

Model based testing of Datawarehouse
Kuldeep Deshpande

Capgemini

Pune, Maharashtra, 411038, India

Abstract

Testing forms a major part of development lifecycle of a

software system. Testing is responsible for ensuring software product

meets intended quality of software systems. Large percentage of

failure of Datawarehouse projects necessitates an investigation into

alternative techniques for all aspects of datawarehouse development

lifecycle including testing.

 Model based testing is a technique applied for many

software products and has proved to help increase the quality while

reducing overall cost of the software systems. In this paper, we

propose application of model based testing to datawarehouse systems

and discuss how it can help solve some of the challenges in

datawarehouse testing. This paper also proposes implementation

details and future roadmap for model based datawarehouse testing.

Keywords: Datawarehouse, Testing, Model based Testing, Model

driven architecture.

1. Introduction: overview of datawarehouse testing

Development of datawarehouse (DW) systems is one of the

most risky IT projects. Failure of datawarehouse projects has

been reported in literature. Failure rate in datawarehouse is as

high as 50% [1].

Such a high rate of failure necessitates need for an

investigation in all aspects of development life cycle of

datawarehouse. Requirements management of datawarehouse

has been thoroughly studied in literature [13]. Similarly, various

design aspects such as data mart design, datawarehouse

evolution, ETL design and modeling have been reported in

literature [23], [19].

Ralph Kimball has stressed on need for a controlled testing by

datawarehouse end users in a user acceptance testing phase

[14]. According to him datawarehouse testing has to

encompass 3 phases i.e. unit testing, QA testing which is

independent testing by a team of testers and UAT by end users.

He has also proposed a template for ETL testing test cases. In

[3] authors have proposed a framework for datawarehouse

testing. This work lists artifacts to be tested in datawarehouse

project: conceptual schema, logical schema, ETL procedures,

database and front end. These artifacts have been proposed to

be tested using various types of test such as performance test,

functional test, stress test, recovery test, security test, usability

test and regression test. The authors then describe which

artifacts should undergo which kind of test and at what time in

lifecycle of the project. This study is an important DW testing

literature that considers how, what and when of DW testing.

However there have been very few similar studies proposing

end to end DW testing methodology. In [4] a set of best

practices for DW testing has been proposed. This paper has

stressed on importance of testing various business rules.

1.1 Challenges in datawarehouse testing

In [15] a systematic literature survey of datawarehouse testing

literature is done followed by a set of interviews of

practitioners. This study lists challenges for datawarehouse

testing as follows:

 Product related challenges: This category includes all

challenges related to inputs for testing OR artifacts

produced during testing. This category of testing

challenges includes lack of clarity on requirements,

unavailable source data for testing, insufficient testing data

and lack of richness in test data, lack of time for designing

and planning large number of test cases and time required

for executing long running programs during testing.

 Process related challenges: This category includes

challenges related to activities performed during testing

like lack of clarity on ownership of various testing

activities, limited time for testing, bad source data quality

and lack of traceability of datawarehouse requirements.

 Resource related challenges: This category includes

challenges related to human resources and tools like lack of

business and business knowledge and testing skills and

lack of formal testing tools for DW.

Rest of this paper is organized as follows: In section 2,

we discuss model based development approach for

datawarehouse, in section 3 we give an overview of model

based testing in general for software products. In section 4, we

introduce the concept of model based testing for

datawarehouse and discuss how it can help overcome some of

the challenges discussed in this paper. Proposed

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 330

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

implementation methodology for model based testing of

datawarehouse is also described in this section. Finally, in

section 5, we discuss future roadmap for model based testing

for datawarehouse.

2. Emergence of Model driven approach for DW

As per CWM, model driven approach is defined as a

“standard framework for software development that addresses

the complete life cycle of designing, deploying, integrating, and

managing applications by using models in software

development. [12]”

Model Driven Approach is based on 3 main types of models:

PIM, PSM & CIM

A Computation Independent Model (CIM) is also often referred

to as a business or domain model because it uses a vocabulary

that is familiar to the subject matter experts. It presents exactly

what the system is expected to do, but hides all information

technology related specifications to remain independent of how

that system will be (or currently is) implemented [12].

Platform Independent models (PIM) are created in such a way

that these can be used for building systems on any platform.

Technical details of system are abstracted in the PIM.

A Platform Specific Model (PSM) is a platform dependent

specification of the system. It uses system specifications in the

PIM and generates details of how these specifications should

be implemented for the platform.

In recent years, there has been extensive research in the area of

Model Driven Architecture for Datawarehouse.

