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Abstract 

The porous structure of a material is an important mechanical 

property that affects the hardness of materials. We cannot apply 

Euclidian geometry to describe the porosity of hardened 

specimens because porosity is very complex. Here we use fractal 

geometry to describe the porosity of robot laser-hardened 

specimens. In this paper, we describe how the parameters 

(speed and temperature) of the robot laser cell affect porous 

metal materials using a new method, fractal geometry. We 

describe a new technological process of hardening, which can 

decrease the porosity of hardened specimens. The new process 

uses robot laser hardening with an overlapping laser beam. 

First, we hardened specimens using different velocities and 

temperatures and then repeated the process. In addition, we 

present how the speed and temperature affect the porosity in two 

different processes of robot laser hardening. Furthermore, we 

present the improved results after hardening with the overlap 

process. To analyse the results, we used one method of 

intelligent system, neural networks and a relationship was 

obtained by using a four-layer neural network. We compare both 

processes.  

Keywords: Fractal dimension, robot, laser, porous, 
hardening, 

1. Introduction 

Many objects observed in nature are typically complex, 

irregular in shape and thus, cannot be described 

completely by Euclidean geometry. Fractal geometry [1] is 

becoming increasingly popular in material science to 

describe complex irregular objects [2, 3].  The aim of the 

present study is to find those parameters of a robot laser 

cell, which improve porosity after a hardening process. 

Moreover, the aim of the contribution is to outline 

possibilities of applying artificial neural networks for the 

prediction porosity after robot laser heat treatment and to 

judge their perspective use in this field. The achieved 

models enable the prediction of final porosity on the basis 

of decisive parameters of laser beam influencing these 

properties. The modelling of the relationship was obtained 

by a four-layer neural network. Robot laser surface-

hardening [4, 5] heat treatment is complementary to 

conventional flame or inductive hardening. A high-power 

laser beam is used to heat a metal surface rapidly and 

selectively to produce hardened case depths of up to 1.5 
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mm with hardness values of up to 65 HRc. Laser 

hardening involves features, such as non-controlled 

energy intake, high performance constancy and accurate 

positioning processes. A hard martensitic microstructure 

provides improved surface properties such as wear 

resistance and high strength. The porosity [6-8] of robot 

laser-hardened specimens was observed using scanning 

electron microscopy (SEM). Porosity is defined as the 

volume of shared pores in a material and is measured as a 

percentage. Porosity is usually the worst mechanical 

property of a material; the question is how to improve it? 

In this article, we present a new process of hardening [9] 

to improve porosity by robot laser hardening. 

2. Method and materials 

2.1 Materials 

Our study was limited to tool steel of DIN standard 

1.7225 (Fig. 1). The chemical composition of the material 

contained 0.38% to 0.45% C, 0.4% maximum Si, 0.6% to 

0.9% Mn, 0.025% maximum P, 0.035% maximum S and 

0.15% to 0.3% Mo [10]. 

 

 
Fig. 1: Transverse and longitudinal cross-section of hardened specimen 

 

The specimen test section had a cylindrical form of 

dimension 25 × 10 mm (diameter × height). Specimens 

with porosity of about 19% to 50%, were prepared by 

laser technique, followed by hardening at T ∈ [1000, 

1400] °C and v ∈ [2, 5] mm/s. First, we changed two 

parameters of the robot laser cell: speed v ∈ [2, 5] mm/s 

with steps of 1 mm/s and temperature T ∈ [1000, 1400] 

°C in steps of 100 °C (Fig. 2). Secondly, we repeated the 

process (Fig. 3). In addition, we hardened the specimens 

again with equal parameters of the robot laser cell. The 

microstructure of the specimens was observed with a field 

emission scanning electron microscope (JSM-7600F, 

JEOL Ltd.). An irregular surface texture was observed 

with a few breaks, which are represented by black islands 

(Fig. 4). Fig. 5 presents the boundary between the 

hardened and non-hardened material.  

