application requires the
interaction of several virtual components in a workflow
to execute a task [5]. Examples of such applications
include video transcoding, data mining, and large
web indexing. Parallel processing applications such as
hadoop - Java version of map reduce [12] requires the
coordination of various virtual machines and storage
infrastructure each performing sub tasks. Typical map
reduce application require up to 256 nodes [2], 400
nodes [12], and other similar variations. By care-
fully formulating the interaction model for each vCell,
efficient use of resources can be achieved. Surplus
resources from a vCell can be utilized to accept new
request from the same vCell owner. To model these
scenarios, we assume that tasks submitted to a vCell
are completed in cyclic pattern 4. In figure 5 resource
R1 request resource R2. At this point R1 serves as a
client to the server R2. We denote this as R1 −→ R2.
Similar relationship exists in R1 −→ R3, R2 −→ R4,
R1 −→ R4, and R4 −→ R5.
The communication and computation overheads of
completing a task m, Tm, which requires resources
Rm, and submitted initially to resource i is thus given
by:

Tm = Rm
i + (Nm

i,j + Rm
j) ∗Xm

i,j (1)

Where Ni,j is the network overhead (e.g delay) be-
tween resources indexes i and j, Ri and Rj are
computational overheads from resource with indexes
i and j respectively, and finally Xi,j is defined as:

Xm
i,j =

{
1 if Ri, Rj ∈ Rmandi 6= j
0 otherwise (2)

From equation 1 the interaction coefficient is derived
as:

Imi,j = (Rj + Ni,j) ∗Xi,j (3)

Resource Ri receive request for subtask after finish
time Fi−1. Fi−1 is the finish time of resource index
i− 1 which immediately precede i in the sequence. If
the order at which Tm request resource Rn, ∀n 6= i,
can be altered then request can be sent to next swap-
able resources. We say two resources, with indexes k
and k + 1, are swappable if the order of submitting
task to the resources does not matter. This way a
swappable resources with the smallest availability time
can be chosen and the idle time of virtual resources in

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 378

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 4. Circular task representation between virtual components
in a cloud environment

R3

R1

User

T1,3

O1,3

O1,2

T1,2

T4,5O4,5

R5

R4

T2,4

R2

O

O2,4

O1,4

T1,4

T

Fig. 5. Example of a circular task in a virtual cloud
environment. R is a virtual resource which can be computation or
storage,Ri for i=1,2,... is the computational overheads at resource
with index i

the vCell can be reduced. To achieve effective utiliza-
tion in this scenario requires a suitable coordination
mechanism for request handling, resource provision-
ing, and communication processes. We thus propose
an automation layer capable of achieving this level of
coordination. We describe the design of this layer in
the next section.

4. Service layer for Virtual Infrastructure
Container

This section describe our proposed layer for automat-
ing the delivery of a virtual infrastructure container.
Figure 2 depicts our proposed SAL layer. We regard
a cloud service as an application functionality that
requires physical or virtual network and IT resources
over its execution life cycle. It provides components
for translation of submitted request, resource compo-
sition, mediation,and provisioning. Design goals are
the efficient resource utilization and performance en-
hancement. Requests are translated to service specific
or canonical parameters. The SAL then search out the
qualified resource for each parameter in the request,
generate candidate resource service set, evaluate each

quality of service (QoS) criterion, and select one suit-
able resource. Here, the Service Layer resides in broker
domain. Resource registry maintains information about
identity of providers, network access parameters, and
vCells. Various modules interact to achieve the au-
tomation. These are mediation modules and resource
provisioning.

4.1. vCell Mediator

This is a functional unit which ensures vCell-vCell
and vCell-infrastructure interaction. Workload submit-
ted by a vCell is appraised and allocated required
resources. To realise these functionalities effectively,
this module implements interaction prediction model
as a two-stage strategy. We refer to these stages as
learning and prediction. During the learning stage,
practical experiment is conducted using various appli-
cation execution models (parallel processing, analytic,
distributed, and data intensive applications). The output
of a learning stage is the interaction matrix M with
rows and columns showing component-component in-
teraction evidence.

