

Differential Evolution with (μ+λ)-Selection Technique

Miao-miao Liu1, Pan Huo2 and Wen-yin Gong3,*

 1 School of Computer Science, China University of Geosciences,
Wuhan, 430074, P. R. China

2 School of Computer Science, China University of Geosciences,

Wuhan, 430074, P. R. China

3 School of Computer Science, China University of Geosciences,
Wuhan, 430074, P. R. China

* Corresponding author

Abstract
Differential Evolution (DE) is a global numerical optimization
algorithm which is robust, easy to use, and lends itself very well
to parallel computation. The original DE adopts one-to-one
tournament selection to select the individuals surviving in the
next generation, which maybe lead to the individuals with lower
object function values abandoned. In the evaluation strategy,
(μ+λ)-selection has been proved to be an effective selection. In
this selection method, we compare all the individuals mixed with
the parents and the offspring, and the individuals with lower
fitness must survive in the next generation. Inspired by this, we
proposed an improve method to improve the speed of
convergence of DE in the paper. We combine this selection with
five DE mutation strategies, and testing them with the 13
benchmark functions, and most of them have better performance
compared with the original DE in the same condition.

Keywords: DE, (μ+λ)-selection, (μ+λ)-DE, replacement

1. Introduction

Differential Evolution (DE) is proposed by Price and Storn
in 1995 [1-2], which is an simple yet effective global
numerical optimization algorithm. DE algorithm has
obtained better performance than most of optimization
algorithms in terms of robustness and the speed of
convergence over common benchmark functions and real-
world problems[3-6]. It has been successfully applied to
diverse domains of science and engineering, such as
mechanical engineering design, signal processing,
chemical engineering, machine intelligence, and pattern
recognition, etc. More details related DE applications can
be found in [7-13], and the references therein.

It's already proved that the original DE can be improved
by many authority literature, and improved algorithms
have been put forward, such as MDE[14], ODE[15],
jDE[16], JADE[17],and more. But they all use one-to-one
tournament selection to select individuals, which is to

compare offspring with its parents, so the individuals
which have better fitness may be abandoned in the
evolution process, and the diversity of the population can
not be guaranteed. The origial DE with (μ+λ)-selection
((μ+λ)-DE for short) can solve these problems well,
because it selects the individuals from a mixed population
mixed with all the parents and offspring, and the elitism
must survive in the next generation. We combine the
(μ+λ)-selection with five mutation strategies, and compare
them with the original algorithm in the same condition.
And we set high and low dimension conditions to test the
performance of the original DE and the (μ+λ)-DE, and
discuss it for different population size. According to the
results, we can conclude that (μ+λ)-DE has faster speed of
convergence and the variety of the population can also be
guaranteed, especially for the high dimension and large
population size problems.

The rest of this paper is organized as follows: section 2
makes a brief the original DE and the (μ+λ)-ES. In section
3, we will explain our improvement idea and method in
details. The specific experiment settings and results are
show in section 4, and we also make analysis of the
experiment results in this section. In the last section, we
make a summarization to (μ+λ)-DE.

2. Prerations

DE is a simple yet effective global algorithm. It mainly
consists of four operations, which are initialization,
mutation, crossover and selection. The (μ+λ)-selection is
originally proposed in (μ+λ)-ES, which selects the
individuals from the parent and offspring population.

2.1 DE

We make a brief instruction to original DE algorithm. DE
is a simple yet effective algorithm. The original DE mainly

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 286

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

includes four operations: initialization, mutation, crossover
and selection, and their relations are as Fig.1:[18]

Fig.1 Four major steps in DE

2.1.1 Initialization

DE adopts random initialization. The ith individual in the
population is represented by Xi,G, and

 1 2
, , , ,, ,..., D

i G i G i G i GX x x x (1)

where i=1, 2, ..., NP, NP is the size of population, and G
denotes the generation that the population belongs to.

,
j

i Gx

is a real number and randomly chosen from the range [lj,
uj], namely

 , ,j
i G j jx rndreal l u (2)

where 1,2,...,j D , D is the number of decision variables.

2.1.2. Mutation:

In the DE algorithm, the core operator is the differential
mutation operator. The mutation operator is to create the
mutant vector Vi,G for each target vector Xi,G in the current
population. There are many mutaiton operators have been
proposed in [3,19], and the classical one is the
“DE/rand/1/bin”. In DE, some well-known mutation
operators are listed as follows.
DE/rand/1/bin:

1 2 3, , , ,i G r G r G r GV X F X X (3)

DE/rand/2/bin:

1 2 3 4 5, , , , , ,i G r G r G r G r G r GV X F X X F X X (4)

DE/best/2/bin:

1 2 3 4, , , , , ,i G best G r G r G r G r GV X F X X F X X (5)

DE/rand-to-best/2/bin:

1 1 2 3 4 5, , , , , , , ,i G r G best G r G r G r G r G r GV X F X X F X X F X X (6)

DE/current-to-best/2/bin:

1 2 3 4, , , , , , , ,ii G i G best G r G r G r G r G r GV X F X X F X X F X X (7)

where the index
1r ,

2r ,
3r ,

4r and
5r are integers which are

randomly selected from the range 1, 2,..., NP , and meet

the condition of 1 2 3 4 5r r r r r i . The
,best GX is

the individual which has the best fitness function value in
the current generation G.

