

A Visual and Interactive Learning Tool
for CPU Scheduling Algorithms

Sukanya Suranauwarat

 Graduate School of Applied Statistics, National Institute of Development Administration,
Bangkok 10240, Thailand

Abstract

CPU scheduling is an important topic in operating systems
courses. In this paper, a tool implemented as a Java application
and designed as an auxiliary instrument for both classroom
teaching and independent study of CPU scheduling algorithms is
presented. This tool uses graphical animation to convey the
concepts of various CPU scheduling algorithms. The tool is
unique in a number of respects. First, it uses a more realistic
process execution model that can be configured easily by the
user. Second, it graphically depicts each process in terms of
what the process is currently doing against time. By using this
representation, it becomes much easier to understand what is
going on inside the system and why a different set of processes is
a candidate for the allocation of the CPU at different times.
Third, the tool allows the user to test and increase his
understanding of the concepts studied by making his own
scheduling decisions and receive immediate feedback on the test
problems.
Keywords: Educational Software, Animation Tool, Computer
Science Education, CPU Scheduling Algorithms, Operating
System.

1. Introduction

In the past two decades, a number of visualization and
animation tools have been developed and used in many
areas of computer science and engineering education
[1]-[8]. Experiments carried out with various visualization
and animation tools have provided evidence indicating
that carefully designed visualizations and animations can
have beneficial learning effects. For example, engagement
of the learners attention [9]-[11] and the ability to control
the pace of the visualization [12] appear to be key factors
in building effective visualization and animation tools.
Keeping these in mind, the author has developed an
interactive Java-based simulator that uses graphical
animation to convey the concepts of various CPU
scheduling algorithms for a single CPU. CPU scheduling
can be defined as the art of determining when and for how
long each process runs on the CPU when there are
multiple runnable processes. It is central to an operating-
system’s design and constitutes an important topic in the
computer science curriculum.

In addition to providing a visual and animated view as an
alternative to a static representation provided by
textbooks, the simulator is unique in a number of respects.
First, it uses a more realistic process execution model —
the execution of a process consists of alternating CPU
bursts and I/O bursts, as opposed to a simplified model
used in textbooks examples — only one CPU burst per
process. Through a graphical user interface of the
simulator, the user can configure several sets of processes
easily and use them in observing simulations of various
CPU scheduling algorithms. By using a more realistic
process execution model, users will be able to gain insight
into exactly how the algorithms work in real operating
systems. Second, the simulator graphically depicts each
process’ state versus time. The state of a process
describes the current activity of that process such as “the
process is waiting for an I/O operation to complete” or
“the process is currently using the CPU”. Various events
can cause a process to change states; the simulator shows
these events. By using this representation, it becomes
much easier to understand what is going on inside the
system, why, at any given time, some processes are
candidates for the allocation of the CPU and some are not,
and why the currently running process can continue using
the CPU or why it cannot. Third, the simulator allows the
user to practice and test his understanding of the concepts
studied by making his own scheduling decisions (i.e., by
deciding when and for how long each process runs)
through an easy-to-use graphical user interface of the
simulator, and receive immediate feedback on the test
problems.

The simulator can be used as an auxiliary instrument for
both classroom teaching and independent study of CPU
scheduling algorithms.

The remainder of this paper is organized as follows:
section 2 is a brief overview of the process state and
scheduling algorithms used in the simulator, section 3
gives a description of the simulator, section 4 discusses
versions and availability of the simulator, section 5
discusses related work, and section 6 draws some
conclusions.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 509

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

2. Overview

A process has three basic states namely running, ready,
and waiting. A process is said to be running in the
running state if it is currently using the CPU. A process is
said to be ready in the ready state if it could use the CPU if
it were available. A process is said to be blocked in the
waiting state if it is waiting for some event to happen, such
as the completion of an I/O operation, before it can
proceed. Various events can cause a process to change
states. For example, when the currently running process
makes an I/O request, it will change from running state to
waiting state. When its I/O request completes, an I/O
interrupt is generated and then that process will change
from waiting state to ready state. For a single CPU
system, only one process can run at a time, but several
processes may be ready. When more than one process is
ready, the operating system must then use a CPU
scheduling algorithm to decide which one is to run first
and for how long. There are various scheduling
algorithms. The simulator uses the algorithms listed
below (which are discussed in [13]-[15]).