In the second stage, M is used to predict the future
interaction in conjunction with a simple Relational
Markov Random Field (RMRF). To formulate our
model for RMRF, we begin with equation 4 and
taking the logarithm of both sides and the exponential,
e, of the Right Hand Side (RHS) we obtain:

Imi,j = eloge(Rj+Ni,j)∗Xi,j (4)

Notice that this model satisfies the features of Log-
normal distribution reported in literature [13] as suit-
able for interaction between components within a
data center. Next, we define a function Ψi,j(Xi,j) =
loge((Rj +Ni,j)∗Xi,j). And thus from equation 4 we
have:

Imi,j = eΨi,j(Xi,j) (5)

The prediction stage is formulated as inference mecha-
nism based on the posterior distribution of a parameter
for any given statistical data, X. Using Bayesian rule
for a combination of the prior information and the data
we have:

P (Ψ/X) =
P (Ψ)P (X/Ψ)

P (X)
(6)

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 379

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Where the term p(Ψ) represents the prior distribution,
obtained from previous experiment, on the parameter.

We model the vCAAS components as projection of
potentials Ψ using statistical modelling. Each poten-
tial Ψc ∈ Ψ defines interaction (or non-interaction)
measure over a set of variables, X. From 5 we define
a joint Markov distribution function for independent
components i,j ∈ V as:

P (X = Xi,j) =
1

Z

∏
i,j∈V

eΨi,j(Xm
i,j) (7)

Xm
i,j is a binary variable define in equation 2, Z is

the normalization constant, X represent the virtual
component (node) in the network, and V is the set
of virtual components in a vCell. Equation 7 assumes
non-existence of dependence between the feature of a
virtual component and task to be completed. However,
input/output (IO) rate for a virtual component depend
on the functional requirements of tasks. For instance,
storage base virtual components are likely to show
higher IO rate in data intensive tasks. For dependent
components, where interaction between virtual compo-
nents depend on the functional feature characteristics
(e.g storage, application, control services) of VM, we
define a joint Markov distribution function P(X) for
dependent components i,j ∈ V as:

P (X = xi,j) = P1(X)
∏

i,j∈V f∈Γ

eΨf,i,j(Xm
f,i,j) (8)

where

P1(X) =
1

Z

∏
i,j∈V

eΨi,j(Xm
i,j)

∏
j∈V f∈Γ

eΨf,j(Xm
f,j) (9)

Z is the normalizing factor and Γ is the set of known
functional characteristics which determines the level
of interaction required by a task. Z is defined as the
distribution over the entire components graph, and is
given by:

Z =
∑
x

∏
i,j∈V f∈Γ

eΨf,i,j(Xm
f,i,j) (10)

Γ is obtained from the learning stage. The projection
function Ψ in equation 10 defines two sets of potential
values- components to component and task to com-
ponent. This way both components state (represented
by the task feature, f) and components interactions
are taken into consideration. It is known that a joint
distribution over the interaction variables in equation

VM VM VM RM

VM

vSwitch

NIC

External Network

vCELL

T

P
OS

OS

Virtual LAYER

PHYsical LAYER

SLA

SC

Fig. 6. Architecture of a Traffic Shaper suitable for virtual
infrastructure container with a Service Console (SC). P is per VM
and T is per vCell rate policy

10 is equivalent to a distribution over possible interac-
tion networks [6]. Two functionalities provided by this
module are isolation and connectivity.

4.1.1. Virtual components rate isolation. In this
work, we formulate an adaptive vSwitch-based traffic
shaping strategy for vCAAS. Each VM in the vCAAS
is assigned an initial bandwidth by the Resource Man-
ager(RM), based on request, and allowed to expand
capacity relative to unused bandwidth in the container.
This way, VMs adapt dynamically to various traffic
conditions. To protect SLA of each container, traffic
isolation mechanisms are applied to police VM activity
and ensure activity in one VM does not have adverse
effect on performance of other VMs.