2.1.3. Crossover:

After mutation, a binomial crossover operations will be
used to create the trial vector Ui,G. Its creating scheme is
as follows:

 ,

,

,

0,1

,

j
i G randj

i G j
i G

v rand Cr j j
u

x otherwise

，if < or (8)

where the index j is from 1 to D, jrand is a integer randomly
selected from 1, 2,..., D , namely

 randint 1,randj D (9)

and the crossover probability 0,1Cr

D. Selection:

After the mutation and crossover operations, the offspring
population has been created. Afterwards, the selection
operator is to determine the parent individual or the
offspring individual will survive in the next generation by
comparing their fitness to the function, and the rule is as
follows:

 , , ,

, 1

,

i G i G i G
i G

i G

U if f U f X
X

X otherwise

，

，

 (10)

where the f(Xi,G) is the fitness value of the ith individual
Xi,G in the generation G . This method is called one-to-one
tournament selection, and it can guarantee that the elitism
individual can survive in the next generation. The steps of
the original DE based on “DE/rand/1/bin” are as
Algorithm 1:

Algorithm 1: the steps of the original DE

1: randomly create the population P
2: evaluate every individual of the initial population
3: while (evaluations < max_evaluations)
4: for i=1 to NP
5: randomly select the integer index

1 2 3r r r i

6: randint 1,randj D

7: for i=1 to D
8:

1 2 3, , , ,
j j j j

i G r G r G r Gv x F x x

9: if 0,1 randrand Cr j j< or

10:
, ,
j j

i G i Gu v

11: else
12:

, ,
j j

i G i Gu x

13: end if
14: end for
15: end for
16: for i=1 to NP
17: evaluate the offspring population

,i GU

18: if , ,i G i Gf U f X

19:
, 1 ,i G i GX U

20: else
21:

, 1 ,i G i GX X

22: end if
23: end for
24: end while

initialization mutation crossover selection

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 287

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

2.2 (μ+λ)-selection

(μ+λ)-selection is originally proposed in the evolution
strategies [20, 21], where the μ is the parent population
size, and the λ is the size of the offspring. Its main idea is
that λ offspring are created in each generation, and then
select μ individuals with lower object function value from
the popuation mixed with the offspring and parent.

ES also faces the problem of reducing strength of mutation,
like other evolution algorithm. Thus the (μ+λ)-ES is
introduced to help with it. Because the worst individuals
is abandoned in the process of the generation, the (μ+λ)-
ES can assure the convergence. Its basic steps are as
TABLE 1.

Table 1: the steps of (μ+λ)-ES

step 1: creating the initiation population
step 2: mutation and crossover to create λ offspring
step 3: selecting μ individuals into next generation from the set of
μ parent and λ offspring individuals, like Fig.2
step 4: letting the selected individuals replace the parent
individuals and repeat the step 2 to 3.

Fig.2: (μ+λ)-selection

3. Our Approach

The original DE adopts one-to-one tournament selection,
which one-to-one compares the offspring with its parent,
and selects the individuals with lower object function
value to survive in the next generation. Hence, the
individuals which are better than the others may be
abandoned. Inspired by the (μ+λ)-ES, we can borrow the
idea to the original DE to solve this problem.

3.1 Combine parents and offspring

In order to store the individuals for selecting, we create a
mixed population mixed with parents and offspring. Its
individuals is Mi,G, and

 1 2
, , , ,, ,..., D

i G i G i G i GM m m m (11)

where 1, 2,..., , 1,..., 2i NP NP NP .

For the individuals in the mixed parent before NP, it is the
offspring individuals. And for the next NP individuals, it
is the parent individuals. Namely:

 ,

,
,

(1)i G
i G

i G

U if i NP
M

X otherwise

 (12)

3.2 Select individuals

Before selecting the individuals to survive, we need to sort
the mixed population individuals according to their object
function value from low to high. Then the individuals
ranking before NP can survive in the next generation, as
follows:
 Xi,G+1=Mi,G (13)
where i={1,2,...,NP}, and Mi,G is the individuals from the
sorted mixed population.