 First-Come, First-Served (FCFS): Processes are
assigned the CPU in the order they request it.

 Round-Robin (RR): Each process is given a
limited amount of CPU time, called a time slice, to
execute. If the required CPU burst of the process is
less than or equal to the time slice, it releases the
CPU voluntarily. Otherwise, the operating system
will preempt the running process after one time
slice and put it at the back of the ready queue, then
dispatch another process from the ready queue.

 Shortest-Job-First (SJF): When the CPU is
available, it is allocated to the process that has the
smallest next CPU burst.

 Shortest-Remaining-Time-First (SRTF): When
the CPU is available; it is allocated to the process
that has the shortest remaining CPU burst. When a
process arrives at the ready queue, it may have a
shorter remaining CPU burst than the currently
running process. Accordingly, the operating
system will preempt the currently running process.

 Priority Scheduling: There are several ready
queues, each with different priority. When the
CPU is available, the operating system selects a
process from the highest-priority, non-empty ready
queue. Within a queue, it uses RR scheduling.

 Multilevel Feedback Queues (MLFQ): This
scheduling algorithm is a variant version of priority
scheduling algorithm designed to prevent high-
priority processes from running indefinitely.
Rather than giving a fixed priority to each process
like priority scheduling algorithm, MLFQ varies the
priority of a process based on its observed behavior.
If, for example, a process repeatedly relinquishes
the CPU while waiting for input from the keyboard,
MLFQ will keep its priority high, as this is how an
interactive process might behave. If, instead, a
process uses the CPU intensively for long periods
of time, MLFQ will reduce its priority. In this way,
MLFQ will try to learn about processes as they run,
and thus use the history of the process to predict its
future behavior.

3. Description of the Simulator

The simulator is written using Java 6 and has two
operating modes: simulation and practice modes. In
simulation mode, the user can watch the animation of how
an algorithm works or trace the algorithm step by step. In
practice mode, the user can reinforce concepts studied by
making his own scheduling decisions, that is, by deciding
when and for how long each process runs. Both modes
are described below.

3.1 Simulation Mode

In Fig. 1, two snapshots of the simulator during a
simulation in simulation mode are shown. By default, the
simulator will start with a simulation-mode tab being
opened as shown in Fig. 1(a). A new simulation-mode tab
can also be opened by clicking the “File” menu and then
clicking “New Simulation”. Within a simulation-mode
tab, the user can select which algorithm to be animated
through a drop-down list box located in the top left
section. For each selected algorithm, the predefined set of
processes and the predefined scheduling parameters will
be loaded so that the user can start watching the animation
instantly.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 510

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

(a) The simulation at time 15.

(b) The simulation at time 16.

Fig. 1 Two snapshots of the simulator during a simulation using the MLFQ algorithm.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 511

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

The user can modify the predefined set of processes by
clicking the “Process” button located next to the drop-
down list box of the algorithms, which causes the window
shown in Fig. 2 to appear. In the “List of Processes”, the
information about each process (i.e., its ID, arrival time,
and priority) in the predefined set is shown, and can be
changed by clicking the “Edit” button after selecting
which process’ information is to be changed. The user can
also add a new process or remove a current one by
clicking the “Add” or the “Remove” button. The
maximum number of processes in a set is 4. This number
is set based on observations that students are able to trace
algorithms without tiring them too much when the number
of processes is no more than four.

Fig. 2 A window interface that is used to construct or modify a set of
process.

