

OpenMP performance analysis for manyOpenMP performance analysis for manyOpenMP performance analysis for manyOpenMP performance analysis for many----core platforms with core platforms with core platforms with core platforms with

nonnonnonnon----uniform memory accessuniform memory accessuniform memory accessuniform memory access

Pablo González de Aledo Marugán1, Javier González Bayón1, Pablo Sánchez Espeso1 and Juan Casal Martín2

 1 TEISA, University of Cantabria

Santander, Cantabria 39005, Spain

2 (SAPEC) Sociedad Anónima de Productos Electrónicos y de Comunicación

Madrid, 28037, Spain

Abstract
One of the first steps in embedded-system design flow is to

choose the most efficient implementation of the embedded

software application. However, this is difficult to do at the

earliest design stages because particular details of the final many-

core HW platform are usually unknown and many possible

mappings of the software tasks/threads have to be evaluated. This

paper presents a complete framework for early performance

estimation of parallel programs in many-core platforms. The

proposed framework is based on a specific native-simulation

approach oriented to many-core platforms, which enables fast

simulation and profiling. The software parallelism is specified in

OpenMP, a commonly used application software interface (API)

for shared-memory parallel programming. In order to support

Non-Uniform Memory Access (NUMA) architectures (which are

dominant in high-performance many-core platforms), the paper

proposes some OpenMP extensions. These extensions improve

performance analysis and facilitate the automatic translation from

OpenMP to OpenCL (a low-level API for heterogeneous

computing), which are commonly used for NUMA programming).

Results show that the proposed OpenMP extension and specific

parallel modeling techniques provide reliable results even for

NUMA architectures.

Keywords: OpenMP,OpenCL, performance analysis, many-core,
NUMA, early estimation.

1. Introduction

During the last years, embedded computing platforms have

been evolving from mono-core architectures to MPSoC

(Multi-Processor Systems-on-Chip) and many-core

systems (typically, more than 32 cores per chip). These

new platforms provide higher computation capabilities

with a moderate increase in power consumption. They

comply with current requirements of real-time applications

such as image-processing, video compression and

augmented reality. However, the higher number of cores

used in current many-core platforms (for example [1])

exponentially increases the complexity of the design-space

exploration process. Additionally, new SoC are replacing

hardware accelerators by many-core modules (for example,

P2012 many-core IP) that also increase design-space

exploration. Therefore, early and faster performance

estimation techniques are necessary to guide the

embedded-system design flow for many-core architectures.

Most many-core architectures group the cores in clusters or

sets of processors that share some common local resources.

There are two main communication architectures between

processing elements in a many-core SoC: bus-based and

NoC-based (Network-On-Chip) [2] communication. For

inter-cluster communication, NoC is typically used

because of its better scalability and power consumption.

For intra-cluster communication, a bus is preferred because

of its smaller size and better performance. This double

hierarchy of communication introduces new problems and

challenges in the design of parallel applications because

the performances are highly related to how the

Figure 1: Proposed framework

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 463

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

communication between the cores and the memory is

performed. Moreover, memory hierarchy is becoming the

main bottleneck of many-core architectures, so it is

important to model it accurately. Memory-coherence

between each core cache and the main memory, as in

ccNUMA architectures [2], is no longer efficient when

many cores are transferring data though a NoC. Therefore,

caches are sometimes replaced by scratch-pad memories

and the responsibility for keeping these memories coherent

is delegated to the application program. A profound

knowledge of both the HW architecture (communication

latency, bandwidth, number of memory banks, etc.) and the

application memory requirements (most relevant variables

and memory access patterns) is normally required to

efficiently implement applications in many-core platforms.

This task normally requires efficient, accurate and fast

performance analysis frameworks.