Algorithm 2: the steps of the (μ+λ)-DE

1: randomly create the population P
2: evaluate every individual of the initial population
3: while (evaluations < max_evaluations)
4: for i=1 to NP
5: randomly select the integer index

1 2 3r r r i

6: randint 1,randj D

7: for i=1 to D
8:

1 2 3, , , ,
j j j j

i G r G r G r Gv x F x x

9: if 0,1 randrand Cr j j< or

10:
, ,
j j

i G i Gu v

11: else
12:

, ,
j j

i G i Gu x

13: end if
14: end for
15: end for
16: for i=1 to NP
17: evaluate the offspring population

,i GU

18:
, ,i G i GM U

19: end for
20: for i=NP+1 to 2*NP
21:

, ,i G i NP GM X

22: end for
23: rank the mixed population with the object function value
from low to high
24: for i=1 to NP
25:

, 1 ,i G i GX M

26: end for
27:end while

next generation
parent

offspring

parent
mixed individuals

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 288

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Table 2: Comparison on the error values between DE and its corresponding (μ+λ)-DE variant for functions F01-F13 at D=30 NP=100

DE/rand/1/bin
Mean(Std Dev)

DE/rand/2/bin
Mean(Std Dev)

DE/best/2/bin
Mean(Std Dev)

Prob

DE (μ+λ)-DE DE (μ+λ)-DE DE (μ+λ)-DE

F01 5.71E-14
(4.90E-14)

7.84E-20
(7.68E-20) + 1.30E+02

(3.53E+01)
1.02E+01

(2.95E+00) + 6.27E-32
(6.80E-32)

3.59E-42
(1.60E-41) +

F02 3.47E-07
(1.37E-07)

4.94E-10
(3.19E-10) + 3.09E+01

(6.79E+00)
3.59E+00

(2.77E+00) + 1.47E-15
(1.71E-15)

3.21E-21
(2.95E-21) +

F03 4.48E-01
(2.86E-01)

4.67E-03
(4.12E-03) + 1.05E+04

(1.35E+03)
6.51E+03

(1.25E+03) + 3.67E-06
(3.55E-06)

2.51E-11
(3.10E-11) +

F04 1.39E-01
(3.45E-01)

7.29E-01
(1.19E+00) - 3.14E+01

(2.64E+00)
2.29E+01

(2.67E+00) + 2.99E-04
(3.80E-04)

2.50E-02
(3.81E-02) -

F05 1.68E+01
(8.06E-01)

2.22E+01
(1.04E+00) - 2.27E+04

(7.88E+03)
1.74E+03

(7.13E+02) + 7.19E-01
(1.55E+00)

8.21E+00
(5.04E+00) -

F06 0.00E+00
(0.00E+00)

0.00E+00
(0.00E+00) = 1.37E+02

(3.09E+01)
1.59E+01

(3.68E+00) + 3.60E-01
(5.98E-01)

2.20E+00
(1.54E+00) -

F07 1.28E-02
(2.93E-03)

9.27E-03
(2.56E-03) + 6.82E+05

(2.65E+05)
1.71E+04

(9.30E+03) + 1.06E-02
(3.82E-03)

1.04E-02
(3.34E-03) =

F08 -5.30E+03
(3.57E+02)

-5.56E+03
(3.97E+02) + -4.99E+03

(2.93E+02)
-5.02E+03
(2.41E+02) = -5.12E+03

(3.50E+02)
-5.16E+03
(3.00E+02) =

F09 1.74E+02
(1.09E+01)

1.67E+02
(1.39E+01) = 2.34E+02

(1.06E+01)
2.28E+02

(1.19E+01) + 1.88E+02
(1.48E+01)

1.85E+02
(1.21E+01) =

F10 6.37E-08
(2.07E-08)

7.10E-11
(2.64E-11) + 4.53E+00

(3.01E-01)
2.70E+00
(2.11E-01) + 4.99E-02

(2.48E-01)
1.23E-01

(3.74E-01) -

F11 1.48E-04
(1.05E-03)

4.93E-04
(1.99E-03) + 2.23E+00

(2.83E-01)
1.10E+00
(3.12E-02) + 8.27E-03

(8.81E-03)
9.06E-03

(1.07E-02) =

F12 5.08E-15
(5.71E-15)

4.00E-21
(4.43E-21) + 6.61E+01

(2.01E+02)
9.79E+00

(3.79E+00) + 6.85E-02
(1.58E-01)

1.28E-01
(3.21E-01) =

F13 2.86E-14
(2.75E-14)

2.68E-20
(2.93E-20) + 6.77E+03

(1.09E+04)
2.32E+01

(7.82E+00) + 8.79E-04
(3.01E-03)

3.27E-02
(2.25E-01) =

w/t/l 9/2/2 12/1/0 3/6/4

DE/rand-to-best/2/bin
Mean(Std Dev)

DE/current-to-best/2/bin
Mean(Std Dev)