 

 

 
Fig. 2: Robot laser hardening with different temperature and speed 

 

 

 

 
Fig. 3: Repeated process of robot laser hardening 

 

 
Fig. 4: SEM picture of robot laser re-hardened specimen 

 

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 185

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



 

 

 
Fig. 5: The boundary between work-hardened and non-hardened material 

2.1 Method 

We used the method of determining the porosity from 

SEM images of the microstructure. It is known that in a 

homogenously porous material the area of pores is equal 

to the volume of pores in specimens. The SEM pictures 

were converted to binary images (Fig. 6), from which we 

calculated the area of pores of all pictures using the 

ImageJ program (ImageJ is a public domain, Java-based 

image processing program developed at the National 

Institutes of Health). The area of pores on each picture of 

the material was calculated and then the arithmetic mean 

and standard deviation of porosity were determined. To 

analyze he possibility of the application of fractal analysis 

[11-16] to the heat-treated surface, we examined the 

relation between the surface porosity and fractal 

dimensions depending on various parameters of the robot 

laser cell. In fractal geometry, the key parameter is the 

fractal dimension D. The relationship between the fractal 

dimension D, volume V and length L, can be indicated as 

follows: 

 

V~LD      

     (1) 

 

Fractal dimensions were determined using the box-

counting method which has been proven to have higher 

calculation speed and more accuracy by Dougan [17] and 

Shi [18].  

 

 
Fig. 6: Calculation of fractal dimensions with box-counting method 

 
To analyse the results we used one method of intelligent 

system; the neural network [19]. Artificial neural 

networks (ANN) are simulations of collections of model 

biological neurons. A neuron operates by receiving 

signals from other neurons through connections called 

synapses. The combination of these signals, in excess of a 

certain threshold or activation level, will result in the 

neuron firing, i.e., sending a signal to another neuron to 

which it is connected. Some signals act as excitations and 

others as inhibitions to a neuron firing. What we call 

thinking is believed to be the collective effect of the 

presence or absence of firings in the patterns of synaptic 

connections between neurons. In this context, neural 

networks are not simulations of real neurons, in that they 

do not model the biology, chemistry, or physics of a real 

neuron. However, they do model several aspects of the 

information combination and pattern recognition 

behaviour of real neurons, in a simple yet meaningful 

way. This neural modelling has shown incredible 

capability for emulation, analysis, prediction and 

association. Neural networks can be used in a variety of 

powerful ways: to learn and reproduce rules or operations 

from given examples; to analyse and generalise sample 

facts and to make predictions from these; or to memorise 

characteristics and features of given data and to match or 

make associations with new data. Neural networks can be 

used to make strict yes-no decisions or to produce more 

critical, finely valued judgments. Neural network 

technology is combined with genetic optimisation 

technology to facilitate the development of optimal neural 

networks to solve modelling problems. Genetic 

optimisation uses an evolution-like process to refine and 

enhance the structure of a neural network until it can 

model the problem in the most efficient way. Neural 

networks are models of biological neural structures. The 

starting point for most neural networks is a model neuron, 

as shown in Fig. 7. This neuron consists of multiple 
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inputs and a single output. Each input is modified by a 

weight, which multiplies with the input value. 

 

 
Fig. 7: A model neuron 

 

We use program Neuralyst. Neuralyst is a general purpose 

neural network engine that has been integrated with 

Microsoft Excel on Windows or Macintosh systems. In a 

feed forward ANN system, the input data is processed 

from input to output. The neurons are classified in four 

layers called input layer, hidden layer and output layer. In 

supervised training, ANN applications require a training 

data set to learn the relationship between inputs and 

outputs. The training set should consist of sufficient 

number of samples that define a process. Otherwise, 

insufficient learning can limit the performance of the 

ANN approach. 

 

3. Result and discussion 

3.1 Result 

Graphs [1-2] present the relationship between fractal 

dimension and porosity of specimens hardened at 1000 °C 

and 1400 °C with different speeds.  
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Graph 1: Relationship between fractal dimension and porosity of hardened 

specimens with different speeds at 1000 °C 
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Graph 2: Relationship between fractal dimension and porosity of 

hardened specimens with different speeds at 1400 °C 

 

Graphs [3-4] present the relationship between fractal 

dimension and porosity of specimens hardened at 1000 °C 

and 1400 °C with different speeds and with overlapping. 
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Graph 3: Relationship between fractal dimension and porosity of hardened 

specimens with overlap and different speeds at 1000 °C 
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Graph 4: Relationship between fractal dimension and porosity of hardened 

specimens with overlap and different speeds at 1400 °C 

 

Graphs [5-6] present the relationship between porosity 

and hardness of hardened specimens at 1000 °C and 1400 

°C with different speeds.  
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Graph 5: Relationship between porosity and hardness of hardened 

specimens with different speeds at 1000 °C 
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Graf 6: Relationship between porosity and hardness of hardened specimens 

with different speeds at 1400 °C 

 

Graphs [7-8] present the relationship between hardness 

and porosity of specimens hardened at 1000 °C and 1400 

°C with different speeds and with overlapping. 
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Graph 7: Relationship between hardness and porosity of specimens 

hardened at 1000 °C with different speeds and with overlapping 
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Graph 8: Relationship between hardness and porosity of specimens 

hardened at 1400 °C with different speeds with overlapping 

 

3.2 Discussion 

Porosity has a large impact on the mechanical properties 

of a material. With fractal dimensions, we describe the 

porosity of robot laser hardened specimens with overlap. 