One of the simplest target-independent paradigms for

parallelizing a sequential code or creating a parallel

program is OpenMP. It provides a multithreaded

application implementation in a shared memory

environment. Moreover, it has the advantage that it is

easily portable and enforces gradual transformations of the

code. There are other parallel programming paradigms,

such as OpenCL, but the programmer must explicitly

define the code parallelization and the communication

between concurrent elements. This detailed specification

can slow down the design process at the early stages of the

design flow.

One of the biggest problems of application mapping in

many-core platforms is the large number of possible

task/thread bindings. Therefore, a framework is necessary

to model the structure and resources of many-core

platforms including their complex NUMA memory

hierarchy. The framework would also enable a rapid

simulation and application performance analysis at the

early stages of the design process. It is also desirable that

OpenMP can be used to program NUMA architectures in

an efficient and reliable way.

The framework presented in this work aims to facilitate the

design process for a many-core platform allowing rapid

simulations of different parallel configurations. This

framework is shown in Figure 1 and it integrates

performance analysis (with improved memory models) and

source-to-source code transformation tools. The

contributions of the paper can be summarized as follows:

• It proposes some extensions to the OpenMP standard

(which is oriented to Symmetric Multiprocessing

architectures, SMP) to deal with NUMA architectures.

It also proposes the use of OpenMP extension to

provide information about the virtual localization of

variables in the memory hierarchy.

• It introduces a performance analysis tool that is based

on native simulation and is able to simulate OpenMP

applications on embedded systems targeting many-

core NUMA platforms. It provides fast and

sufficiently accurate results to enable a thorough

exploration of many different parallelizations.

• It introduces a source-to-source transformation tool

that provides automatic OpenMP to OpenCL program

translation. This is useful because it enables the design

space in OpenMP to be explored (which is more

amenable to trying different program parallelizations),

and it also automates the error-prone translation when

the final parallelization have been established.

The paper is organized as follows. In Section II, the state

of the art is analyzed. In section III, the ST-HORM

platform (in which tests will be performed) is presented.

The proposed framework is presented in Section IV and

some simulation results are shown in Section V. Finally,

the conclusions are drawn in Section VI.

2. State of the art

Nowadays, some simulation and performance analysis

frameworks use ISSs (Instruction Set Simulators) for

evaluation of applications that are executed in multi or

Figure 2: The P2012 architecture

Figure 3: Inference of location based on semantic meaning

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 464

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

many-core platforms. The work in [4] introduces a

simulation framework for multi-cores based on a cycle-

accurate simulator at ISS level. In [5], the authors

introduce GePoP, an ISS-based simulation framework

oriented to the P2012 platform (many-core NUMA

architecture). This tool only works for a specific

architecture and its adaptation to other platforms requires a

great effort (a new ISS has to be developed).

Virtual platforms based on dynamic binary translation, as

in [6][7], can also be used to simulate many-core systems.

However, this virtual platform approach does not enable

reliable design space exploration or performance profiling.

Jung et al. [8] developed a technique that allows the

modeling of multi-core processors at thread-level,

overlooking instruction-level and micro-architectural

details. This idea is similar to our proposal, although we

present specific details about the implementation of the

simulation framework. In [8], only the instructions that

cause the threads to stall or interchange data with other

threads are considered in detail. The other instructions are

simulated by means of native performance estimation. In

[9], the authors present a technique that automatically

measures the performance of arbitrary parts of a program

on a multiprocessor embedded system. With this

framework only certain parts of the code can be analyzed,

so the programmer must have a thorough knowledge of the

application to profile the most relevant portions of the

code. In [10], an initial version of an automatic scheduler

on heterogeneous architectures for task-to-processors

assignment and a model of parallel algorithms on

heterogeneous architectures are presented.

It is well known that OpenMP is a very suitable option for

fine parallelization algorithms as was proved in [11].

Several works present extensions of OpenMP to allow the

translation of programs to NUMA architectures. For

example, the work in [10] proposes the first source-to-

source compiler that is able to automatically convert from

OpenMP to CUDA. The work proposed in [13] uses an

OMPi parser in order to generate transformed code that

runs over a CUDA runtime. OMPi [14] is a source-to-

source compiler that accepts the OpenMP standard. It

implements parallelism over the POSIX pthreads library,

but it has not been designed with other libraries in mind.