Prob

DE (μ+λ)-DE DE (μ+λ)-DE

F01 1.27E+04
(1.37E+03)

2.03E+03
(4.83E+02) + 1.33E-21

(7.36E-22)
1.56E-39

(1.55E-39) +

F02 6.62E+01
(5.41E+00)

2.65E+01
(7.55E+00) + 2.86E-09

(1.26E-09)
2.75E-18

(1.81E-18) +

F03 2.24E+04
(2.61E+03)

1.62E+04
(1.83E+03) + 1.69E-03

(8.02E-04)
1.01E-10

(9.51E-11) +

F04 5.22E+01
(2.24E+00)

4.43E+01
(3.20E+00) + 1.02E-03

(3.33E-04)
4.76E-01

(5.84E-01) -

F05 1.45E+07
(3.33E+06)

7.70E+05
(2.96E+05) + 9.70E-02

(5.67E-01)
2.09E+01

(2.13E+00) -

F06 1.29E+04
(1.44E+03)

2.22E+03
(4.60E+02) + 0.00E+00

(0.00E+00)
0.00E+00

(0.00E+00) =

F07 5.30E+08
(1.31E+08)

3.40E+07
(1.32E+07) + 9.53E-03

(2.68E-03)
4.74E-03

(1.55E-03) +

F08 -4.92E+03
(2.35E+02)

-5.00E+03
(2.51E+02) = -4.89E+03

(2.56E+02)
-4.92E+03
(2.86E+02) =

F09 2.57E+02
(1.30E+01)

2.49E+02
(1.19E+01) + 1.87E+02

(1.01E+01)
1.74E+02

(1.17E+01) +

F10 1.65E+01
(3.58E-01)

1.05E+01
(6.61E-01) + 1.78E-11

(5.53E-12)
6.84E-15

(1.53E-15) +

F11 1.14E+02
(1.47E+01)

2.06E+01
(4.67E+00) + 3.15E-03

(6.31E-03)
1.33E-03

(3.60E-03) +

F12 1.17E+07
(4.23E+06)

3.89E+05
(4.39E+05) + 1.85E-20

(3.20E-20)
1.57E-32

(1.38E-47) +

F13 3.97E+07
(1.45E+07)

1.99E+06
(1.41E+06) + 2.00E-20

(1.33E-20)
1.36E-32

(6.97E-34) +

w/t/l 12/1/0 9/2/2
⋆ “+”, “-”, and “=” indicate our approach is respectively better than, worse than, or similar to its competitor according to the Wilcoxon signed-rank test at
α = 0.05

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 289

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

3.3 DE with (μ+λ)-selection

Combining (μ+λ)-selection with the original DE, the
(μ+λ)-selection with DE algorithm are present. The
pseudo-code of (μ+λ)-DE with “DE/rand/1/bin” mutation
is shown in Algorithm 2. We can see the main difference
between Algorithm 1 and 2 is the selection operation.
Algorithm 2 selects the individuals from mixed population.
In this way, the elitism individuals can survive. And the
individuals surviving can not from the same ancestor, so
the strength of mutation can also be guaranteed.

4. Experiment and Analysis

In this section, we perform comprehensive experiments to
verify the performance of the proposed (μ+λ)-DE
algorithm. We use 13 benchmark functions presented in
the CEC-2005 competition [21] on real-parameter
optimization as the test suite. Functions f1-f5 are unimodal.
Function f6 is the step function which has one minimum
and is discontinuous. Function f7 is a noisy quadratic
function. Functions f8-f13 are multimodal functions where
the number of local minima increases exponentially with
the problem dimension [16], [23], [24]. More details for
these functions can be found in [22].

4.1 Parameter settings

In order to compare the performance of (μ+λ)-DE and the
original DE, we make the same settings for them,

according to [14], [15] and [17]. For each function, we set
the probability of crossover Cr=0.9, the scale factor F=0.5,
maximal number of fitness function evaluations
max_evaluations = 5,000D [23], and get the statistics
from 50 runs independently. We adopts five mutations to
test the performance separately, and combine them with
the (μ+λ)-selection to test.

4.2 Comparison DE with different mutation strategies

The proposed (μ+λ)-DE roots in original DE, so we
compare the performance of them with different mutations.
In Table 3, we record the results of them at D=30 and
NP=100. The “w/t/l” represents the comparison results of
the benchmark functions. From Table 2, we can see that
the (μ+λ)-DE has lower fitness value. And for the most
benchmark functions, (μ+λ)-DE are superior to the
original DE to the final results. Only in the
“DE/best/2/bin” mutation, the (μ+λ)-DE’s number of win
is less than the original DE. In other mutations, (μ+λ)-DE
is over, or at least equal to, the original DE for most
function.

