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Abstract 
Differential Evolution (DE) is a global numerical optimization 
algorithm which is robust, easy to use, and lends itself very well 
to parallel computation. The original DE adopts one-to-one 
tournament selection to select the individuals surviving in the 
next generation, which maybe lead to the individuals with lower 
object function values abandoned. In the evaluation strategy, 
(μ+λ)-selection has been proved to be an effective selection. In 
this selection method, we compare all the individuals mixed with 
the parents and the offspring, and the individuals with lower 
fitness must survive in the next generation. Inspired by this, we 
proposed an improve method to improve the speed of 
convergence of DE in the paper. We combine this selection with 
five DE mutation strategies, and testing them with the 13 
benchmark functions, and most of them have better performance 
compared with the original DE in the same condition. 
 
Keywords: DE, (μ+λ)-selection, (μ+λ)-DE, replacement 

1. Introduction 

Differential Evolution (DE) is proposed by Price and Storn 
in 1995 [1-2], which is an simple yet effective global 
numerical optimization algorithm.  DE algorithm has 
obtained better performance than most of optimization 
algorithms in terms of robustness and the speed of 
convergence over common benchmark functions and real-
world problems[3-6].  It has been successfully applied to 
diverse domains of science and engineering, such as 
mechanical engineering design, signal processing, 
chemical engineering, machine intelligence, and pattern 
recognition, etc.  More details related DE applications can 
be found in [7-13], and the references therein. 
 
It's already proved that the original DE can be improved 
by many authority literature, and improved algorithms 
have been put forward, such as MDE[14], ODE[15], 
jDE[16], JADE[17],and more.  But they all use one-to-one 
tournament selection to select individuals, which is to 

compare offspring with its parents, so the individuals 
which have better fitness may be abandoned in the 
evolution process, and the diversity of the population can 
not be guaranteed.   The origial DE with (μ+λ)-selection 
((μ+λ)-DE for short) can solve these problems well, 
because it selects the individuals from a mixed population 
mixed with all the parents and offspring, and the elitism 
must survive in the next generation.  We combine the 
(μ+λ)-selection with five mutation strategies, and compare 
them with the original algorithm in the same condition.   
And we set high and low dimension conditions to test the 
performance of the original DE and the (μ+λ)-DE, and 
discuss it for different population size. According to the 
results, we can conclude that (μ+λ)-DE has faster speed of 
convergence and the variety of the population can also be 
guaranteed, especially for the high dimension and large 
population size problems. 
 
The rest of this paper is organized as follows: section 2 
makes a brief the original DE and the (μ+λ)-ES.  In section 
3, we will explain our improvement idea and method in 
details.  The specific experiment settings and results are 
show in section 4, and we also make analysis of the 
experiment results in this section.  In the last section, we 
make a summarization to (μ+λ)-DE. 

2. Prerations 

DE is a simple yet effective global algorithm.  It mainly 
consists of four operations, which are initialization, 
mutation, crossover and selection.  The (μ+λ)-selection is 
originally proposed in (μ+λ)-ES, which selects the 
individuals from the parent and offspring population. 

2.1 DE 

We make a brief instruction to original DE algorithm.  DE 
is a simple yet effective algorithm. The original DE mainly 
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includes four operations: initialization, mutation, crossover 
and selection, and their relations are as Fig.1:[18] 

 

Fig.1 Four major steps in DE 

2.1.1 Initialization   

DE adopts random initialization.  The ith individual in the 
population is represented by Xi,G, and   

 1 2
, , , ,, ,..., D

i G i G i G i GX x x x    (1) 

where i=1, 2, ..., NP, NP is the size of population, and G 
denotes the generation that the population belongs to. 

,
j

i Gx  

is a real number and randomly chosen from the range [lj, 
uj], namely 

 , ,j
i G j jx rndreal l u   (2) 

where 1,2,...,j D , D is the number of decision variables. 

2.1.2. Mutation:   

In the DE algorithm, the core operator is the differential 
mutation operator.  The mutation operator is to create the 
mutant vector Vi,G for each target vector Xi,G in the current 
population.  There are many mutaiton operators have been 
proposed in [3,19], and the classical one is the 
“DE/rand/1/bin”.  In DE, some well-known mutation 
operators are listed as follows. 
DE/rand/1/bin: 

 
1 2 3, , , ,i G r G r G r GV X F X X    (3) 

DE/rand/2/bin: 

   
1 2 3 4 5, , , , , ,i G r G r G r G r G r GV X F X X F X X        (4) 

DE/best/2/bin: 

   
1 2 3 4, , , , , ,i G best G r G r G r G r GV X F X X F X X       (5) 

DE/rand-to-best/2/bin: 

     
1 1 2 3 4 5, , , , , , , ,i G r G best G r G r G r G r G r GV X F X X F X X F X X         (6) 

DE/current-to-best/2/bin: 

     
1 2 3 4, , , , , , , ,ii G i G best G r G r G r G r G r GV X F X X F X X F X X         (7) 

where the index 
1r , 

2r , 
3r , 

4r  and 
5r  are integers which are 

randomly selected from the range  1, 2,..., NP , and meet 

the condition of  1 2 3 4 5r r r r r i     .  The 
,best GX  is 

the individual which has the best fitness function value in 
the current generation G. 