In the “List of Burst Cycles” (see Fig. 2), the lengths of
the CPU and I/O burst times in each CPU-I/O burst cycle
of a process from the “List of Processes” — process B in
this example — are shown. In the same way, through the
“Add”, “Edit”, and “Remove” buttons, the information
about the CPU and I/O burst times can be manipulated.
When adding an I/O burst time, the user needs to specify
which I/O device the process will use: Hard disk 1 (HD1),
Hard disk 2 (HD2), Printer 1 (PT1), or Printer 2 (PT2).
This makes it possible to configure processes in a
particular set to share I/O devices or not. When I/O
devices are shared among processes, they will be
scheduled on a First-Come-First-Served (FCFS) basis.
The ability to share I/O devices is included in order to help
the user to understand the relationship between CPU and
I/O scheduling and can be used to help introduce users to
I/O scheduling which is a standard topic in operating
systems courses. The user can save the modified set of

processes for later use by clicking on the “Save” button
and then entering the file name. Otherwise, the modified
set of processes will be lost when the user exits the
program.

The user can also create a new set of processes easily by
clicking the “New” button in the window shown in Fig. 2
and then telling the simulator to automatically generate a
new set of processes for him. This will cause a window
shown in Fig. 3 to appear. Through this window, the user
can be more specific about the set of processes he wants
the simulator to automatically generate. Also, the
generated set of processes can be modified and/or saved
using the same window interface shown in Fig. 2.

Fig. 3 A window interface that is used to give specific details about the
set of processes to be automatically generated by the simulator.

After the predefined set of processes is modified or the
user-defined set of processes is constructed, the process
table located under the drop-down list box of the
algorithms (See Fig. 1(a)) will be updated to respond to
the changes. Note that, during the animation, the “Burst
Cycles” drop-down list box of each process in the process
table shows the current burst time (either CPU or I/O burst
time) of the process. Also, the figure in the parenthesis of
the “Priority” field of each process represents the original
priority while the one outside the parenthesis represents
the current priority. The information in the “Priority” field
will be shown only when the algorithms that use priorities
are selected.

The user can view or change the predefined scheduling
parameters by clicking the “Parameter” button located
next to the “Process” button (See Fig. 1(a)). Fig. 4 shows
a scheduling-parameter window when the MLFQ
algorithm is selected. Note that the number and the type
of scheduling parameters vary from algorithm to
algorithm. For example, the scheduling parameters used
by the MLFQ algorithm are the length of time slice and
the conditions for increasing/decreasing a process’
priority, while the length of time slice is the only
parameter used by the RR algorithm.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 512

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 4 An example of a scheduling-parameter window.

The bottom area of the snapshot in Fig. 1(a) contains the
buttons that allow the user to control the animation. The
user can start and stop the animation whenever he wishes
by clicking on the “Start” and “Stop” buttons.
Alternatively, the user can choose to trace the algorithm
step by step, in order to understand the details of the
algorithm, by repeatedly clicking the “Next” button. The
user does not need to watch the animation or trace the
algorithm from the beginning. Rather, he can choose to
start from any time by setting the desired time in the
“Time” field and then clicking “Set Time” button. Also,
the speed of the animation can be changed using the slider
and through the “Configure” menu when a fine-grained
control is needed.

The bottom half of the snapshot in Fig. 1(a) shows the
display area that accommodates the animation that
demonstrates how the selected algorithm works. The left
side of the display area is the state-diagram view which
displays the different states in which processes can be at
different times. To ensure that user learning is enhanced,
rather than jumping instantaneously to the next state
during a state transition, a process (which is represented
by its ID) moves smoothly from one state to another.
Similarly, the process moves smoothly from an I/O queue
to a ready queue. For the algorithms that use priorities,
the priority levels of the ready queues are displayed in
front of the queues and the ready queue with higher
priority level is placed above the one with lower priority
level. As an example, the state-diagram view of the
snapshot in Fig. 1(b) shows that there are two ready
queues representing the priority levels of 2 and 3. At any
time during a simulation, the number of the ready queues
being used and the priority levels the queues represent are
determined by the number of the ready processes and the
priority values that the ready processes have at that time.
For example, if there are three ready processes, two of
which have the priority of 2 and one of which has the
priority of 3, then there will be two ready queues
representing the priority levels of 2 and 3. Since the
maximum number of the processes is limit to four, the
maximum number of the ready queues is four.