In our isolation strategy for vCAAS, we assume
each VM interact with other VMs, in hub and spoke
arrangement, to complete work flow tasks. VM experi-
encing high traffic (such as storage VM) consume high
vCAAS bandwidth (Fig. 6). Other VMs require less
bandwidth. At the time of vCAAS creation we assign
a super port with bandwidth capacity, computed as a
function of predicted interaction probability, P(X) in
equation 8, and available bandwidth capacity between
the two nodes. The allocated bandwidth is thus com-
puted as:

Bi,k =
∑
i,j∈V

P (xi,j)Ci,j) (11)

Where C is the available capacity between nodes i
and j, Bi,k is the allocated bandwidth for VMi in
virtual container k. This super port can be viewed
as aggregation of fixed capacity ports. The bandwidth

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 380

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

available for any VM is computed as:

Ai,k = B(i,k) +
∑
j

Uj,k (12)

i,j,k=1,2,...N and i 6= j

Where Uj,k is the available bandwidth of VMj in
virtual container k. The summation on the right of
equation 12 is unused bandwidth in vCAAS which
can be utilized by a transmitting VM. Thus, traffic
request Ri at VMi are accepted as long as Ri ≤
B(i, k) +

∑
j Uj,k

4.1.2. Connectivity Sub Module. In vCAAS we iden-
tify 3 networks similar to original idea proposed in
[7]. Between user and vCell (internet,private network),
between VMs (intra vCell) in a vCell, and between
vCells(inter vCell). Our vCell provides an abstracted
view of the data centre where compute and storage
VMs interact to support a given application task. In-
teraction between VMs residing in hosts goes through
the physical network interface card (PNIC). The inter-
action is upper- bounded by capacity C of the host.
This bound also hold for VMs residing in different
hosts. Noticed that since our virtual container (vCell)
is isolated, interaction between VMs in a vCell does
not affect other VMs and hence there is no need for
inter vCell scheduling. In intra vCell communication, a
component may require distinct services from all vCell
components to complete a task.
vCAAS connectivity further provide functions with
ability to forecast future vCells events that require net-
work management operations such as changes in traffic
patterns (time of day, location, increased demand, etc.),
or possible failure points. vCAAS connectivity interact
with management to ensure the ability for communica-
tion networks to graciously recover from failures and
to maintain a certain level of QoS. Proactive approach
before the anomaly occurred in order to keep the
network operational and meet vCell requirement in the
most effective manner and avoid vCells congestion in
any segment over the whole network.

4.2. Resource Provisioning Module

Efficient resource provisioning in cloud computing is
critical due to the large number of tenants. For any
vCell request represented as a turple vCell(V, D,Q), we

Request
IT resources

Network Resources

R: IT resource
D: Resource dependancies

T: request Task
To: Task ordering N: Network nodes

L: Network Link

Map Map

L

L

L

L

One-to-many

1

4

2

3

1

4

2

3D

D

D

D

R1R1

R2

R3

Sub Request Network nodes

R2

R3

R4

Fig. 7. Non Contiguous provisioning strategy where request
is satisfied across multiple physical host based on first fit

let Vi, i=1,2,,N be the set of existing components in a
vCell. V = virtual machines set, D = delay requirement,
and Q = other quality of service requirements. We
denote interaction between vCell components i and
j as Ni,j , the capacity (bandwidth) request between
i and j as ωi,j . For simplicity we assume that, for
bandwidth request Bi and Bj from components i and
j respectively, ωi,j = max(Bi, Bj).

Next we present one existing algorithm in the literature
and one novel provisioning algorithm for instantiating
VMs in vCAAS.

4.2.1. Non-contiguous provisioning (NCP). This ap-
proach [14] is more efficient as request can be sat-
isfied from many hosts with a mechanism to carry
remaining VMs request to next available host, i.e.
vCell(V,D,Q) ∈ H . Where H is the set of all
available physical hosts. The approach is a variation
of first fit with carry on to next available host.

