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Abstract 
This paper presents the studied of robust sliding mode control for 
a class of nonlinear system with parametric uncertainty based on 
Takagi Sugeno (T-S) fuzzy model approach. The method utilized 
the concept of state feedback control and Lyapunov functional 
approach to determine the condition of asymptotically stability. 
The condition for asymptotically stability is presented in the 
forms of linear matrix inequalities (LMI), thus the global 
asymptotically stability of robust sliding mode control via Takagi 
Sugeno fuzzy model for a class of nonlinear system with 
parametric uncertainty is determined. An example is presented to 
shows the feasibility and the functionality of the proposed 
method. 

Keywords: nonlinear system, T-S Fuzzy Model,  LMI, Sliding 
Mode Control, parametric uncertainty.. 

1. Introduction 

It’s commonly known that a highly complex control 
system often consist uncertainty and nonlinearity 
characteristics which are not easy to presents in 
mathematical model. Furthermore   the mathematical 
approach of nonlinear systems is less cater and understood 
by the used of classical linear systems approach. Ever 
since Takagi and Sugeno presented an ingenious method 
to represents a nonlinear systems as a group of linear time 
invariant (LTI) model mixed with nonlinear functions to 
form a fuzzy model representation [1]-[2], thus the used of 
Takagi-Sugeno (T-S) fuzzy model approach has been 
applied in numerous applications and attracted numerous 
studied [3]-[8]. This is due to its efficiency to control 
highly and complex nonlinearity in the system. Utilizing 
the state feedback approach, the same principles is applied 
to parallel distributed compensation (PDC) which is used 
to interpolated with the feedback gains in each of the 
determined Takagi-Sugeno (T-S) fuzzy rules [3]. 
Furthermore the global linearized fuzzy model is made up 
from set of local linearized models which are derived from 
set of membership functions. 
 

Over the years there has been a lot of studied done to cater 
the parametric uncertainties of nonlinear system as well as 
its stability issues. There are studied that proposed an 
analysis method of linearization control approach which 
derived from fuzzy models. Nevertheless, each of this 
stability approaches still relying on determining a common 
positive definite matrix P in which often obtained from a 
derived condition of linear matrix inequalities (LMIs) 
terms. [9]-[15]. Furthermore the task of determined the 
common positive definite matrix is tedious and not easy if 
the control system consisting a great number of fuzzy 
rules.  
 
Sliding mode control (SMC) systems theory have been 
widely been studied to cater the nonlinear dynamic control 
problems arise from uncertainty parameter, time varying 
delay and external disturbances [16]-[20]. The main 
concept of SMC is designing a control law which guides 
the system state to reach and remain on the switching 
surface.  

 
In this paper, we utilized the concept of state feedback and 
Lyapunov functional approach to obtain a sufficient 
stability condition for designing a robust sliding mode 
plane. By our approach, it can be seen that the derivation 
of the controller is straight forward and the approach of 
finding the required parameters are reduced to solving 
linear matrix inequalities (LMIs), which are often solved 
by the MATLAB/Simulink LMI toolbox. We proposed yet 
another alternative by means of improving the T-S fuzzy 
model based control for a class of nonlinear system with 
parametric uncertainty. To be precise, we present a 
systematic design procedure of T-S fuzzy model based 
control with guaranteed stabilization for a class of 
nonlinear system with parametric uncertainty. A numerical 
example is simulated using the proposed algorithms to 
show the effectiveness and the feasibility of the controller. 
This paper is presented and organized as follows. Section 
2 presents the problem formulation of this intended paper. 
Section 3 presents the main results of the studied of robust 
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sliding mode control for a class of nonlinear system with 
parametric uncertainty via Takagi Sugeno fuzzy model.  
Section 4 presents the numerical example of the control 
approach with the simulation results and analysis. Lastly, 
the conclusion is briefed in the section 5 
.  