The right side of the display area is the timeline view
which displays a colored block for each unit of time a
process spends in any state. The color of the block, which
corresponds to one of the colors in the state-diagram view,
is determined by which state the process is in. During the
animation, various events may occur and cause a process
to change its state. Details about the event can be viewed
in the “Event Message” panel, which is located above the
timeline view.

In the simulation of Fig. 1, a user-defined set of processes,
which is summarized in the process table located under the
drop-down list box of the algorithms, was used. The user-
defined set of processes contains processes A, B, and C,
all of which have the same priority of 2 and arrive at time
0. When two or more processes have the same priority,
the simulator puts them in the ready queue for that priority
in alphabetical order. Process A requests only one burst of
10 units of CPU time. Processes B requests a burst of 1
unit of CPU time, then blocks on I/O for 4 units of time,
then requests a burst of 1 unit of CPU time, then blocks on
I/O for 6 units of time, and then requests one last burst of
1 unit of CPU time. Process C requests a burst of 5 units
of CPU time, then blocks on I/O for 4 units of time, and
then requests one last burst of 3 units of CPU time. Note
that processes B and C are using different I/O devices in
this simulation. In the simulation of Fig. 1, the scheduling
parameters are set as shown in Fig. 4. That is, time slice is
set to 3 time units and any process that has just returned
from its I/O will have its priority raised by one.

Fig. 1 gives two snapshots of the scenario. The snapshots
in Figs. 1(a) and (b) are at time 15 and time 16
respectively. The state-diagram view of the snapshot in
Fig. 1(a) shows the state each process is in at the
beginning of time 15. That is, process A is in the running
state while processes B and C both are blocked in the
waiting state for their I/O requests to complete. The
timeline view shows that processes A, B, and C have been
in the current states since time 11, 9, and 11, respectively.
As reported in the “Event Message” panel, at time 15, two
hardware interrupts have been generated indicating that
the I/O operations requested by processes B and C have
been completed, and the priority of processes B and C has
been raised to 4 and 3 respectively. At this point, process
B becomes the process with the highest priority; therefore,
it preempts the CPU from process A and runs next.
Various events occurring at time 15 cause all the processes
to change their states; the state-diagram view will show
such transitions. As shown in the timeline view of the
snapshot in Fig. 1(b), all the processes spend a unit of time
in their new states.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 513

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 5 The simulation result in an HTML file.

When the simulation is over, the user can view the
performance statistics, which include the response time,
the waiting time, and the turnaround time of each process;
the average response time, the average waiting time, the
average turnaround time, and the CPU utilization, by
clicking on “Statistics” button. Also, by clicking “Save as
HTML” on the “File” menu, simulation result can be
saved in an HTML (HyperText Markup Language) file
that can be displayed and printed by a standard browser.
Fig. 5 shows the simulation result of the above scenario in
an HTML file.

3.2 Practice Mode

Fig. 6 shows a snapshot of the simulator in practice mode.
The user can open a practice-mode tab by clicking the
“File” menu and then clicking “New Practice”. To reduce
the amount of time the user has to devote to learn how to
use the simulator, a practice-mode tab has been designed
to look as much like a simulation-mode tab as possible.
The major differences between a simulation-mode tab and
a practice-mode tab are as follows. First, there is no state-
diagram view in a practice-mode tab. Second, a practice-
mode tab does not contain the speed-control slider, but
instead, it contains the “Display Answer” button. Third,
the process table becomes editable so that it can be used as
an interface for the user to enter the information about
each process at any particular time. Fourth, the timeline
view and the “Event Message” panel become editable so
that they can be used as interfaces for the user to predict
when and for how long each process is in a particular state

and why it is in that state. As in simulation mode, the user
needs to specify which CPU scheduling algorithm will be
used, and for each selected algorithm, the user can use the
predefined set of processes and the predefined scheduling
parameters, or the user can customize them using the same
interfaces (See Figs. 2 and 4).