4.2.2. Template-based provisioning (TBP). We pro-
pose evolution-based approach to fast provisioning of
cloud services. This approach is similar to NCP but
with added consideration to specific features of the
task. Inspired by biological Cell evolution, the model
of vCAAS provisioning is based on template dupli-
cation plus rewiring. The process includes the basic
ingredients of vCell growth and intends to reproduce
the previous set of observation. Such evolutions may
involve addition of VM, deletion of VM, addition of
interaction between VMs, and deletion of interaction
path between VMs. Interaction between VMs depends
on feature characteristics of VM. The rules of the
provisioning are implemented as follows.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 381

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

• Choose a virtual component and duplicate;
• Add to new vCell
• Links emerging from the new generated node

are removed with probability P (X) as defined in
equation 8.

• New links (not previously present) are created
between the new node and all the rest of the nodes
with probability P (X).

• Repeat step 1-3 until all requests complete.

Step 1 implements component duplication, in which
both the original and the replicated vCell retain the
same structural properties and, consequently, the same
set of interactions. The rewiring steps 2 and 3 imple-
ment the possible mutations of the replicated vCell,
which translate into the deletion and addition of inter-
actions, with computed probabilities. Algorithm 1 lists
the steps involved in this type of vCell provisioning.

5. Experiment

This section describes the experiments conducted to
demonstrate the ideas presented in this paper. The
experiments combines both practical and simulated
techniques.

5.1. Simulation Setup

To implement the interaction prediction model pre-
sented in section 4 we run a data intensive appli-
cation using Map-reduce [15] technique. Our choice
of map-reduce is influenced by the success of map-
reduce in many research and production environments
including Google and Yahoo search engines. The ap-
plication we considered aim to solve large biological
sequencing problems using cloud services. This type
of computation is commonly used in bioinformatics
and involves the application of informatics and com-
putational methodologies and techniques on analysing
biological data [16]. To implement the map-reduce
technique, we deploy The Genome Analysis Toolkit
(GATK) [17] on a cluster of 10 servers (Fig. 8).
GATK provides an open source Java programming
framework for writing efficient and robust analysis
tools for next-generation resequencing problems. The
framework is design in a way that processing can easily
be parallelized and distributed. The queue module
in GATK allows partition of large data set into any
number, analysing each partition, and combining the

outputs into a single result. For this experiment we
use a publicly available Genome 1000 project dataset
to perform the technique of map reduce on the dataset.
5GB of sequence data is uploaded to a Network File
Server(NFS). Standard (256 memory, 10 GB storage)
virtual machines instances are started to compute the
gene expression in parallel. Traversal and analysis
walkers calculate the desired expression defined in
a binary alignment/map(BAM). BAM files provide
reads, quality scores, alignments, and metadata for the
gene analysis [17].
We implement experiments in a prototype experimental
lab testbed and in scalable simulated environment us-
ing Cloudsim [18]. The prototype lab implementation
using 10 physical hosts enabled by XEN hypervisor.
The prototype implementation of vCAAS is achieved
with a Xen Cloud Platform (XCP) in a network of
10 Dell systems, each with similar hardware and
virtualization kernel. All the data required for the
computations are stored in a Linux based network file
server (NFS). We created 5 vCells each with 5 VMs.
Virtual machines in a vCell share virtual storage carved
from existing storage repository. VMs are created and
managed via XEN application programming Interfaces
(API). The experiment aims to achieve an effective
resource and task allocation by:

• Perform a real practical experiment using a cho-
sen execution model.

• Compute inference values.
• Implement service automation techniques guided

by output of inference state.

5.2. Experiment results

To implement our learning algorithm we run a map-
reduce application on large sequencing dataset ob-
tained from the Genome 1000 project. Information
from the genome dataset contains genetic material
on living thing. Such information is the entire set
of hereditary instructions for building, running, and
maintaining an organism, and passing life on to the
next generation. The implemented Genome Dataset
experiments consist of up to 10 cores, the algorithm
leverage the unique large-scale data processing capa-
bilities of Map-Reduce [15] to reduce the runtime of
this important computation from several hours on a
desktop workstation to mere minutes on the vCAAS.
The result obtained is then used as initial estimates for
a Markov distribution likelihood estimation.
First we establish the case for variation in idle times