The Fig.3 shows comparison of (μ+λ)-DE and the original
DE with the benchmark function 1 evolution process in
different mutation strategies. In the process of evolution,
(μ+λ)-DE and the original has the same start points, and
has similar process of convergence, but (μ+λ)-DE has
faster convergence speed.

Fig.3: the comparison of (μ+λ)-DE and the original DE for the process of evolution with different mutation in the condition 1.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 290

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Table 3: Comparison on the error values between DE and its corresponding (μ+λ)-DE variant for functions F01-F13 at D=30

NP=50
Mean(Std Dev)

NP=100
Mean(Std Dev)

NP=200
Mean(Std Dev)

NP=200
Mean(Std Dev)

Pro

DE (μ+λ)-DE DE (μ+λ)-DE DE (μ+λ)-DE DE (μ+λ)-DE

F01 2.72E-43
(9.71E-43)

5.09E-56
(1.62E-55)

+
5.71E-14

(4.90E-14)
7.84E-20

(7.68E-20)
+

8.45E-03
(3.29E-03)

5.35E-05
(2.40E-05)

+
6.51E+01

(1.35E+01)
8.50E+00

(1.60E+00)
+

F02 1.94E-23
(1.66E-23)

6.48E-31
(6.72E-31)

+
3.47E-07

(1.37E-07)
4.94E-10

(3.19E-10)
+

1.25E-01
(2.51E-02)

9.05E-03
(3.02E-03)

+
9.03E+00

(1.12E+00)
2.81E+00
(7.90E-01)

+

F03 1.94E-05
(4.59E-05)

1.05E+00
(3.68E+00)

-
4.48E-01

(2.86E-01)
4.67E-03

(4.12E-03)
+

7.06E+02
(2.27E+02)

1.50E+02
(4.38E+01)

+
7.20E+03

(1.42E+03)
4.68E+03

(7.81E+02)
+

F04 8.08E+00
(3.31E+00)

1.15E+01
(4.58E+00)

-
1.39E-01

(3.45E-01)
7.29E-01

(1.19E+00)
-

2.28E+00
(4.06E-01)

7.08E-01
(1.45E-01)

+
1.92E+01

(1.82E+00)
1.22E+01

(1.35E+00)
+

F05 2.68E+01
(1.29E+01)

4.39E+01
(4.69E+01)

-
1.68E+01
(8.06E-01)

2.22E+01
(1.04E+00)

-
2.92E+01
(9.24E-01)

2.41E+01
(4.43E-01)

+
5.03E+03

(1.70E+03)
6.98E+02

(1.80E+02)
+

F06 0.00E+00
(0.00E+00)

2.00E-01
(6.39E-01)

-
0.00E+00

(0.00E+00)
0.00E+00

(0.00E+00)
=

0.00E+00
(0.00E+00)

0.00E+00
(0.00E+00)

=
6.70E+01

(1.03E+01)
1.15E+01

(1.88E+00)
+

F07 8.08E-03
(3.88E-03)

3.46E+03
(1.77E+04)

-
1.28E-02

(2.93E-03)
9.27E-03

(2.56E-03)
+

1.97E-01
(7.08E-02)

5.05E-02
(1.23E-02)

+
9.57E+04

(2.96E+04)
3.74E+03

(1.82E+03)
+

F08 -1.00E+04
(1.74E+03)

-1.19E+04
(4.75E+02)

+
-5.30E+03
(3.57E+02)

-5.56E+03
(3.97E+02)

+
-5.10E+03
(3.25E+02)

-5.18E+03
(2.69E+02)

=
-4.99E+03
(2.70E+02)

-5.00E+03
(2.66E+02)

=

F09 2.10E+01
(1.21E+01)

1.36E+01
(3.77E+00)

+
1.74E+02

(1.09E+01)
1.67E+02

(1.39E+01)
=

1.94E+02
(1.49E+01)

1.93E+02
(9.41E+00)

=
2.12E+02

(9.93E+00)
2.08E+02

(1.03E+01)
=

F10 4.14E-15
(0.00E+00)

5.33E-06
(3.74E-05)

-
6.37E-08

(2.07E-08)
7.10E-11

(2.64E-11)
+

3.32E-02
(8.15E-03)

2.38E-03
(4.80E-04)

+
3.62E+00
(1.86E-01)

2.15E+00
(1.80E-01)

+

F11 2.61E-03
(5.32E-03)

2.02E-03
(4.92E-03)

=
1.48E-04

(1.05E-03)
4.93E-04

(1.99E-03)
+

3.28E-02
(2.29E-02)

1.52E-04
(1.27E-04)

+
1.57E+00
(9.81E-02)

1.07E+00
(1.59E-02)

+

F12 1.57E-32
(1.38E-47)

1.09E+01
(7.69E+01)

