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Abstract
In this study, a methodology of constructing and incor-
porating potential-vorticity (PV) data into initial con-
ditions of a limited-area model is proposed. This
methodology is based on the linear correlation be-
tween vertical (100hPa-500hPa) mean PV (MPV) and
MetOp/GOME2 total ozone (O3) data. On one hand,
a linear regression model is implemented to gener-
ate MPV from O3 data. On the other hand, a 3D-
variational method is designed to assimilate MPV
pseudo-observations as a first step toward investigating
their dynamical impact.
Keywords: Remote Sensing, Ozone, Meteorology, Data
assimilation, Numerical Weather Prediction.

1 Introduction
Synoptic weather systems have long been recognized
as sources of total ozone variability, and many studies
have explored the relationship between ozone (O3)
and meteorological variables, particularly the Potential
Vorticity (PV) [1].
In line with [2], the present study makes use of the sta-
tistical correlation between vertical (100 hPa-500 hPa)
mean PV (MPV) and MetOp/GOME2 O3 data to gen-
erate MPV pseudo-observations. Furthermore, using a
3D-Var approach, the MPV data are assimilated within
the Moroccan version of the ALADIN limited-area
model (Aire Limitée Adaptation Dynamique).
This article reports on the technical implementation
of the assimilation of MPV data. Section 2 describes
GOME2 O3 and MPV data. Section 3 presents the

statistical correlation between GOME2 O3 and MPV
data. Section 4 describes MPV data assimilation.
Section 5 summarizes the results and discusses their
implication.

2 MetOp/GOME O3 and AL-
ADIN MPV data

In this section, a brief overview of MetOp/GOME2 O3
and ALADIN MPV data is given.
Launched in October 2006, MetOp delivers continu-
ous datasets supporting operational meteorology, global
weather forecasting and climate monitoring [3]. On
board MetOp, Global Ozone Monitoring Experiment 2
(GOME-2) obtains the total ozone with a high spatial
and temporal resolution from the backscattered solar ul-
traviolet–visible radiance emerging at the top of the at-
mosphere [4].
The PV computation utilizes ALADIN (resolution
10 km and 60 levels) dynamical fields based on the fol-
lowing formulation [5]
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Where ξa is the vertical component of the absolute vor-
ticity, U and V the horizontal wind components, θ the
potential temperature, R gas constant, Cp specific heat
at constant pressure, p the pressure, p0 a reference pres-
sure, g the gravity and f Coriolis parameter.
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The MPV is estimated using the following expression

MPV =
1

P1−P2

∫ P2

P1

PV.δ p (2)

With P1 = 500 hPa and P2 = 100 hPa

3 Correlation between MPV and
O3

As in [2], this study aims at establishing a linear regres-
sion model that links O3 and MPV as described by the
following expression

MPV = α ∗O3 +β (3)

where α and β are constants to be determined
from the statistics of GOME2 O3 and ALADIN MPV
data. By using data covering the period from the
21st of January 2010 to the 21st of January 2011, the
correlation between O3 and MPV, as shown in Fig.1,
is found to be dependent on latitudes and on months.
Latitudes over 30◦ give a correlation coefficient that
varies between 0.6748 and 0.8696 with a mean value
of 0.7675.

Fig. 1: MPV-O3 correlation coefficient per month and per latitude
over 2010.

Figure 2 shows daily MPV-O3 correlation coeffi-
cients over November 2010. Over the latter period,
GOME2 O3 are found to be correlated to MPV with a
correlation coefficient varying between 0.43 and 0.94,
and a mean value of 0.7653.

Fig. 2: Correlation coefficient per day over November 2010.

Data covering November 2010 gives a correlation co-
efficient of 0.8054 and a linear regression as follows

MPV = 0.3712 10−2 ∗O3−0.8448 (4)

where O3 and MPV are given in Dobson Unit (DU)
and PVU (1 PVU = 10−6 m2 K kg−1 s−1), respec-
tively. Hereafter, MPV pseudo-observations are gener-
ated from GOME2 O3 data using Eq.4.