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 382

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Host 1
Dell: 4 GB Ram, 4

GHz,400GB Storage, 1
GB NIC

, GenuineIntel
Intel(R) Core(TM)2

Duo CPU E8600 @
3.33GHz

Speed: 3333 MHz

Host 2
Dell: 4 GB Ram, 4

GHz,400GB Storage, 1
GB NIC

, GenuineIntel
Intel(R) Core(TM)2

Duo CPU E8600 @
3.33GHz

Speed: 3333 MHz

Host 10
Dell: 4 GB Ram, 4

GHz,400GB Storage, 1
GB NIC

, GenuineIntel
Intel(R) Core(TM)2

Duo CPU E8600 @
3.33GHz

Speed: 3333 MHz

Cloud
 API

Cloud Manager
Public Internet Secured

Tunnel

vSwitch

X.X.30.11 X.X.30.20

VM1 VM2 VM3 ...

Xen Cloud Platform

SSL SSL SSL

Fig. 8. Prototype implementation of Virtual container using
Xen Cloud Platform.

of various VMs coordinated to perform a map reduce
application. Figure 9 shows a 48.6 seconds deviation
in idle time. For large data set, upto terabytes in
biological data, this deviation impacts on cost and per-
formance of computation resources. Using the feature
characteristics obtained from the experiment we then
implement a prediction experiment using the model
presented in section 4. Each request is modelled as a
state in RMRF model. This way task that request 4 re-
sources is assigned 3 states. Figure 10 shows the result
of implementing the proposed learning algorithm. As
shown in figures 7 and 11, the distance between the
observed and predicted states is less than 0.06 when
300 observations are used.
To investigate the ideas proposed in cloud environment
we conducted simulation experiment using Cloudsim
[18]. First, we investigate performance of the strategy
described in relation to communication overheads, ease
of service creation, and utilization. We investigate the
performance of the two virtual machines and tasks
allocation algorithms presented in section 4. The focus
is on creation time for various number of requested
virtual machines. Thus the results in 12 compares the
time to create virtual service cells with varying VMs
sizes. Figure 12 shows that our algorithm out performs
NCP algorithm in speed of service creation for varios
VMs sizes.
We also investigate the impact of prediction model on
task distribution. Using RMRF the tasks are allocated
to host with less workload as opposed to first fit task

1 2 3 4 5
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Host ID

T
im

e
 (

m
s
)

Idle Time

Completion Time

Fig. 9. Graph showing the idle times of various virtual machines
in a parallel processing application using map reduce.

1 2 3 4 5 6 7 8 9 10
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Observation sequence ID

D
is

ta
n
c
e
 b

tw
e
e
n
 o

ri
g
in

a
l
a
n
d
 p

re
d
ic

te
d

X50

X100

X150

X200

X250

X300

Fig. 10. Measuring the distance between learnt observation
and predicted sequence in a 4 States Markov

allocation. Figure 13 shows that applying RMRF pre-
diction capabilities ensures that jobs are scheduled with
higher fan out. In the figure 13, tasks, 1-100, from a
virtual service cell are scheduled in a way that ensures
under utilization is minimized. The vertical axis in
figure 13 gives the total workload on the selected
resource at the time of submitting tasks 1,2,...,100. The
tasks are shown on the horizontal axis. This result also
shows improvement in effective resource utilization.

We further demonstrate our proposed isolation strategy
with 100 vCells each with 10 VMs based on request
submitted in a template. VMs are assigned bandwidth
in the range 2-10MB. Each vCell is assigned a port
of capacity equal to total predicted bandwidth re-
quirement by all VMs in vCell. Figure 14 shows the

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 383

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

1 2 3 4 5 6 7 8 9 10

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Observation sequence ID

D
is

ta
n
c
e
 b

tw
e
e
n
 o

ri
g
in

a
l
a
n
d
 p

re
d
ic

te
d

X50

X100

X150

X200

X250

X300

Fig. 11. Measuring the distance between learnt observation
and predicted sequence in a 5 States Markov

Fig. 12. Comparing our novel vCell creation with first fit
technique.

result of running 100 work flow applications each
assigned a uniform random VM. The vertical axis
shows the average traffic. The traffic policy ensures
that sample virtual machines are not allowed rate above
actual allocated rate. VM activities in Figure 14 are
shaped to conform to allocated bandwidth. The result
shows a tight margin between allowed and requested
bandwidth. This result very the effectiveness of effec-
tively isolating vCells by assigning guided probabilistic
computed bandwidth at point of vCell creation.