-
5.08E-15

(5.71E-15)
4.00E-21

(4.43E-21)
+

1.65E-03
(1.07E-03)

6.70E-06
(3.95E-06)

+
8.04E+00

(1.55E+00)
2.19E+00
(5.40E-01)

+

F13 2.20E-04
(1.55E-03)

8.97E+02
(6.28E+03)

-
2.86E-14

(2.75E-14)
2.68E-20

(2.93E-20)
+

8.51E-03
(3.88E-03)

3.72E-05
(1.94E-05)

+
2.57E+01

(5.41E+00)
6.16E+00

(1.96E+00)
+

w/t/l 4/1/8 9/2/2 10/3/0 11/2/0
⋆ “+”, “-”, and “=” indicate our approach is respectively better than, worse than, or similar to its competitor according to the Wilcoxon signed-rank test at
α = 0.05

4.3 Influence of the population size

In our experiments, different parameters settings have
different optimization performance. For population size,
the individuals stick into local convergence easily, when it
is small. However, when it is large, the individuals can not
get good optimization results. Thus we make experiments
at the same problem dimensionality D=30 and different
population size NP=50, 100, 200 and 400. The
comparison of the original DE and our (μ+λ)-DE results
are recorded in the Table 3. At population size NP=50, the
performance of (μ+λ)-DE does not get better optimization
results. But when the population size is large, the (μ+λ)-
DE performs better than, or at least equal to, the original
DE from the number of the win function. With our
improved idea, only the function 8 does not get obvious
optimization, but the others have better performance, when
the population size is large.

4.4 Scalability study

In our above experiments, we set all the dimension of the
benchmark functions D=30. In this section, we make
scalability study, and the dimensions are scaled at D=30,
100 and 200. For higher dimension problems, larger
population size is a must. Thus we set the population size
NP=4D with “DE/rand/1/bin” mutation strategy for both
the original DE and the (μ+λ)-DE. The results are
represented in the Table 4. For most benchmark functions,
(μ+λ)-DE still has better optimization performance. And
comparing the results of the “w/t/l”, we can see the results
in higher dimensions are better than that in lower. Only
the F08 doesn’t get obvious optimization in all the
conditions, but for the others, the (μ+λ)-DE all gets better
optimization. In high dimension benchmark function,
(μ+λ)-DE are better or at least equal to the original DE. So,
we can conclude that (μ+λ)-DE has better performance for
the high-dimensional problems.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 291

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Table 4: Comparison on the error values between DE and its corresponding (μ+λ)-DE variant for functions F01-F13

D=30
Mean(Std Dev)

D=100
Mean(Std Dev)

D=200
Mean(Std Dev)

Prob

DE (μ+λ)-DE DE (μ+λ)-DE DE (μ+λ)-DE

F01 8.08E-10
(5.49E-10)

2.09E-14
(2.16E-14)

+
4.15E+02

(8.40E+01)
6.17E+01

(1.53E+01)
+

2.20E+04
(2.33E+03)

1.07E+04
(1.27E+03)

+

F02 4.24E-05
(1.88E-05)

2.35E-07
(1.19E-07)

+
1.01E+02

(2.09E+01)
4.78E+01

(1.20E+01)
+

2.91E+02
(1.89E+01)

1.46E+02
(5.95E+01)

+

F03 6.03E+00
(2.81E+00)

1.53E-01
(1.19E-01)

+
1.07E+08

(1.44E+07)
7.39E+07

(1.30E+07)
+

8.78E+05
(6.99E+04)

8.49E+05
(6.50E+04)

=

F04 4.61E-02
(5.48E-02)

7.40E-01
(1.81E+00)

=
4.42E+01

(3.20E+00)
3.28E+01

(3.01E+00)
+

8.25E+01
(1.60E+00)

8.16E+01
(2.16E+00)

=

F05 1.92E+01
(6.79E-01)

2.02E+01
(1.19E+00)

-
3.71E+04

(1.32E+04)
3.40E+03

(9.16E+02)
+

1.08E+07
(1.87E+06)

2.93E+06
(6.79E+05)

+

F06 0.00E+00
(0.00E+00)

0.00E+00
(0.00E+00)

=
7.54E+02

(1.41E+02)
1.22E+02

(2.89E+01)
+

2.20E+04
(2.94E+03)

1.04E+04
(1.53E+03)

+

F07 1.98E-02
(5.41E-03)

1.27E-02
(3.10E-03)

+
6.69E+08

(2.05E+08)
3.35E+07

(1.50E+07)
+

3.13E+09
(6.02E+08)

8.39E+08
(1.85E+08)

+

F08 -5.12E+03
(2.69E+02)

-5.41E+03
(2.35E+02)

+
2.95E+04

(7.73E+02)
2.93E+04

(7.31E+02)
=

-1.35E+04
(5.89E+02)