The work in [15] extends OpenMP to enable its use in

NUMA machines although it is oriented to FORTRAN

programs. All these translators are aimed at code

conversion, but they do not provide the specification

infrastructure that is needed to allow rapid explorations of

different parallel options and memory configurations.

Furthermore, even though they support CUDA as a

programming API for NUMA architectures, they do not

enable conversion to OpenCL. The proposed tool can

perform this translation while providing NUMA

architectures with accurate estimations.

3. The P2012 (ST-HORM) platform

As was previously commented, the proposed tool aims to

facilitate the SW application implementation in a generic

many-core platform. In order to compare results, a specific

many-core platform has been selected. The target is the

ST-HORM (P2012) [1] platform, which is currently under

joint development by STMicroelectronics and CEA. The

P2012 computing fabric is highly modular, as it is based

on multiple clusters implemented with independent power

and clock domains. As depicted in Figure 2, clusters are

connected via a high-performance fully-asynchronous

network-on-chip (NoC), which provides scalable

bandwidth and robust communication across different

power and clock domains [1].

Each cluster features up to 16 tightly-coupled processing

elements (PE) sharing uncached multi-banked level-1 data

memories (L1 memory), individual cached instruction

memories, a multi-channel advanced DMA engine, and

specialized hardware for synchronization and scheduling

acceleration. Each PE is a customizable 32-bit RISC

processor which could include vector units, a floating-

point unit and special-purpose instructions.

From the software viewpoint, all processors in the P2012

have full visibility of all the memories (shared memory

architecture) with no aliasing: hence, it is possible for the

processors in one cluster to load and store directly in

remote L1 memories in other clusters. The same holds for

global memory (L2 memory) and external-host memory. A

relaxed memory consistency model is hardware-supported

through memory barrier instructions. Synchronous and

asynchronous DMA-assisted memory copy functions are

the favored way to hide the latency in accessing remote

memories.

A key aspect to achieve performance gain in an application

running on the P2012 platform is efficient management of

accesses to the global memory. These are performed

without any cache management, so they are subject to high

latencies. It is the responsibility of the programmer to

ensure that the variables are close to the PE that uses them

most, so no high latencies are incurred when accessing

these variables. The proposed framework can help in this

task by enabling the evaluation of different memory access

patterns.

4. Proposed framework for early estimation in

parallel applications

The framework shown in Figure 1 is described in detailin

this section. It is composed of three main parts:

specification with an OpenMP extension, performance

analysis and code transformation. OpenMP has been

extended with several “pragmas” (specific compiler

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 465

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

directives that are inserted into the source code) that

provide information that is necessary to efficiently map

applications in NUMA architectures. Additionally, a

virtual platform based on native simulation provides rapid

estimation of parallel program performance to guide the

application-to-core mapping. Finally, the OpenMP to

OpenCL translator enables the application to be ported to

different many-core platforms and software development

environments.

4.1 OpenMP extension

As was previously mentioned, one of the most important

aspects to consider when creating applications for many-

core platforms is the efficient use of the hierarchical

memory levels and DMAs (see P2012 section). However, a

standardized API to specify DMA transfers or to assign

specific data localization for variables is not available yet.

This paper proposes an approach that uses the standard

“shared” and “private” pragmas of OpenMP to assign

every variable to a particular memory in the memory

hierarchy. Basically, the proposed approach adds an

additional semantic to the standard OpenMP pragmas. For

many-core platforms, the proposed approach assumes that

“shared” variables are located in memory L2 while

“private” variables are located in the cluster memory L1

(see Figure 3). This provides a generic and practical way to

assign variables in different platforms which facilitates

performance analysis. In order to assign location to a task

in micros and clusters, which is also necessary to estimate

data movement, a double hierarchy of openMP pragmas is

used. The first level of parallelism distributes tasks among

clusters, while the second one distributes tasks inside each

cluster (see Figure 4).