In [12], authors have described how MDA and CWM (Common

Warehouse Metamodel) can be used for requirements gathering

and design of Datawarehouse.

Similarly in [2], a datawarehouse framework (DWF) and Unified

process (2TUP) has been proposed for development of

datawarehouse using model driven architecture.

Currently a number of tools exist in the market for exchange of

metadata across various phases of DW lifecycle. For example

 Kalido (www.kalido.com) is agile information management

software. Kalido Information engine lets a business user

define business information model which is used to drive

many of the activities in development of the datawarehouse.

ETL developers map the source data to business information

model. Kalido tool creates physical tables to load the source

data and the transformations to load this data [28].

 Meta Integration (MI) Model Bridge

(http://www.metaintegration.net): This is a tool that

provides integration of metadata across various data

modeling, ETL and reporting tools as well as metadata

repositories [27].

 Metadata tools such as Adaptive (www.adaptive.com) can

be used to build a business glossary / taxonomy. Business

rules / transformations can be specified in the metadata tool.

The metadata tool creates metadata in CWM format which

can be used for creating ETL code and data model [26].

3. Model based testing

Benefits of model driven approach go beyond just

development of software using a model of the software

system. Model based testing is a testing technique for

automated generation and execution of test cases based on

formal models of system under test (SUT). Model based

testing completely automates testing process [7]. Mode

based testing can be applied at various levels of testing i.e.

unit testing, integration testing and system testing [16].

Fig. 1 Model based testing steps

3.1 Steps in Model based testing

Steps in Model of MBT can be described as follows:

 Step 1 - A model of SUT is built based on requirements or

specification documents. This model is intended to be used

for generating test cases. Hence required level of details for

generation of test cases is added and details that are not

required for test case generation are abstracted.

 Step 2 – A criteria is defined based on the requirements to

select the test cases. Objective of the test selection criteria

is to make sure that defined set of test cases detect

maximum number of sever defects in software at acceptable

cost [10].

 Step 3 – After deciding the criteria to generate test cases

and getting requirements for the SUT, a set of test

specifications is generated. A test specification is an

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 331

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

http://www.kalido.com/
http://www.metaintegration.net/
http://www.adaptive.com/

abstract description of test cases that can be translated

into a test script.

 Step 4 – By using test specification as an input a set of

executable test scripts is generated. This test script can be

directly executed on SUT.

 Step 5 – This is the final step in MBT that includes

executing the test case and recording the output.

3.2 Important features of Model based testing

 Online – offline: In online testing, MBT tool creates as well

as executes the test cases. In offline MBT, test cases are

created by the MBT tool, but not executed at the same

time.

 Test coverage / test selection criteria: Software test

coverage criteria allow the identification of the percentage

of the software that has been evaluated by a set of test

cases. Data coverage criteria help to identify how to

choose few data values from a large set for testing

purpose. Boundary analysis and domain analysis have

been recommended in literature as possible data coverage

criteria. Structural model coverage criteria use knowledge

of structure of the model to choose few test cases to be

executed. Few other test selection criteria such as

stochastic, random and requirement based selection criteria

have been recommended in literature [10].

 Test generation algorithm: Real advantage of MBT lies in

usage of algorithms to automatically create test cases.

Models generated from Finite state machines, theorem

proving, model checking and symbolic execution have

been proposed for generation of test cases.

3.3 What models can be used as source for model based

testing

Generally a behavioral model of the SUT derived from

model describing the software is used as input for model based

testing. Design or architectural models do not contain sufficient

details such as control flow OR data flow to enable generation

of test cases [16]. This necessitates creation of a separate

model for generating test cases. In case of model driven

development, model used for code generation and model used

for test case generation needs to be different. Various models

have been recommended to be used as testing models for

generation of test cases. For example, UML2.0 testing profile

has been recommended as source for MBT where UML is used

as test specification. As per survey in [16], majority of the MBT

approaches use State chart diagram, UML, class diagram,

sequence diagram and finite state machine for generation of tes t

cases.

3.4 Tool support for model based testing

 One of the most important aspects of MBT is level of

automation. Automation means less cost, time and effort to

generate test cases [16]. In [18] a systematic review of tool

support for automation has been done. This study has been

conducted on 27 MBT tools to find out what are tools available

in the market, level of automation and test coverage criteria

used in each tool. GOTCHA-TCBeans, MBT, TestOptimal,

AGEDIS, ParTeg, Qtronic, Test Designer, Spec Explorer,

NModel are some of the tools studied in literature.

3.5 Advantages and limitations of model based testing

Once the system model is created, model based testing can be

executed with lesser effort. This ensures early integration of

testing in development process resulting in increased quality.