2. Problem Formulation 

Consider a class of nonlinear system with parametric 
uncertainty represented by Takagi and Sugeno fuzzy 
model:  

 
Model Rule i: 

      IF   ��(�) is ���  and … and ��(�)  is ���   
THEN  
  	
(�) = �� + ∆�	(�)� + ���(�) + ��(	, �)         (1) 

        
where � = 1,2… , �.  �  is the number of IF-THEN rules. 
	(�) ∈ ��	 is the state vector and �(�) ∈ ��  is the input 
vector and	 (�) ∈ �!  is the output vector. and �� ∈ ��×� 
and � ∈ ��×�  are the system input matrices and the 
systems matrices and respectively. ∆�  represents the 
parameters uncertainties and ��(	, �)  is bounded external 
disturbance.  �#� , $ = 1,2… , %	is denoted as the $�&' fuzzy set 
for the ��&' rule and ��(�), . . , ��(�) are the known variables 
functions of state variables. (#�(�#)  is denoted as the 
membership function for the $�&'  fuzzy set �#�  in the ��&' 
and (�(�(�) = ∏ �#��#*� (�(�)) � = 1, . . , �  

Let’s denotes the pair of 	(�), �(�),  as the fuzzy 
systems output represented as [15]: 

 

     	
(�) = ∑ ,-	(&).�/-0∆/-1(&)�02-3(&)04-(1,&5			6-78
∑ ,-	(&)		6-78        (2)

 
 
�(�) is the premise vector for 	�(�) = ��, �9⋯��    

     As the �(�) is regards as the combination of linear and 
state vector, thus the weight function can be represented 
as:  
 

													ℎ���(�)� = ,-(<(&)
∑ ,-	(&)		6-78 			 , � = 1,⋯ , �		          (3) 

 
for all t. 
(#���#�	 denoted as the membership grade for �#(�)  in �#� 
from Eq.(2), noting  
 

	=∑ ℎ���(�)� = 1>�*�
ℎ���(�)� ≥ 0 A 										� = 1,⋯ , �		     

    
Therefore the Takagi Sugeno fuzzy model can be 
represents as: 
 

	
 (�) = ∑ ℎ�	(�)	.��	 + ∆�		(�)� + ��	�(�) + ��(	, �5		>�*�     (4) 
 
and the output of Takagi Sugeno fuzzy model can be 
represents as: 
 
                  (�) = ∑ ℎ�	(�)	B�		(�)		>�*�                      (5) 
 
     Before proceeding, the following assumptions are 
needed.  
Assumption 1: There exists C ∈ ��×� for the pair (�	, �) is 
stabiliseable such that D	EEE = �	–�C is stable. 
Assumption 2: The uncertain matrices ∆�	(�) is denoted in 
the form of: 
 
                         ∆�	 = ��G�(�)H�                           (6) 
 
and are norm-bounded, where ��  and H�  are known 
constant matrices of appropriate dimension and G�(�) 
satisfying: 
 
                         G�I(�)G�(�) ≤ K,					∀�                     (7) 
 
where G�(�) are Lebesgue measureable. 
Assumption 3: �� = �9 = ⋯ = ��: = �  and �  is a full 
column rank matrices. 
Assumption 4: The external disturbances satisfying 
 
                        ��(	, �) = ��DN(	, �),                        (8) 

                        O�DN(	, �)O ≤ P(�),                           (9) 

 
      First step in designing the sliding mode control is to 
determine the sliding mode plane. Therefore we choose the 
sliding mode plane to be: 
 

                                 Q = �IR	(�)                       (10) 
 
where R ∈ ��×� is a determined positive definite matrices.  
     The main purpose of this section is to predetermine the 
stabilization for a class of nonlinear Takagi Sugeno fuzzy 
model with parametric uncertainty into two parts. The first 
part is to derive an appropriate sliding mode plane that 
guaranteed the system trajectories from any given initial 
states converges to sliding mode plane within certain time. 
Second part is to derive a sufficient stability conditions to 
guarantee an asymptotically stability of the control system. 
In order to obtain the main results, we recall this lemma. 
      Lemma 1: Given matrices � and H  with appropriates 
dimensions and matrices G(�)  satisfying GI(�)G(�) ≤ K , 
then for any scalar  S > 0, then the following inequality 
holds: 
 