In addition, specific pragmas have been created to enable

the translation from OpenMP to OpenCL and improve

performance analysis. It is important to remember that

while OpenMP is focused on SMP architectures, OpenCL

is focused on NUMA architectures, so information about

task and data location have to be provided. The new

pragmas are:

• “#pragma begin kernel <kernel_name>”: This

statement indicates that the following section of the

code will be executed in a processing element. This

section is estimated with the model of the core of the

processing element.

• “#pragma begin kernel call <kernel_name>”: This

statement is replaced by an OpenCL kernel call. In

terms of performance estimation, it is replaced by a

time annotation that models the execution time of the

OpenCL kernel create function

• “#pragma OpenCL setup <kernel_name>”: It is

replaced by the OpenCL function that loads the kernel

in the processing elements.

• “#pragma begin DMA transaction <source_line>

<source_row> <dest_x> <dest_y> <linelength>

<linewidth>”: In OpenMP DMAs are modeled as

parallel tasks which perform the data translation

between different memories. The current version of

the translator does not infer the DMA from these

parallel tasks –a DMA can be described in many

different ways–, so a pragma is needed to specify

these memory transactions.

• “#pragma OpenCL release”: When the program is

finished, this releases the useless OpenCL object and

Figure 4: Mapping from threads to clusters and microcontrollers

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 466

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

frees allocated buffers for DMA transactions.

4.2 Performance analysis infrastructure for many-

core platforms

In this work, a virtual platform based on native simulation

[16] is used to provide fast and accurate performance

estimation of many-core HW/SW systems. In native

simulation, the application source code is annotated with

performance-oriented code that is target-platform

dependent [16]. During execution, the annotated code

enables the estimation of the power consumption and

application-code execution time in the target many-core

platform. The annotated code is compiled with a native

compiler of the host computer in which the simulation

(annotated code execution) is performed. Thus, cross-

compilation is not needed in native-simulation-based

virtual platforms. Additionally, these platforms allow the

embedded software development process to be started even

before the HW platform is completely defined because a

limited number of high-level HW-platform parameters are

needed. In the current version of the tool, it is possible to

model the following elements of many-core architectures:

• Processor: it is characterized by defining the number

of cycles that each instruction consumes. Additionally,

power consumption could also be assigned to every

statement.

• Bus interconnection: it is modeled by a SystemC

generic bus model.

• Memories: the model of the memory hierarchy

parameterizes memory response delay and memory

size. Both data and instruction caches can be

simulated, although data caches are not used in the

P2012 many-core virtual platform, as the physical

platform does not include them (see Section III).

• NoC: The tool provides two simulation approaches for

the NoC. The first approach provides a high-level

SystemC model where NoC transactions are modeled

as blocks of data that flow from one node to another

towards a virtual path. The second approach provides

a low-level cycle-accurate simulation in which all the

micro-architectural details of the router crossbar and

switches are modeled. A unique network interface is

provided for both approaches and a designer can use

the former (if fast simulations are the main goal) or the

latter (if simulation accuracy is the main goal)

approach.

4.3 Parallelism modeling in the virtual platform

OpenMP is an application program interface that provides

concurrency support. During compilation, some additional

function calls are inserted by the compiler to create and

manage concurrent threads. These additional functions are

implemented in the “LibGOMP” library: the OpenMP

runtime library. The proposed tool integrates a modified

version of the “LibGOMP” library that enables the

simulation of thread management functions while

analyzing system performance. Therefore, when the

“LibGOMP” library calls the thread “create function”,

there is another call to the function that implements this

behavior in the virtual platform. This function keeps track

of the execution time that is needed for each thread

creation in the target platform (see figure 5). The

performance estimation framework is also able to convert

OpenMP directives to internal functions calls. It also uses

its internal simulator to map the tasks to particular

processors in the cores of the target platform. Finally, the

parallel platform model is able to consider different costs

for different memory transactions.