Automatic test case generation is time and cost effective. After

creating test model, test generation can be automated.

In case of changes in the system design, effort for regression

testing is very less if model based testing is used. Only work

involved in model based testing is to change the system model

and rest of the testing process can be automated [16].

Test goals can be defined in the test model. By doing this, a

certain set of common test cases are already pre-created in the

model. This ensures that common test cases are not missed out.

Manual creation of test cases and test scripts has limitations of

cost and time to create the test cases. Because of automation of

test case creation, model based testing provides better test

coverage.

MBT makes software engineers able to accomplish testing

activities in parallel with the development of software [16]

3.6 Model based testing in agile development

 Agile development is a software development

methodology focusing on shorter development iterations aimed

at delivering working software to users. In [21] author has

argued that Agile development and Model Based Testing

complement each other. Using MBT in agile development helps

in better test coverage, improves flexibility and helps in

automated Test driven development.

4. Model based testing for Datawarehouse

In this section we discuss a model based testing approach

for datawarehouse testing.

Majority of model based testing approaches have been applied

for UML based object oriented modeling software. In [16] a

survey of model based testing has been done and the survey

concludes that model based testing is most widely applied to

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 332

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

object oriented software followed by that for reactive systems

and safety critical systems. The survey reports application of

MBT for embedded systems and web applications, but

application of MBT to database systems or datawarehouse

applications in particular are not reported.

4.1 Motivating example:

We discuss proposed approach for model based test ing of

datawarehouse with the help of an example. Consider a data

source including 2 tables: Retail_sales_store and

Retail_sales_online that includes transactions for sales done in

the store and sales done through online portal respectively.

Details of items sold are stored in Item table. We would like to

populate this transaction level data in a fact table called as

Fact_retail_transaction. Structures of these tables is shown

below

Fig. 2 Motivating example – source tables

4.2 Model of SUT for testing

One of the most important activities in MBT is building model

of SUT for the purpose of testing. We propose to use a Data

Mapping in UML using attributes as first class citizen of the

model. In [22] a UML based approach for modeling data flow

has been proposed. In this paper 4 levels of data flow have

been proposed: database level mapping, dataflow level

mapping, table level mapping and attribute level mapping. We

propose to make use of attribute level and table level mappings

to model a data flow to construct model of SUT. Table level

mapping model will capture relationship between source and

datawarehouse tables. Attribute level mapping model will

capture relation between source and target attributes and

transformations involved. We propose to modify the approach

proposed in [22] to include <<Transformation>> class to model

relation between 2 attributes. Methods in <<Transformation>>

class will capture details of transformation between source and

target elements. Model of SUT for the motivating example is

shown in figure 3 and 4.

Fig. 3 Model of SUT – table level mapping

Fig. 4 Model of SUT – Attribute level mapping

4.3 Test data generation

Lack of sufficient data is a major challenge in Datawarehouse

testing. We propose to make use of equivalence partitioning

techniques for generation of data. This is a technique in which

input domain of values is divided in categories and test cases

are designed in such a way that each category of data is

covered at least once. During creation of SUT model,

information regarding categories of data will be captured from

the business user and random data generation techniques will

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 333

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

be used for generation of test data in each class. Categories of

data for testing should include valid as well as invalid data.

This generated test data will be used in case source data is not

available. In the motivating example, following is an example of

capturing data categories.

Column Min.

Value

Max.

Value

Valid /

Invalid

Data to

be

generated

Discount 0 100 Valid 90%

Discount -10 -1 Invalid 5%

Discount 101 150 Invalid 5%

Fig. 5 Data categories for test data generation

In the above example, during equivalence partition based data

generation, 90% of the generated data will be in the range 0 to

100 and 10% of the values generated for testing will be invalid

values (less than 0 and greater than 100)

4.4 Test case generation

We propose to generate test cases based on UML models

described in section 4.2. Our approach is based on approach

described in [23]. Different UML diagramming tools such as

MagicDraw, Rational Rose and NClass allow UML model to be

exported to XML file. The exported file contains XML tags

describing UML diagram. In our proposed approach, each

mapping between source and target attribute and tables is

modeled as a class. Each such class will contain

transformations (e.g. conversion from Euro to dollars,

mathematical operation between 2 attributes etc) as methods in

the class. Based on the XML tags which mainly describe type

of transformation between source and target tables and

involved attributes, a standard set of test cases is proposed to

be generated using a parser. Standard type of testing that can

be applied in datawarehouse testing can be categorized into

following types [25]:

 Constraint testing – objective is to validate

uniqueness, relationships etc.