Since the timeline view is editable in practice mode,
clicking the blocks under the timeline will change the
color of the blocks. The user can predict which state each
process is in for each block under the timeline by
repeatedly clicking each block until the color
corresponding to the predicted state is displayed. The
color green, yellow, and red are used to represent running,
ready, and waiting states respectively. The color of the
blocks will be changed in the following cyclic order: from
no color to green, from green to yellow, from yellow to
red, and from red to no color. For the sake of user
convenience, the color of each block will start with the
previously selected color, since processes generally spend
a certain amount of time in each state before making a
transition to another state. As an example, to indicate that
process B is in the ready state for 3 units of time since
time 0, the user needs to repeatedly click on the first block
until the yellow color representing the ready state is
displayed, and then one-click on the second and the third
blocks, which also changes these two blocks to yellow.
This allows the user to visually predict which state each
process is in for each block under the timeline.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 514

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 6 A snapshot of the simulator in practice mode.

Fig. 7 A snapshot of the simulator in practice mode after the “Display Answer” button is clicked.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 515

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

In practice mode, the user can predict why the processes
are in the states he predicted by checking relevant
checkboxes and filling in the missing information in the
“Event Message” panel for each time. To be more
flexible, this type of practice as well as practicing by
entering data in the process table are optional.

Once the user is done making a scheduling decision for a
particular time, he can then click the “Next” button, which
causes the simulator to remember his input for that time
and then wait for new input for the next time.
Alternatively, the user can have the simulator remember
all the scheduling decisions he has made up to a particular
time by setting that time value in the “Time” field and then
clicking “Set Time” button. At any time while in practice
mode, the user can check whether his answer is correct or
not by clicking on the “Display Answer” button, which
causes the results up to where he has finished to be
displayed, as shown in Fig. 7. By clicking the “Return”
button (see Fig. 7), the user can go back to continue
practicing from where he has left off. The user can also
see all the results by clicking on the “Complete Answer”
button (see Fig. 7).

4. Versions and Availability

This paper describes version 2 of the author’s simulator
for learning CPU scheduling algorithms. Version 2 of the
simulator is completely redesigned and rewritten from the
ground up in order to overcome the design flaws of the
initial version [16].

The first major design flaw of the initial version is that the
simulator is not able to handle when more than one event
of the same type occurs at the same time. Examples of
such situations are when more than one process arrives at
the same time, when more than one hardware interrupt
occurs at the same time, and when more than one process
is assigned a new priority (due to the conditions for
increasing/decreasing a process’ priority) at the same time.

The second major design flaw is that the ready queues
used in the MLFQ algorithm cannot represent all the
priority levels that the process can have. In the initial
version of the simulator, there is a limit on the number of
ready queues and each of the queues represents a fixed
priority level. Since there is no limit on the number of
processes and the priorities of processes are dynamically
adjusted, it is possible that the priority of a process is
higher (or lower) than the highest (or lowest) priority level
of the ready queues. Such a process will be put in the
ready queue with the highest (or lowest) priority level. As
a result, the process selected to run next may not be the
process with the highest priority.

The third major design flaw is the way the “Back” and the
“Next” buttons that are used to control the animation
work. Clicking the “Back” button on the initial version
will bring the user back to the previous state of the
currently running process, rather than its previous time.
Similarly, clicking the “Next” button will bring the user to
the next state to which the currently running process will
make its transition, rather than its next time.

Other significant improvements from its initial version are
easier-to-use user interfaces, Priority Scheduling algorithm
being added, and facility to save the simulation result in an
HTML file.

Version 2 of the simulator will be made available to any
interested instructor or student who sends a request by
email.

5. Related Work

In this section, some animation tools for learning CPU
scheduling algorithms that others have developed are
discussed.