-1.36E+04
(6.51E+02)

=

F09 1.86E+02
(1.10E+01)

1.81E+02
(1.14E+01)

+
1.28E+03

(4.03E+01)
1.22E+03

(3.88E+01)
+

2.05E+03
(5.02E+01)

1.99E+03
(4.25E+01)

+

F10 8.36E-06
(2.39E-06)

4.14E-08
(1.47E-08)

+
5.40E+00
(3.82E-01)

3.24E+00
(1.86E-01)

+
1.17E+01
(3.67E-01)

9.30E+00
(3.57E-01)

+

F11 2.46E-04
(1.74E-03)

1.48E-04
(1.05E-03)

+
6.15E+02

(5.42E+01)
2.83E+02

(4.30E+01)
+

1.96E+02
(2.18E+01)

9.59E+01
(1.04E+01)

+

F12 9.61E-11
(9.86E-11)

1.62E-15
(1.67E-15)

+
1.63E+01

(2.89E+00)
5.58E+00

(1.46E+00)
+

2.78E+06
(1.57E+06)

2.39E+05
(1.73E+05)

+

F13 5.80E-10
(6.86E-10)

1.22E-14
(1.19E-14)

+
8.97E+02

(1.61E+03)
5.69E+01

(1.23E+01)
+

1.41E+07
(3.89E+06)

2.54E+06
(9.71E+05)

+

w/t/l 10/2/1 12/1/0 10/3/0
⋆ “+”, “-”, and “=” indicate our approach is respectively better than, worse than, or similar to its competitor according to the Wilcoxon signed-rank test at
α = 0.05

5. Conclution

DE is a simple yet effective global optimization algorithm.
And there are already many improved methods [14-17]
have been improved, but most of them still adopt one-to-
one tournament selection, but superior individuals may be
abandoned in the process of evolution. Inspired by the
(μ+λ)-ES, we propose (μ+λ)-DE, which combines the
original DE with the (μ+λ)-selection. (μ+λ)-DE combine
the parent population and the offspring population into the
mixed population, and sorts its individuals with object
function value from low to high, then the individuals
before NP can survive in the next generation.

We tested the performance of the (μ+λ)-DE with five
mutation strategies in two conditions, and they all get
better results for most benchmark functions, especially in
high dimension and large population size conditions. All
elitism individuals must survive in each generation, and

the individuals in each generation can not from the same
ancestor. Therefore, the (μ+λ)-DE has stronger mutation
ability compared with the original DE, and can get faster
convergence speed.

(μ+λ)-DE has been proved that it has better performance
than the original DE， especially for high dimension and
the large population size problems. In this paper, we
conduct experiment for five mutation startegies, and set
different parameter to research our (μ+λ)-DE performance.
For further works, we can combine (μ+λ)-selection with
other proposed DE improvement strategies, and study its
performance of optimization.

Acknowledgement

This work was partly supported by the National Natural
Science Foundation of China under Grant No. 61203307,
the Fundamental Research Funds for the Central
Universities at China University of Geosciences (Wuhan)
under Grant No. CUG130413, and the Research Fund for

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 292

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

the Doctoral Program of Higher Education under Grant No.
20110145120009.
References
[1] R. Storn and K. Price, "Differential Evolution—A Simple and

Efficient Adaptive Scheme for Global Optimization over
Continuous Spaces", Berkeley, CA, Tech. Rep. TR-95-012.
1995.

[2] R. Storn and K. Price, "Differential Evolution—A Simple and
Efficient Heuristic for Global Optimization over Continuous
Spaces", in Journal of Global Optimization 11. Norwell, MA:
Kluwer, 1997, pp. 341–359.

[3] K. Price, R. M. Storn, and J. A. Lampinen, "Differential
evolution: a practical Approach to Global Optimization"
(Natural Computing Series),1st ed. New York: Springer,
2005, ISBN: 3540209506.

[4] J. Vesterstroem and R. Thomsen, "A Comparative Study of
Differential Evolution, Particle Swarm Optimization, and
Evolutionary Algorithms on Numerical Benchmark
Problems", Proc. Congr. Evol. Comput., vol. 2, 2004, pp.
1980–1987.

[5] J. Andre, P. Siarry, and T. Dognon, "An Improvement of the
Standard Genetic Algorithm Fighting Premature
Convergence in Continuous Optimization", Advance in
Engineering Software 32, 2001, pp. 49–60.

[6] O. Hrstka and A. Kucerová, "Improvement of Real Coded
Genetic Algorithm Based on Differential Operators
Preventing PrematureConvergence",Advance in Engineering
Software 35, 2004, pp. 237–246.

[7] T. Rogalsky, R. W. Derksen, and S. Kocabiyik "Differential
evolution in aerodynamic optimization", in Proc. 46th Annu.
Conf. Can. Aeronautics Space Inst. 29–36. 1999.