2.1.3. Crossover:   

After mutation, a binomial crossover operations will be 
used to create the trial vector Ui,G.  Its creating scheme is 
as follows: 

     ,

,

,

0,1

,

j
i G randj

i G j
i G

v rand Cr j j
u

x otherwise

  


，if <  or       (8) 

where the index j is from 1 to D, jrand is a integer randomly 
selected from  1, 2,..., D , namely  

  randint 1,randj D    (9) 

and the crossover probability  0,1Cr  

D. Selection:   

After the mutation and crossover operations, the offspring 
population has been created. Afterwards, the selection 
operator is to determine the parent individual or the 
offspring individual will survive in the next generation by 
comparing their fitness to the function, and the rule is as 
follows: 

     , , ,

, 1

,

i G i G i G
i G

i G

U if f U f X
X

X otherwise


  


，

，

 (10) 

where the f(Xi,G) is the fitness value of the ith individual 
Xi,G in the generation G .  This method is called one-to-one 
tournament selection, and it can guarantee that the elitism 
individual can survive in the next generation.  The steps of 
the original DE based on “DE/rand/1/bin” are as 
Algorithm 1: 

Algorithm 1: the steps of the original DE 

1: randomly create the population P 
2: evaluate every individual of the initial population  
3: while (evaluations < max_evaluations) 
4:       for i=1 to NP 
5: randomly select the integer index 

1 2 3r r r i    

6:  randint 1,randj D  

7: for i=1 to D 
8:          

1 2 3, , , ,
j j j j

i G r G r G r Gv x F x x    

9:         if   0,1 randrand Cr j j<  or  

10:  
, ,
j j

i G i Gu v  

11:        else  
12:  

, ,
j j

i G i Gu x  

13:        end if 
14: end for 
15:      end for 
16:      for i=1 to NP 
17: evaluate the offspring population 

,i GU  

18: if     , ,i G i Gf U f X  

19:        
, 1 ,i G i GX U   

20: else 
21:         

, 1 ,i G i GX X   

22: end if  
23:      end for 
24: end while 

initialization mutation crossover selection 
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2.2 (μ+λ)-selection 

(μ+λ)-selection is originally proposed in the evolution 
strategies [20, 21], where the μ is the parent population 
size, and the λ is the size of the offspring. Its main idea is 
that λ offspring are created in each generation, and then 
select μ individuals with lower object function value from 
the popuation mixed with the offspring and parent. 
 
ES also faces the problem of reducing strength of mutation, 
like other evolution algorithm.  Thus the (μ+λ)-ES is 
introduced to help with it.  Because the worst individuals 
is abandoned in the process of the generation, the (μ+λ)-
ES can assure the convergence.  Its basic steps are as 
TABLE 1. 

Table 1: the steps of (μ+λ)-ES 

step 1: creating the initiation population 
step 2: mutation and crossover to create λ offspring 
step 3: selecting μ individuals into next generation from the set of 
μ parent and λ offspring individuals, like Fig.2 
step 4: letting the selected individuals replace the parent 
individuals and repeat the step 2 to 3. 

 

 

Fig.2:  (μ+λ)-selection 

3. Our Approach 

The original DE adopts one-to-one tournament selection, 
which one-to-one compares the offspring with its parent, 
and selects the individuals with lower object function 
value to survive in the next generation.  Hence, the 
individuals which are better than the others may be 
abandoned. Inspired by the (μ+λ)-ES, we can borrow the 
idea to the original DE to solve this problem. 

3.1 Combine parents and offspring 

In order to store the individuals for selecting, we create a 
mixed population mixed with parents and offspring. Its 
individuals is Mi,G, and  

   1 2
, , , ,, ,..., D

i G i G i G i GM m m m   (11) 

where  1, 2,..., , 1,..., 2i NP NP NP  . 

 
For the individuals in the mixed parent before NP, it is the 
offspring individuals.   And for the next NP individuals, it 
is the parent individuals. Namely:  

  ,

,
,

(1 )i G
i G

i G

U if i NP
M

X otherwise
  


                (12) 

3.2 Select individuals 

Before selecting the individuals to survive, we need to sort 
the mixed population individuals according to their object 
function value from low to high. Then the individuals 
ranking before NP can survive in the next generation, as 
follows: 
  Xi,G+1=Mi,G   (13) 
where i={1,2,...,NP}, and Mi,G is the individuals from the 
sorted mixed population. 