6. Conclusion

In this work, a container based cloud service delivery
architecture is presented and a converged (network

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20

Task Id

E
x
is

ti
n
g
 W

o
rk

lo
a
d
 L

o
a
d

Markov

First Fit

Fig. 13. Comparing task allocation using RMRF prediction
and first fit.

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

Simulation Clock (s)

T
ra

ff
ic

 R
a
te

 (
M

b
/s

)

Virtual Machine Traffic Isolation

Allowed rate

Requested Rate

Fig. 14. Effect of container based isolation of virtual machine
on bandwidth request and allowed usage.

and IT) service layer for such model is described.
Mathematical models, widely used in biological
networks to describe cell interaction, are adopted in
context and modified to realise the functionalities of
the proposed service layer. The outcome of prototype
experiment on a research testbed are used as input to
the model for inference mechanism. Our interaction
prediction model shows accuracy and considerable
efficiency on rapid service creation. Based on the
prediction model, isolation models are applied at
virtual switching layer to avoid adverse activities of
virtual machines from affecting other virtual machines.
Although in this paper, data intensive application is
used to demonstrate the novel ideas, the same learning

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 384

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

and prediction model can be applied to many other
execution models and techniques.

References

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,
R. H. Katz, A. Konwinski, G. Lee, D. A.
Patterson, A. Rabkin, I. Stoica, and M. Zaharia,
“Above the clouds: A berkeley view of cloud
computing,” Technical Report No. UCB EECS-2009-
28, pp. Retrieved from http://www.eecs.berkeley.edu
/Pubs/TechRpts/2009/EECS–2009–28.html, February
2009.

[2] R. Buyya, C. S. Yeo, and S. Venugopal, “Market-
oriented cloud computing: Vision, hype, and reality for
delivering it services as computing utilities,” in High
Performance Computing and Communications, 2008.
HPCC ’08. 10th IEEE International Conference on,
sept. 2008, pp. 5 –13.

[3] Y. Tabaa and A. Medouri, “Towards a next generation
of scientific computing in the cloud,” International
Journal of Computer Science(IJCSI), vol. 9, Issue 6,
No 3, 2012.

[4] M. R. Garey and D. S. Johnson, “Computers and in-
tractability: a guide to the theory of np-completeness,”
in W. H. Freeman and Co, 1979, pp. 261–262.

[5] A. S. Zamani, M. M. Akhtar, and A. S, “Emerging
cloud computing paradigm,” International Journal of
Computer Science(IJCSI), vol. 8, Issue 4, No 2, 2011.

[6] A. Jaimovich, G. Elidan, H. Margalit, and N. Friedman,
“Towards an integrated protein-protein interaction net-
work: A relational markov network approach.” Journal
of Computational Biology, vol. 13, no. 2, pp. 145–164,
2006.

[7] P. Banerjee, R. Friedrich, C. Bash, P. Goldsack, B. Hu-
berman, J. Manley, C. Patel, P. Ranganathan, and
A. Veitch, “Everything as a service: Powering the new
information economy,” Computer, vol. 44, no. 3, pp. 36
–43, march 2011.

[8] E. N. Mohamed, K. Samar, and S. Nabila, “Profile
hidden markov model for detection and prediction of
hepatitis c virus mutation,” International Journal of
Computer Science(IJCSI), vol. 9, Issue 5, No 3, 2012.

[9] T. Miyamoto, M. Hayashi, and K. Nishimura, “Sustain-
able network resource management system for virtual
private clouds,” in Cloud Computing Technology and
Science (CloudCom), 2010 IEEE Second International
Conference on, 30 2010-dec. 3 2010, pp. 512 –520.