[8] R. Joshi and A. C. Sanderson. "Minimal Representation
Multi-sensor Fusion Using Differential Evolution", IEEE
Trans. Syst. Man. Cybern. 1999, Part A, 29, 1. 63–76.

[9] S. Das and A. Konar. "Design of Two Dimensional IIR Filters
with Modern Search Heuristics: A Comparative Study", Int. J.
Comput. Intell. Applicat. 2006, 6, 3, 329–355,

[10] F. S.Wang and H. J. Jang , "Parameter Estimation of A Bio-
Reaction Model by Hybrid Differential Evolution", in Proc.
IEEE Congr. Evol. Comput. 2000, 1. Piscataway, NJ: IEEE
Press 410–417.

[11] J. Lampinen. "A Bibliography of Differential Evolution
Algorithm", Lappeenranta University of Technology.
Department of Information Technology, Laboratory of
Information Processing, Tech. Report [Online]. Available:
http://www.lut.fi/jlampine/debiblio.htm, 1999.

[12] M. Omran, A. P. Engelbrecht, and A. Salman. "Differential
Evolution Methods for Unsupervised Image Classification",
in Proc. 7th Congr. Evol. Comput. (CEC-2005), 2005,2.
Piscataway, NJ: IEEE Press, 966–973.

[13] S. Das, A. Abraham, and A. Konar. "Adaptive Clustering
Using Improved Differential Evolution Algorithm", IEEE
Trans. Syst., Man, Cybern. A, 2008,38, 1, 218–237.

[14] M. Ali, M. Pant and A. Abraham. "Improving Differential
Evolution Algorithm by Synergizing Different Improvement
Mechanisms", ACM Transactions on Autonomous and
Adaptive Systems (TAAS), 2012, Vol. 7 Issue 2, No. 20.

[15] Shahryar Rahnamayan, Hamid R. Tizhoosh, and Magdy M.
A. Salama, "Opposition-Based Differential Evolution",IEEE
Transactions on evolutionary computation, 2008,Volume: 12 ,
Issue: 1 Page(s): 64 - 79

[16] Janez Brest. Saso Greiner, Borko Boskovic, Marjan Mernik
and Viljem Zumer "Self-Adapting Control Parameters in
Differential Evolution: a Comparative Study on Numerical
Benchmark Problems", IEEE Transactions on evolutionary
computation , Vol. 10 , Issue: 6, 2006, pp. 646 - 657

[17] Jingqiao Zhang and Arthur C. Sanderson, "JADE: Adaptive
Differential Evolution with Optional External Archive", IEEE
Transactions on evolutionary computation, Vol.13 , Issue: 5,
2009, pp. 945 - 958

[18]Nikhil Padhye Piyush Bhardawaj and Kalyanmoy Deb, 2012,
"Improving Differential Rvolution Through a Unified
Approach", Journal of Global Optimization, 2012, DOI
10.1007/s10898-012-9897-0

[19]R.Storn and K.Price, "Home page of differential evolution,"
2010.[Online]. Available: http://www.ICSI.Berkeley.edu/
storn/code.html

[20]Manolis Papadrakakis and Nikolaos D. Lagaros, "Advanced
Solution Methods in Structural Optimization Based on
Evolution Strategies", Engineering Computations, Vol. 15 No.
1, 1998, pp. 12-34,

[21]Hans-Georg Beyer and Hans-Paul Schwefel, "Evolution
strategies", Natural Computing, Vol.1, Issue 1, 2002, pp. 3-52

[22]P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen,
A.Auger, and S.Tiwari, "Problem definitions and evaluation
criteria for the CEC2005 special session on real-parameter
optimization", 2005, [Online]. Available: http://www.ntu.edu.
sg/home/EPNSugan

[23] X. Yao, Y. Liu, and G. Lin. "Evolutionary Programming
Made Faster", IEEE Trans. Evol. Comput., Vol.3, No.2, 1999,
pp. 82.

[24] A. Törn and A.Zilinskas, "Global Optimization", in Lecture
Notes Computer Science. Heidelberg, Germany: Spring-
Verlag, 1989, vol. 350, pp. 1–24.

Miaomiao Liu is still a student in China University of Geosciences.
She started the study of DE in 2011, and current research interest
is differential evolution.
Pan Huo is still a student in China University of Geosciences. She
started the study of DE in 2011, and current research interest is
differential evolution.
Dr. Wenyin Gong
Address: No. 388, Lumo Road,
School of Computer Science,
China University of Geosciences,
Wuhan 430074, P.R. China
Tel: 86-27-67883716 Fax: 86-27-67883716
Homepage: http://cs.cug.edu.cn/teacherweb/gwy/

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 293

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