4.4 Translation of OpenMP to OpenCL

During the last years, several programming APIs have

been developed to program multi- and many-core

platforms, OpenMP and OpenCL being the most generally

used. OpenMP has evolved towards SMP architectures, in

which all processor cores access the same shared memory

with a similar latency for any data. On the other hand,

OpenCL is a framework for building parallel applications

Figure 5: Parallelism modeling in the virtual Platform

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 467

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

that are portable across heterogeneous parallel platforms. It

provides a common hardware abstraction layer across

different many-core architectures. OpenCL defines its own

memory hierarchy and memory consistency model and is

more oriented to NUMA architectures where the memory

access time depends on the memory location.

The last component in the proposed framework is an

OpenMP-to-OpenCL translator. OpenMP has been widely

used so there are a lot of libraries and application

implementations that use this API. The translator enables

these applications to be ported to OpenCL. One of the

main problems of this translation is related to memory

access. Even when the platform architecture is transparent

for the OpenCL API, the memory model remains exposed

to the programmer, who must explicitly program DMA

transactions in order to provide data to the OpenCL kernel.

Even though these two programming paradigms have

evolved towards such different platforms, the fork-join

model of OpenMP can also fit any many-core architecture

if each thread is assigned to a core. Taking these elements

into account, there are two important issues in the

OpenMP-OpenCL translation. One is the workload

partitioning. Each interaction of an OpenMP program must

be associated with an OpenCL thread. The other issue is

how to perform the data mapping. The information that can

be inferred in OpenMP pragmas about data allocation must

be converted to explicit OpenCL DMA function calls

between the CPU and the other heterogeneous processors.

These issues are deal with in several steps by the proposed

translator:

1. OpenCL kernels need to be identified. This is performed

taking into account parallel OpenMP sections. When this
operation is done, a mapping needs to be done to provide

every OpenMP task with a physical location (specifically,

the cluster and microcontroller coordinates). For this

purpose, the OpenMP nested directive is used, enabling two

levels of parallelism in nested loops. This was shown in

Figure 4.

2. Variables need to be allocated in memory. To accomplish
this, shared and private pragmas are used as commented in

section A.

3. DMA transfer implementation. Before and after a kernel

call, DMA transactions have to be introduced in the code.
“Pragma DMA transaction” is provided as a way to indicate

to the tool that a DMA transaction needs to translate data

from the host controller and the processing elements.

4. The kernel calling piece of code is created. This code
is responsible for calling the kernel, distributing its

code among a set of microcontrollers.

5. Simulation results

The benchmark set includes a battery of tests that are used

for GePoP validation such as a “matrix multiplication” (it

performs a multiplication of two 16*16 matrices with a

divide-and-conquer algorithm), and “Image Difference

Collaborative” (it obtains the difference between two

images). Other examples (that are not included in the

GePoP SDK) are obtained from well-known software

applications such as “FFT-Correlator” (it obtains the

correlation of a template with an image by means of its

FFT-transforms), “1-D FFT” (it performs a radix-2 FFT

with a parallelized Cooley-Turkey algorithm) and

“WARP” (it calculates a geometrical transformation of an

image) and an example of an industrial design, an MPEG

motion estimation algorithm.

The OpenMP code of these examples has been analyzed

with the proposed performance analysis framework.

Additionally, the same code was translated to OpenCL,

using the proposed source-code translator. The OpenCL

code is then simulated with the GePoP simulator, which is

provided with the platform SDK. GePoP is based on an

ISS simulator. However, it is not currently possible to

change the number of cores in GePoP. This requires the

modification of all the software layers in order to take into

account the real number of cores, although for the two

GePoP examples (matrix multiplication and image

difference collaborative), it is possible to change the

number of threads that can work since they do not enqueue

several work-groups at the same time.