We found the optimal parameters of the robot laser cell 

that gave minimal porosity. We used the new method of 

robot laser hardening with overlap to decrease the 

porosity of hardened specimens. If we increase the 

temperature from 1000 °C to 1400 °C in the case of 

hardening with overlap, then the fractal dimension 

decreases for speeds of 2, 3 and 4 mm/s. The improved 

results in hardening with overlap mean that the porosity is 

decreased for the laser-hardened specimens. Hardening 

with overlap at 1000 °C decreased the porosity in the 

specimen with a speed of 3 mm/s but for other speeds, the 

porosity is not decreased; moreover, the porosity is 

increased, which is not the result we seek. Hardening with 

overlap at 1400 °C decreased the porosity for specimens 

with a speed of 2, 3 and 5 mm/s but for a speed of 4 

mm/s, the porosity increased. We repeated the process of 

robot laser hardening and measured the hardness. Graphs 

5 and 6 presented the relationship between hardness and 

porosity of specimens hardened with different speeds at 

1000 °C and 1400 °C, respectively. Graphs 7 and 8 

present the relationship between hardness and porosity for 

specimens hardened at 1000 °C and 1400 °C, respectively 

with different speed with overlapping. Following the 

overlapping process, we cannot increase hardness. Similar 

results of hardness are obtained with parameters of 

temperature of 1400 °C and speeds of 3, 4 and 5 mm/s. 

However, we improved the results for hardness and 

porosity with the process of overlapping of robot laser 

hardening at 1400 °C with a speed of 3 and 4 mm/s; the 

optimal result was with a temperature of 1400 °C and 

speed of 3 mm/s, which gave us the smallest fractal 
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dimension. The fractal approach is more appropriate in 

the characterization 

of complex and irregular surface microstructures observed 

in the surface of robot laser hardenend specimens and can 

be effectively utilized for predicting the properties of 

material from fractal dimensions of the microstructure. 

 

With artificial neural networks we predict porosity after 

robot laser heat treatment with different parameters of 

temperature and speed and to judge their perspective use 

in this field. 

 

4. Conclusions 

The paper presents using fractal geometry to describe the 

porosity of robot laser-hardened specimens with overlap. 

We use the relatively new method of fractal geometry to 

describe the complexity of laser-hardened specimens. The 

main findings can be summarised as follows: 
 

1. There exists a fractal structure in the robot laser-

hardened specimens. 

2. We describe the complexity of the robot laser-hardened 

specimens with fractal geometry. 

3. We use the box-counting method to calculate the fractal 

dimension for robot laser-hardened specimens with 

different parameters. 

4. The fractal dimension varies between 1 and 2. By 

increasing the temperature of the robot laser cell, the 

fractal dimension becomes larger and grain size becomes 

smaller. However, by increasing the temperature of the 

robot laser cell during hardening with overlap, the fractal 

dimension becomes smaller. Thus, we can use the fractal 

dimension as an important factor to define the grain 

shape. 

5. We describe the relationship between hardness and the 

parameters of the robot laser cell using fractal 

dimensions. This finding is important if we know that 

certain mixed alloys perform poorly because they have 

different melting temperatures; however, such alloys have 

much higher hardness and better technical characteristics. 

By varying different parameters (temperature and speed), 

the robot laser cells produce different fractal patterns with 

different fractal dimensions. 

6. With fractal dimensions, we describe the relationship 

between porosity and the parameters of the robot laser 

cell. 

7. We find the optimal parameters of the robot laser cell 

to decrease the porosity of hardened specimens. 

8. We find the process, overlapping that decreases the 

porosity of robot laser hardening. 

 
The relationship between porosity and the parameters of 

robot laser cells may be better understood through 

exploration of the fractal dimensions of the 

microstructure. 
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