 Source to target counts – objective is to validate of

record count in source matches record count in target

and that ETL process does not drop any records.

 Source to target data validations – objective is to

ensure that data transformations are correctly applied

on the source attributes before loading into target.

 Error processing – objective is to ensure that invalid

records in the source table are correctly moved to

appropriate error table.

Our proposed parser for test case generation will read each

XML tag, interpret the type of transformation and attributes

involved and apply testing validations described above to the

involved attributes. In the motivating example, table level

mapping generates a class “Public class mapping” indicating

that there exists a mapping between retail_sales_store, retail-

sales_online and fact_retail_transaction tables. The XML

parser will generate a test case to validate that number of

records in source and target tables is same.

Datawarehouse test cases may take long time to execute [15]

considering high data volumes. Hence we propose that model

based testing for DW should be an offline testing in which user

can control execution of test cases.

Process flow of proposed model based testing based on

methodology discussed in this paper is shown in figure 6

Fig. 6 Process flow of model based testing of datawarehouse

4.5 Advantages of proposed approach

 Lack of source data for testing, lack of richness in test data

has been reported as a major challenge in DW testing. As

seen in above architecture, our proposed MBT approach

includes a test data generator. The test data generated for

testing is proposed to include all possible valid and invalid

data categories. This can help in generating required

quantity of test data with possible data value

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 334

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

combinations. Also by using business user feedback for

creating data partitions, this approach generates test data

that mimics real life scenarios.

 Limited time for testing is a major issue in DW testing due

to large number of test case combinations, need to

understand business domain to create test cases and lack

of good quality source data for testing [15]. With Model

based testing, task of test case generation is automated

and large number of combinations of test cases can be

generated in a limited period.

 Changing nature of requirements is a feature of

Datawarehouse development. This is because business

cannot finalize data reporting requirements unless they see

the data which is possible only after datawarehouse

development. This uncertain nature of Datawarehouse

requirements leads to frequent changes in specifications

and subsequent need for changes in test cases. With

model based testing, a change in test model can result in

automated change in test cases and generation and

execution of test cases.

5. Future roadmap for model based testing for

datawarehouse

In this paper we have provided, to the best of our knowledge,

first approach based on model based testing of datawarehouse.

Model based testing approach described in this paper needs to

be experimentally established. For this, it is important that an

extension of UML needs to be created for representing various

transformations used in Datawarehousing process. Test data

generation is an important aspect of our proposed approach.

Creation of rich set of test data avoiding combinational

explosion of data needs to be done.

Proposed approach needs to be empirically validated and it

needs to be verified whether model based testing results in

reduced effort for DW testing and also results in better test

coverage.

6. Conclusions

In this paper we reviewed state of the art of datawarehouse

testing and challenges faced in it. With increasing business

expectations regarding content and accuracy of datawarehouse

data and tighter budgets, newer techniques for testing need to

be developed. In this paper we have proposed application of

model based testing for testing of datawarehouse. We believe

that usage of models of software under test for datawarehouse

for testing purpose will reduce testing effort and cost and

increase code coverage and hence quality of datawarehouse.

References

[1] A 50% Datawarehouse failure rate is nothing new available at

http://it.toolbox.com/blogs/bounded-rationality/a-50-data-

warehouse-failure-rate-is-nothingnew-4669

[2] Moez Essaidi and Aomar Osmani, A Unified Method for

Developing Data Warehouses, Journal of Computational Methods

in Sciences and Engineering, Volume 10 Issue 1-2S1, 2010,Pages

119-134

[3] Matteo Golfarelli and Stefano Rizzi, A Comprehensive Approach

to Data Warehouse Testing, in DOLAP '09 Proceedings of the

ACM twelfth international workshop on Data warehousing and

OLAP,2009, Pages 17-24

[4] A. Mookerjea and P. Malisetty. Best practices in datawarehouse

testing. In Proc. Test, New Delhi, 2008.