The results obtained are presented in Table 1. As can be

observed, the proposed framework provides simulation

Table 1: Simulation results (proposed framework vs GePoP)

Number

of cores

Matrix

multiplication

Image Difference

Collaborative

FFT

Correlator

1D-FFT Warp Mpeg

predictor

1 30% 8.5% - - - -

2 10% 12% - - - -

4 6.7% 4.4% - - - -

8 18% 0.5% - - - -

16 28% 2.1% 7.4% 9.1% 6.8% 8.6%

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 468

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

results with errors lower than 30% and with an average

error of 12%. On average, the speedup archived with the

proposed framework, compared to GePoP for the proposed

examples is 16. Since GePoP is based on the ISS

approach, it has a fixed simulation time even when

different cores are used (idle cores are simulated even if

they do nothing). In contrast, the proposed framework is

able to reduce its simulation time depending on the number

of cores. In this case, the speedup obtained is one order of

magnitude for a multi-core architecture.

6. Conclusions

This paper presents a virtual platform that enables a

reliable design-space exploration for many-core platforms.

There are three important elements in the proposed tool

that facilitate the design process. One is the use of

OpenMP as a programming paradigm and the extension of

this API with new pragmas that allow a thorough memory

exploration. Another contribution is the development of a

virtual platform that enables performance evaluation and

code simulation before a real hardware prototype is

available. Finally, a translator from OpenMP to OpenCL

allows applications for shared memory environments to be

ported to NUMA architectures.

The proposed framework has been tested with a battery of

tests that involve complex operations with some degree of

parallelism. It can be observed that the tool is able to

capture and estimate the most relevant aspects of the

execution of these examples, helping the designer task by

providing rapid estimations of the performance of the final

system when neither the program, nor the platform are as

yet completely finished and available.

Acknowledgments

This work has been funded by CA-104 COBRA (MITyC

TSI-020400-2010-82) and DREAMS (TEC2001-28666-

C04-02)

References
[1] Platform 2012: A Many-core Programmable Accelerator for

Ultra-Efficient Embedded Computing in Nanometer

Technology. CEA, STMicroelectronics, Nov. 2010.

[2] Eduard Fernandez-Alonso, David Castells-Rufas, Jaume
Joven and Jordi Carrabina, “Survey of NoC and
Programming Models Proposals for MPSoC”, International
Journal of Computer Science Issues (IJCSI); March 2012,
Vol. 9 Issue 2, p176.

[3] Ribeiro, C.P, Mehaut, J.-F and Carissimi, A., “Memory
Affinity Management for Numerical Scientific Applications
over Multi-core Multiprocessor with Hierarchical Memory”,
IEEE International Symposium on Parallel & Distributed
Processing, Workshops and PhD Forum, 2010, pp. 1-4.

[4] Uehara, K., Sato, S., Miyoshi, T., Kise, K, “A study of an
infrastructure for research and development of many-core

processors”, International Conference on Parallel and

Distributed Computing, Applications and Technologies,

2009, pp. 414-419.

[5] E. Gebrewahid, Zain-ul-Abdin, and B. Svensson, “Mapping
Occam-pi programs to a Many-core Architecture”, Fourth

Swedish Workshop on Multicore Computing, 2011.

[6] G. Wang, “Power analysis and optimizations for GPU
architecture using a power simulator”, ICACTE

International Conference on Advanced Computer Theory

and Engineering, 2010, pp. 1619-1623.

[7] O. Almer, I. Böhm, T. E. Von Koch, B. Franke, S. Kyle, V.
Seeker, C. Thompson and N. Topham, “Scalable multi-core

simulation using parallel dynamic binary translation” ,

International Conference on Embedded Computer Systems:

Architectures, Modeling and Simulation, 2011, pp. 190-

199.

[8] H. Jung, M. Ju, H. Che, “A theoretical framework for design
space exploration of many-core processors”, IEEE
International Workshop on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems,
2011, pp. 117-125.