[10] R. Bohn, J. Messina, F. Liu, J. Tong, and J. Mao, “Nist
cloud computing reference architecture,” in Services
(SERVICES), 2011 IEEE World Congress on, july 2011,
pp. 594 –596.

[11] B. Michael, G. Bernard, K. Petra, D. Robert, B. Gerd,
P. Stefan, K. Heather, and A. Ali, Introduction
and Architecture Overview IBM Cloud Computing
Reference Architecture 2.0, 2011. [Online]. Available:
https://www.opengroup.org/cloudcomputing/uploads/40/
23840/CCRA.IBMSubmission.02282011.doc

[12] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan,
“An analysis of traces from a production mapreduce
cluster,” in Cluster, Cloud and Grid Computing (CC-
Grid), 2010 10th IEEE/ACM International Conference
on, may 2010, pp. 94 –103.

[13] T. Benson, A. Akella, and D. A. Maltz, “Network
traffic characteristics of data centers in the wild,” in
Proceedings of the 10th annual conference on Internet
measurement, ser. IMC ’10. New York, NY, USA:
ACM, 2010, pp. 267–280.

[14] E. Elghoneimy, O. Bouhali, and H. Alnuweiri, “Re-
source allocation and scheduling in cloud comput-
ing,” in Computing, Networking and Communications
(ICNC), 2012 International Conference on, 30 2012-
feb. 2 2012, pp. 309 –314.

[15] J. Dean and S. Ghemawat, “Mapreduce: simplified data
processing on large clusters,” Commun. ACM, vol. 51,
no. 1, pp. 107–113, Jan. 2008.

[16] M. Zakarya, I. U. Rahman, N. Dilawar, and R. Sadaf,
“An integrative study on bioinformatics computing con-
cepts, issues and problems,” International Journal of
Computer Science(IJCSI), vol. 8, Issue 6, No 1, 2011.

[17] A. McKenna, M. Hanna, E. Banks, A. Sivachenko,
K. Cibulskis, A. Kernytsky, K. Garimella, D. Altshuler,
S. Gabriel, M. Daly, and M. A. DePristo, “The Genome
Analysis Toolkit: A MapReduce framework for ana-
lyzing next-generation DNA sequencing data,” Genome
Research, vol. 20, no. 9, pp. 1297–1303, Sep. 2010.

[18] R. Buyya, R. Ranjan, and R. Calheiros, “Modeling and
simulation of scalable cloud computing environments
and the cloudsim toolkit: Challenges and opportu-
nities,” in High Performance Computing Simulation,
2009. HPCS ’09. International Conference on, june
2009, pp. 1 –11.

Ibrahim K. Musa Received his B.Sc. (Hons.) degree in
computer science and masters from Federal University of
Technology Nigeria in 2006 and 2009 respectively. He was
employed as lecturer in the Federal University of Technology
Nigeria in 2008 and worked as a Cisco and Microsoft
instructor in 2007-2009. In 2010 he started his Ph.D. in
Computer Science and Electronic Engineering department of
University of Essex, United Kingdom. His current research
interest is resource virtualization in cloud Computing.

Stuart D. Walker received the B.Sc. (Hons.) degree in
physics from Manchester University, Manchester, U.K., in
1973 and the M.Sc. and Ph.D. degrees in electronic systems

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 385

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

engineering from the University of Essex, Essex, U.K., in
1975 and 1981, respectively. After completing a period of
contractual work for British Telecom Laboratories between
1979 and 1982, he joined the company as a Staff Member in
1982. He worked on various aspects of optical system design
and was promoted to Head of the Regenerator Design Group
in 1987. In 1988, he became Senior Lecturer and then Reader
in Optical Communication at the University of Essex. He has
led eight patents and authored over 140 publications. In 2004,
he was promoted to a Professorship and is currently Head of
the Optical Systems Laboratory at the university. His current
interests focus on modeling and analysis of advanced optical
network components and systems.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 386

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