[5] Jaiteg Singh and Kawaljeet Singh,Statistically Analyzing the

Impact of Automated ETL Testing on the Data Quality of a Data

Warehouse, International Journal of Computer and Electrical

Engineering, Vol. 1, No. 4, 2009, Pages 488-495

[6] Mohd. Ehmer Khan,Different Forms of Software Testing

Techniques for Finding Errors, International Journal of Computer

Science Issues, Vol. 7, Issue 3, No 1, 2010, Pages 11-16

[7] Mark Utting,Position Paper: Model-Based Testing, in Verified

Software: Theories, Tools, Experiments (VSTTE) conference on

the "Program Verifier" grand challenge, 2005

[8] Mitu Dhull and Archana Sharma,Testing the relational

Database,International Journal of Computer Science Issues, Vol. 7,

Issue 3, No 5, 2010, Pages 47-52

[9] Pavol Tanuska, Pavel Vazan and Peter Schreiber,The Partial

Proposal of Data Warehouse Testing Task, in 2009 International

Symposium on Computing, Communication, and Control, 243-247

[10] Utting, M., Pretschner and A. and Legeard, B., A taxonomy of

model-based testing approaches, Softw. Test. Verif. Reliab.,

Volume 22, Issue 5, pages 297–312, August 2012

 [11] Raj Kamal and Nakul , Adventures with Testing BI/DW

Application:On a crusade to find the Holy Grail, Available from

<http://msdn.microsoft.com/en-us/library/gg248101.aspx>, [31st

Jan 2012].

 [12] Prof. Dr. Marc Scholl and Prof. Dr. Harald Reiterer,Model-

Driven Architecture (MDA) and Data Warehouse Design, in

seminar Business Intelligence Model-Driven Architecture (MDA)

and Data Warehouse Design, 2006

 [13] Golfarelli and Matteo.,From User Requirements to Conceptual

Design in Warehouse Design: A Survey., In Data Warehousing

Design and Advanced

Engineering Applications: Methods for Complex Construction, ed.

Ladjel Bellatreche, 2010, Pages 1-16

 [14] R. Kimball and J. Caserta, The Data Warehouse ETL Toolkit.

John Wiley & Sons, Indianapolis, 2004.

 [15] Muhammad Shahan Ali Khan and Ahmad ElMadi, Data

Warehouse Testing an Exploratory Study, MS Thesis, School of

Computing, Blekinge Institute of Technology, Karlskrona, Sweden,

2011

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 335

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

 [16] A.C. Dias-Neto, R. Subramanyan, M. Vieira and G.H. Travassos,

Characterization of Model-based Software Testing Approaches,

TRES-713/07, PESC-COPPE/UFRJ, 2007.

[17] Pavol Tanuška, Oliver Moravčík, Pavel Važan, Fratišek Miksa,

The Proposal of Data Warehouse Testing Activities, in

Proceedings of the 20th Central European Conference on

Information and Intelligent Systems, 2009, Pages 7-11

[18] Muhammad Shafique and Yvan Labiche, A Systematic Review of

Model Based Testing Tool Support, Carleton University,

Technical Report, 2010

[19] Panos Vassiliadis, Alkis Simitsis and Spiros Skiadopoulos,

Conceptual modeling for ETL processes, in DOLAP’02, 2002,

Pages 14-21

[20] Object Management Group 2003, CWM 1.1 Available from:

<http://www.omg.org/spec/CWM/1.1/>, [31st Jan 2012].

[21] Faragó, David. "Model-based Testing in Agile Software

Development.", in 30. Treffen der GI-Fachgruppe Test, Analyse

& Verifikation von Software (TAV), Testing meets Agility, 2010,

Pages 1-4

[22] Sergio Luján-Mora, Panos Vassiliadis and Juan Trujillo, Data

Mapping Diagrams for Data Warehouse Design with UML, in In

Proc. 23rd International Conference on Conceptual Modeling,

2004, Pages 191-204

[23] Vinaya Sawant and Ketan Shah, Automatic Generation of Test

Cases from UML Models, in International Conference on

Technology Systems and Management (ICTSM) 2011

Proceedings published by International Journal of Computer

Applications® (IJCA), 2011, Pages 7-10

[24] Matteo Golfarelli, From User Requirements to Conceptual

Design in Data Warehouse Design – a Survey, In Data

Warehousing Design and Advanced Engineering Applications:

Methods for Complex Construction. L. Bellatreche (Ed.), IGI

Global, 2009, Pages 1-14

[25] R. Cooper and S. Arbuckle. How to thoroughly test a data

warehouse, in Proc. STAREAST, Orlando, 2002.

[26] Adaptive, Available from: <http://www.adaptive.com/>, [31st

Jan 2012].

[27] Meta Integration Technology Inc, Available from:

<http://www.metaintegration.net/>, [31st Jan 2012].

[28] Kalido Inc, Available from: <www.kalido.com/>, [31st Jan

2012].

Kuldeep Deshpande completed BE (Mechanical Engineering) from

Pune university in 1997 and MS (Sof tw are Systems) from BITS Pilani.

He is pursuing Ph.D in Information systems management from ITM

University. Since 2000, he has w orked in Capgemini consulting in the

Dataw arehousing and Business Intelligence practice.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 336

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

http://www.metaintegration.net/
http://www.kalido.com/