          �GH + (�GH)I ≤ SUUI + SV�HIH         (11) 
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3. Main Results 

The researches of derived a sliding plane using Lyapunov 
functional approach for SMC theory has been studied in 
[16]. Therefore we applied this concept of approach for a 
class of nonlinear with parametric uncertainty via Takagi 
Sugeno fuzzy model. 
      Theorem 1: Noting on the assumptions 1-4, the 
trajectories for a class of nonlinear Takagi Sugeno fuzzy 
system with parametric uncertainty at any given initial 
states, are brought within the sliding plane in certain time 
with the given control as: 
 

                             �(�) = �W! + ��                       (12) 
 
where �W! is the equivalent control described as: 
 
        �W! = −∑ ℎ���*� ��(�)�(�IR�)V�Y�IR�	(�)Z   (13) 
 
and �� is the switching control described as: 
 
         �� = −∑ ℎ���*� ��(�)�{(�IR�)V�Y‖�IRU�‖ ∙   
                    ‖H�	(�)‖ + ‖�IR�‖ ∙ P + S^Z_`a(_)}   (14) 

 
where S^ is a small positive constant. 
    Proof: Consider the positive definite Lyapunov function 
for all Q ≠ 0. 
 
                                d = 0.5QIQ                           (15) 
 
Thus derivative of the Lyapunov functional Eq.(15) along 
the trajectory of the system Eq.(2) is  
 
          d
 = QIQ
 = QI�IR	
(�) 
               = ∑ ℎ�(�(�))��*� QI�IRY�� + ∆�(�)�	(�)		 
                     +���(�)+��(	, �)Z 
Substituting Eq.(12) into the above equation, yields  

    d
 = ∑ ℎ�(�(�))��*� QI�IRY�� + ∆�(�)�	(�)		 
                    +���(�)+��(	, �)Z 
       = ∑ ℎ�(�(�))��*� YQI�IR∆�	(�) + QI�IR���̅(	, �) 
              +QI�IR���Z 
Considering Eq.(6)-Eq.(9) and Eq.(3), d
  can be expressed 

as  

        d
 ≤ ∑ ℎ�(�(�))��*� ‖QI‖Y‖�IR��‖ ∙ ‖H�	(�)‖ 

                          +‖�IR��‖ ∙ P4(�)Z + QI�I��� 

            = ∑ ℎ���(�)���*� S^QI_`a(Q) 
            = S^‖Q‖ 

            ≤ 0 

This proved that all the trajectories will arrive at within the 
sliding plane in a certain time. Therefore the proof is 
obtained. 
 
The next part is to derive the switching control so that all the 
trajectories stays in the sliding plane once in reached and 
robust stable even with the appearance of disturbance. Thus 
yields the following. 
Theorem 2: Based on assumptions 1-4, the Takagi Sugeno 
fuzzy sliding mode control system Eq.(1) is asymptotically 
stable in Eq.(10) with R = g−1 under the control Eq.(12) if 
there exist symmetric positive definite defined by matrices g > 0, h > 0 , general matrix i  and a scalar S > 0  that 
satisfied the following LMIs. 
 

                             jФ 0∗ −hm < 0,				� = 1,2⋯a       (16) 

where  Ф = �g + g�I − ��i� − i�I��I + h + S���I   

                   +SV�gH�IH�g 

Proof: Consider the Lyapunov function  

          d(	, �) = 	IR	 + o 	I(_)�	(_)p_&
^            (17) 

where R and g are symmetric positive definite matrices. 
      Let us consider the controller given by Eq.(12) as  

                        �(�) = −C	 + q(�)                       (18) 

where q(�) = C	 + �W! + �� . Substituting Eq.(18) into 
Eq.(1), the closed loop T-S fuzzy system can be described 
as: 
           	