[9] M. Lattuada, C. Pilato, A. Tumeo and F. Ferrandi,
“Performance modeling of parallel applications on
MPSoCs”, International Symposium on System-on-Chip,
2009, pp. 64-67.

[10] Laura De Giusti, Franco Chichizola, Marcelo Naiouf,
Armando De Giusti, Emilio Luque, “Automatic Mapping
Tasks to Cores - Evaluating AMTHA Algorithm in
Multicore Architectures”, International Journal of Computer
Science Issues (IJCSI); March 2010, Vol. 7 Issue 2, p102.

[11] Saravanan, Vijayalakshmi; Radhakrishnan, Mohan;
Basavesh, A. S.; Kothari, D. P., “A Comparative Study on
Performance Benefits of Multi-core CPUs using OpenMP”,
International Journal of Computer Science Issues
(IJCSI);Jan2012, Vol. 9 Issue 1, p272.

[12] S. Lee, S.-J. Min, R. Eigenmann, “OpenMP to GPGPU: A
compiler framework for automatic translation and

optimization.” ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, 2009.

[13] G. Noaje, C. Jaillet and M. Krajecki, “Source-to-source
code translator: OpenMP C to CUDA”, IEEE International

Workshop on FTDCS, 2011, pp. 512-519.

[14] V.V. Dimakopoulos and Alkis Georgopoulos, “The OMPi
OpenMP/C Compiler”, in Proc. PCI2005, 10th Panhellenic

Conference on Informatics, Volos, Greece, Nov. 2005, pp.

153—162

[15] Bircsak J., Craig P., Crowell R., Cvetanovic Z., Harris J.,
Alexander C., Offner C., "Extending OpenMP for NUMA
machines", Proceedings of the 2000 ACM/IEEE,IEEE
Computer Society Washington, DC, USA 2000

[16] D. Calvo, P. González, H. Posadas, P. Sánchez, E. Villar,
Andrea Acquaviva, Enrico Macii, Claudio Parrella, Mateo
Giaconia "SCoPE: SystemC Cosimulation and Performance
Estimation. Application to Power and Thermal-Aware
Design". University Booth, DATE 11, Grenoble. 2011-03

Pablo González de Aledo studied Telecomunications
Engineering in the University of Cantabria and finished his studies
in the Network-on-Chip team in ST-Microelectronics Grenoble. In

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 469

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

2012 he obtained a research grant from the Ministry of Education
and he is doing research in the Microelectronics Engineering
Group improving the modeling and simulation of high-
performance, multi-core and heterogeneous platforms.

Javier González-Bayón was born in Santander, Spain, in 1979.
He received the Telecommunications Engineering degree from the
University of Cantabria (UC) in 2004. He obtained his Ph. D. in the
Dept. of Electronic Engineering at the Universidad Politécnica de
Madrid in 2011. He is currently working at the Microelectronics
Engineering Group in the UC. His main research interests include
performance estimation of parallelized programs in shared-
memory many-core platforms.

Pablo Sánchez received the Ph.D. in Physics (Electronics) from
the University of Cantabria, Santander, Spain, in 1991. He is
currently an Associate Professor of Electronic Technology with the
Department of Electronic Technology, Engineering and Systems of
the University of Cantabria. He is the author of more than 60
international papers and project leader of several ITEA, ARTEMIS,
ENIAC and CATRENE projects. His current research interests
include Real-time Image Processing and Embedded Systems
Design and Verification Methodologies.

Juan Casal has a Technical Telecomunications Engineering
degree and a Technical IT Engineering degree. He has worked in
signal processing applications for the last 13 years. He has been
working in SAPEC since 2002, from 2006 as Project Manager,
leading the video encoding algorithm development team. He has
represented SAPEC in many Spanish and European R&D
projects. He has participated in the development of most of the
equipment included in SAPEC's current product portfolio.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 470

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