English and Rainwater [17] developed several animations
using Adobe Flash and used them as part of their lecture in
an operating system course. Among these animations,
four of them are used in teaching FCFS, RR, SJF, and
Priority Scheduling algorithms. Since these animations
were designed to be closely aligned with the content in a
traditional operating systems textbook, each process
consists only one CPU burst. The animations are also
accessible through the web [18] for anyone to use.
However, they do not allow the users to interact with them
that much; only one data set is used, and the same
animation plays over and over again.

The HyperLearning Center [19] at George Mason
University provides a set of Java applets to illustrate
several algorithms of computer science including RR and
Priority Scheduling algorithms. The applets allow the user
to create up to twelve processes, but only in a restricted
manner. That is, each process can consists only one CPU
burst and the length of the burst is randomly specified by
the applets.

The Tran’s Scheduling Algorithm Simulator [20] supports
all the algorithms the author’s simulator supports.
Although it lets the user create a personal set of processes,
only one CPU burst per process can be specified. Also,
time slice is program coded and taken as 1 or 4 for each
set of processes.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 516

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

The MLFQ Scheduling Algorithm Simulator [21] is a tool
that supports only one scheduling algorithm, as the name
implies. It allows each process to alternate CPU bursts
with I/O bursts. However, unlike the author’s simulator,
all I/O bursts are fixed to one value.

The animation demonstrated by the Java applets of the
HyperLearning Center is similar to that provided by the
state-diagram view of the author’s simulator in the sense
that it shows how a process is put into a ready queue and
how it is removed from the ready queue and assigned the
CPU. However, there is no animation of I/O activity since
the applets adopt the simplified process model (i.e., one
CPU burst per process). On the other hand, the rest of the
above simulators use a Gantt chart to animate which
process is using the CPU at what time. This approach is
fine when the process model is the simplified one. Since
the MLFQ Scheduling Algorithm Simulator allows
processes to alternate CPU bursts with I/O bursts, it also
uses a Gantt chart to report I/O usage. However, it reports
I/O usage in a composite Gantt chart with little hint as to
how multiple simultaneous I/O requests are handled. This
can confuse the user. On the other hand, the author’s
simulator uses a different approach to represent the
animation. Rather than focusing on the resource usage,
the author’s simulator focuses on the processes’ states and
the events that cause them to change their states. Using
this approach, the user will be able to gain insight into
exactly how the algorithms work, that is, the user will be
able to understand what is currently happening to the
processes and why the currently running process can
continue using the CPU or why it cannot. Also, the
author’s simulator gives the user the choice of sharing I/O
devices with FCFS queues or using unique I/O devices for
each process. In addition, the author’s simulator animates
I/O activity to help the user understand the specific
outcome for multiple simultaneous I/O requests.

Finally, none of the existing tools provide any function
that is similar to the practice mode of the author’s
simulator.

6. Conclusions

This paper presents an interactive Java-based simulator
that demonstrates the concepts of various CPU scheduling
algorithms through animation. There are two operating
modes for the simulator; the first is simulation mode and
the second is practice mode. In simulation mode, the user
can watch the animation of how an algorithm works or
trace the algorithm step by step. In practice mode, the user
can predict when and for how long each process is in a
particular state and why it is in that state through an easy-
to-use graphical user interface, and check whether his

answer is correct or not with the simulator at any time
during practice. By using the simulator, the user could
achieve a better conceptual understanding of the CPU
scheduling algorithms.

Future work will include an extensive experiment with the
simulator in a computer laboratory to determine its effect
on student learning.

References
[1] C. A. Shaffer, M. L. Cooper, A. J. D. Alon, M. Akbar, M.

Stewart, S. Ponce, and S. H. Edwards, "Algorithm
Visualization: The State of the Field", ACM Transactions on
Computing Education, Vol. 10, No. 3, Article 9, 2010.

[2] S. H. Rodger, E. Wiebe, K. M. Lee, C. Morgan, K. Omar,
and J. Su, "Increasing Engagement in Automata Theory with
JFLAP", Proceedings of the 40th SIGCSE Technical
Symposium on Computer Science Education, 2009, pp. 403-
407.