(�) = ∑ ℎ�a�=1 (�(�))Y��N + ∆�(�)�	(�)		 
                                 +��q(�)+��(	, �)Z                      (19) 

where  

                                  ̅� = � − �C                       (20) 

                d
 (	, �) = 2	I(�)	R	
(�) + 	I(�)�	(�)		 
                              = ∑ {2	IR��*� r�DN + ∆�(�)�	(�)s 
             +2	IR�(q + �DN(	, �) + 	I(�)�	(�) 
      Refer to Eq.(10), d
 (	, �) is reduced to  
  
               d
 (	, �) = ∑ ℎ���*� Y	(�)ZI�Y	(�)Z                (21) 
 
once the trajectories of the system reach the sliding mode 
plane. 
 
where 

                             � = tu 0∗ −�v                              (22) 

 
with u = (� + ∆�)wR + R(� + ∆�) + � 
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    Solving Eq.(22) by multiplying with xI  where x =
p�y`{RV�, RV�} respectively and defining RV� = g, h = g�g, 
yeilds: 
 

                      xI�x = ju 0∗ −hm                       
                                   = ju 0∗ −hm + w                  (23)      

where  

           w = tK0vg∆�IYK 0Z + tK0vg∆�YK 0Z	          (24)  

    By lemma 1 and Eq.(6), yields the following 
inequalities for scalar S > 0. 
 

               w ≤ jS����I + SV�gH�IH�g 00 0m            (25) 

 
Substituting Eq.(25) into Eq.(23) and if xI�x < 0 , 
therefore � < 0 in addition d
 (	, �) < 0.  
 

                        xI�x ≤ ju 0∗ −hm                       (26) 

 
Then substituting i = Cg  in u,  the conclusive LMI 
Eq.(16) is obtained. Thus the proof is completed.  
 

4. Numerical Example 

In this example, consider an uncertain nonlinear system 
describes by T-S fuzzy model Eq.(1) with membership 
function given as: 
 

          ���	9(�)� = 1 − 1zz(&)
9.9{     ;    �9�	9(�)� = 1zz(&)

9.9{  

and the fuzzy model rules as: 

Model Rule 1: IF 	9 is �� , THEN  

                 	
(�) = �� + ∆�	(�)� + ��Y�(�) + ��(	, �)Z       
Model Rule 2: IF 	9 is �9 , THEN 

             	
(�) = �9 + ∆9	(�)� + �9Y�(�) + �9(	, �)Z             
 where  

 � = t 0 117.2941 0v , 9 = t 0 112.6305 0v 
                   �� = �9 = t01v ,  

∆� =	∆9 = �G(�)H , 

� = Y0	0.1125ZI  ,    H = Y0	1Z 
G(�)IG(�) ≤ K, ��(	, �) = 0.2 sin(	� + 	9) 

                                                                 for	� = 1,⋯ , �	 

By using LMI toolbox, solving the LMI Eq.(16) there 
exists a feasible solution with the symmetric positive 
definite R as:  
 

R = t6.4996 2.96572.9657 1.9853v  
 

From Theorem 1 and Theorem 2, the given class for 
uncertain nonlinear system is stable and therefore 
asymptotically stability is guaranteed. 
The simulation results with given initial 	(0) = Y−1.2; 1.4Z 
are shown in Figure 1-3.  

Remarks 1: The chattering control effect can be 
alleviated by substituting _`a(Q)  with Q/(‖Q‖ + 0.1)  as 
method in [21]. 

 

 
Fig. 1 System state under proposed SMC 

 

 
Fig.2 The proposed SMC 
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Fig. 3 The sliding response of the system. 

5. Conclusions 

In this paper we present the studied of sliding mode control 
for a class of nonlinear system with parametric uncertainty 
via Takagi Sugeno fuzzy model. The approach design is 
conceptually simple thus reduce the conservatism and 
computational efforts even to complex uncertain nonlinear 
system. Furthermore, the analysis for system stability and 
controller design approach is formulated into Linear Matrix 
Inequality (LMI) terms. Finally, an example used to show 
the feasibility and effectiveness of this control scheme.  
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