4 MPV data assimilation

4.1 Technical implementation

The dynamical impact of MPV data depends very much
on how the information contained in the data is ex-
tracted and incorporated into the initial condition. For
the latter purpose, data assimilation is a convenient sta-
tistical framework to estimate the initial state of the at-
mosphere given imperfect short-range forecasts (first-
guess) and observations with limited precision. The aim
is to produce an analysis for which the error from the re-
ality (unknown) is lower than that of the first-guess and
the observations. The assimilation system used in this
study is based on a 3D-Variational scheme (3D-Var) [6].
The notation in this paper will follow [7] as closely as
possible.

The 3D-Var scheme minimizes the following func-
tion J(δx)

J(δx) = Jb(δx)+ Jo(δx) (5)

where the increment vector δx is the difference between
the model state x and the first-guess state xb. The Jb(δx)
term in Eq.5 refers to the first-guess cost function
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Jb(δx) = δxT B−1
δx (6)

and the Jo(δx) term refers to the observation cost func-
tion

Jo(δx) = (d−H(δx))T R−1(d−H(δx)) (7)

where d=y◦-H ( xb) is the departure between the obser-
vation vector y◦ and its model equivalent in observation
space H ( xb). The operator H is a generalized inter-
polator (including model estimation of MPV) from the
model grid to the observation location and H represents
its tangent-linear. In Eq.6 and Eq.7 B and R represent
the first-guess and observation error covariance matri-
ces, respectively. In order to assimilate MPV observa-
tions, the following changes in the operational version
of the ALADIN/3D-Var system have been applied. The
PV at each level of the ALADIN model is computed
using Eq.1. The expression of MPV at a level n is esti-
mated through the following expression

MPVn =
1

(P1−P2)
∆PnPVn +MPVn−1 (8)

where

• MPVn: vertical mean PV from the level 1 to the
level n

• MPVn−1: vertical mean PV from the level 1 to the
level n−1

• PVn: PV at level n

• ∆Pn: pressure difference between the level n and
the level n−1

The tangent-linear is estimated through the following
expression

δMPVn =
1

(P1−P2)
∆PnδPVn +

1
(P1−P2)

PVnδ∆Pn +δMPVn−1

(9)
And then, it is algebrically defined by the following ma-
trix
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(10)

Defined as the transpose of the tangent-linear opera-
tor, the adjoint is algebraically presented by the follow-
ing matrix

δPV AD
n

δ∆PAD
n

δMPV AD
n−1

δMPV AD
n
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where superscript AD denotes the adjoint.
The adjoint operator can be written more explicitly as

δPVn
AD = δPVn +

1
(P1−P2)

∆PnδMPVn (12)

δ∆PAD
n = δ∆Pn +

1
(P1−P2)

PVnδMPVn (13)

δMPV AD
n−1 = δMPVn−1 +δMPVn (14)

δMPV AD
n = 0 (15)

4.2 Results
MPV pseudo-observations are constructed from
MetOp/GOME2 O3 observations of the 29th November
2010 between 09h UTC and 15h UTC (as shown in
Fig.3 ) using Eq.4. The first-guess is a 6-hour forecast
from the 29th November 2010 at 06 UTC.

Fig. 3: MetOp/GOME2 total Ozone in DU observed on the 29th

November 2010 between 09h UTC and 15h UTC.

Figure 4 shows OMA and OMF, which refer to
Observation minus Analysis and Observation minus
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First-guess for MPV, respectively. The assimilation
system gives consistent OMA and OMF departures:
the MPV analysis is closer to the observation than the
first-guess.

Fig. 4: Difference between Observation and Guess (on the left) and
between Observation and Analysis (on the right).

5 Conclusion
In this study, a method was proposed for construct-
ing and incorporating MPV data into the initial con-
ditions of a limited area model. The MPV data are
inferred from MetOp/GOME2 O3 data using a simple
linear regression model between O3 and MPV. The pro-
duced MPV pseudo-observations were successfully as-
similated using a 3D-Var approach within the Moroccan
version of the ALADIN limited-area model. In the de-
signed MPV assimilation experiment, the operator that
computes MPV was developed together with its asso-
ciated tangent-linear and adjoint. The OMA and OMF
departures showed that when MPV data are assimilated,
the departures are reduced and the analysis agrees bet-
ter with the MPV data in comparison to the first-guess.
It must be noticed that OMA and OMF diagnostics only
show that the system is behaving properly. Therefore,
further information on system performance can be ob-
tained by comparison against independent data. In on-
going work, the impact of MPV assimilation on the ini-
tial conditions of wind and temperature is under exam-
ination.
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