[3] D. Schweitzer and W. Brown, "Using Visualization to Teach
Security", Journal of Computing Sciences in Colleges, Vol.
24, No. 5, 2009, pp. 143-150.

[4] W. S. Gilley, "Animations and Interactive Material for
Improving the Effectiveness of Learning the Fundamentals
of Computer Science, Master’s Thesis, Department of
Computer Science, Virginia Polytechnic Institute and State
University, 2001.

[5] P. Bauer, J. Leuchter, V. Steklý, "Simulation and Animation
of Power Electronics in Modern Education", Proceedings of
the 4th WSEAS International Conference on Applications of
Electrical Engineering, 2005, pp. 48-52.

[6] P. Marambeas, P. Stergiopoulos, S. Papathanasiou, P. Bauer,
and S. Manias, "Interactive Multimedia Material for an
Electrical Power Quality Course", WSEAS Transactions on
Advances in Engineering Education, Issue 7, Vol. 4, 2007,
pp. 141-146.

[7] M. G. Sánchez-Torrubia, M. A. Sastre-Rosa, V. Giménez-
Martínez, C. Escribano-Iglesias, "Visualization on Learning
Mathematics Concepts for Engineering Education",
Proceedings of the 4th WSEAS / IASME International
Conference on Engineering Education, 2007, pp. 232-235.

[8] M. G. Sánchez-Torrubia, C. Torres–Blanc, and S.
Krishnankutty, "Mamdani's Fuzzy Inference eMathTeacher:
a Tutorial for Active Learning", WSEAS Transactions on
Computers, Issue 5, Vol. 7, 2008, pp. 363-374.

[9] M. Byrne, R. Catrambone, and J. Stasko, "Evaluating
Animations as Student Aids in Learning Computer
Algorithms", Computers & Education, Vol. 33, No. 4, 1999,
pp. 253-278.

[10] C. Hundhausen, S. Douglas, and J. Stasko, "A Meta-Study
of Algorithm Visualization Effectiveness", Journal of Visual
Languages and Computing, Vol. 13, No. 3, 2002, pp. 259-
290.

[11] S. Grissom, M. McNally, and T. Naps, "Algorithm
Visualization in CS Education: Comparing Levels of Student
Engagement", Proceedings of the 2003 ACM Symposium on
Software Visualization, 2003, pp. 87-94.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 517

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

[12] P. Saraiya, C. Shaffer, D. Mccrickard, and C. North,
"Effective Features of Algorithm Visualizations",
Proceedings of the 35th SIGCSE Technical Symposium on
Computer Science Education, 2004, pp. 382-386.

[13] A. Silberschatz, P. Galvin, and G. Gagne, Operating System
Concepts, 8th ed., John Wiley & Sons, 2010.

[14] G. Nutt, Operating Systems, 3rd ed., Addison Wesley, 2004.
[15] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau, Operating

Systems: Four Easy Pieces, Version 0.4, May 2011.
[16] S. Suranauwarat, “A CPU Scheduling Algorithm

Simulator”, Proceedings of the 37th ASEE/IEEE Frontiers in
Education Conference, 2007, pp. F2H-19-F2H-24.

[17] B. M. English and S. B. Rainwater, "The Effectiveness of
Animations in an Undergraduate Operating Systems Course",
Journal of Computing Sciences in Colleges, Vol. 26, No. 5,
2006, pp. 53-59.

[18] COSC 3355 Animations, http://cs.uttyler.edu/Faculty/Rain
water/COSC3355/Animations/index.htm

[19] The HyperLearning Center, http://cs.gmu.edu/cne/work
benches/index.html

[20] http://www.utdallas.edu/~ilyen/animation/cpu/program/prog
.html

[21] S. Khuri and H. Hsu, "Visualizing the CPU Scheduler and
Page Replacement Algorithms", Proceedings of the 30th
SIGCSE Technical Symposium on Computer Science
Education, 1999, pp. 227-231.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 518

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