Algorithm 2: the steps of the (μ+λ)-DE 
 

1: randomly create the population P 
2: evaluate every individual of the initial population  
3: while (evaluations < max_evaluations) 
4:        for i=1 to NP 
5:   randomly select the integer index 

1 2 3r r r i    

6:         randint 1,randj D  

7:         for i=1 to D 
8:          

1 2 3, , , ,
j j j j

i G r G r G r Gv x F x x    

9:         if    0,1 randrand Cr j j<  or  

10:   
, ,
j j

i G i Gu v  

11:        else  
12:  

, ,
j j

i G i Gu x  

13:         end if 
14: end for 
15:     end for 
16:      for i=1 to NP 
17: evaluate the offspring population 

,i GU  

18: 
, ,i G i GM U  

19:      end for 
20:      for i=NP+1 to 2*NP 
21: 

, ,i G i NP GM X    

22:      end for 
23:     rank the mixed population with the object function value 
from low to high 
24:       for i=1 to NP 
25:  

, 1 ,i G i GX M   

26:       end for 
27:end while 

next generation 
parent 

offspring 

parent 
mixed individuals 
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Table 2: Comparison on the error values between DE and its corresponding (μ+λ)-DE variant for functions F01-F13 at D=30 NP=100 
 

DE/rand/1/bin 
Mean(Std Dev) 

DE/rand/2/bin 
Mean(Std Dev) 

DE/best/2/bin 
Mean(Std Dev) 

Prob 

DE (μ+λ)-DE DE (μ+λ)-DE DE (μ+λ)-DE 

F01 5.71E-14 
(4.90E-14) 

7.84E-20 
(7.68E-20) + 1.30E+02

(3.53E+01)
1.02E+01 

(2.95E+00) + 6.27E-32 
(6.80E-32)

3.59E-42 
(1.60E-41) + 

F02 3.47E-07 
(1.37E-07) 

4.94E-10 
(3.19E-10) + 3.09E+01

(6.79E+00)
3.59E+00 

(2.77E+00) + 1.47E-15 
(1.71E-15)

3.21E-21 
(2.95E-21) + 

F03 4.48E-01 
(2.86E-01) 

4.67E-03 
(4.12E-03) + 1.05E+04

(1.35E+03)
6.51E+03 

(1.25E+03) + 3.67E-06 
(3.55E-06)

2.51E-11 
(3.10E-11) + 

F04 1.39E-01 
(3.45E-01) 

7.29E-01 
(1.19E+00) - 3.14E+01

(2.64E+00)
2.29E+01 

(2.67E+00) + 2.99E-04 
(3.80E-04)

2.50E-02 
(3.81E-02) - 

F05 1.68E+01 
(8.06E-01) 

2.22E+01 
(1.04E+00) - 2.27E+04

(7.88E+03)
1.74E+03 

(7.13E+02) + 7.19E-01 
(1.55E+00)

8.21E+00 
(5.04E+00) - 

F06 0.00E+00 
(0.00E+00) 

0.00E+00 
(0.00E+00) = 1.37E+02

(3.09E+01)
1.59E+01 

(3.68E+00) + 3.60E-01 
(5.98E-01)

2.20E+00 
(1.54E+00) - 

F07 1.28E-02 
(2.93E-03) 

9.27E-03 
(2.56E-03) + 6.82E+05

(2.65E+05)
1.71E+04 

(9.30E+03) + 1.06E-02 
(3.82E-03)

1.04E-02 
(3.34E-03) = 

F08 -5.30E+03 
(3.57E+02) 

-5.56E+03 
(3.97E+02) + -4.99E+03

(2.93E+02)
-5.02E+03
(2.41E+02) = -5.12E+03

(3.50E+02)
-5.16E+03 
(3.00E+02) = 

F09 1.74E+02 
(1.09E+01) 

1.67E+02 
(1.39E+01) = 2.34E+02

(1.06E+01)
2.28E+02 

(1.19E+01) + 1.88E+02 
(1.48E+01)

1.85E+02 
(1.21E+01) = 

F10 6.37E-08 
(2.07E-08) 

7.10E-11 
(2.64E-11) + 4.53E+00

(3.01E-01)
2.70E+00 
(2.11E-01) + 4.99E-02 

(2.48E-01)
1.23E-01 

(3.74E-01) - 

F11 1.48E-04 
(1.05E-03) 

4.93E-04 
(1.99E-03) + 2.23E+00

(2.83E-01)
1.10E+00 
(3.12E-02) + 8.27E-03 

(8.81E-03)
9.06E-03 

(1.07E-02) = 

F12 5.08E-15 
(5.71E-15) 

4.00E-21 
(4.43E-21) + 6.61E+01

(2.01E+02)
9.79E+00 

(3.79E+00) + 6.85E-02 
(1.58E-01)

1.28E-01 
(3.21E-01) = 

F13 2.86E-14 
(2.75E-14) 

2.68E-20 
(2.93E-20) + 6.77E+03

(1.09E+04)
2.32E+01 

(7.82E+00) + 8.79E-04 
(3.01E-03)

3.27E-02 
(2.25E-01) = 

w/t/l 9/2/2 12/1/0 3/6/4 

DE/rand-to-best/2/bin 
Mean(Std Dev) 

DE/current-to-best/2/bin 
Mean(Std Dev) 

Prob

DE (μ+λ)-DE DE (μ+λ)-DE 

F01 1.27E+04 
(1.37E+03) 

2.03E+03
(4.83E+02) + 1.33E-21 

(7.36E-22)
1.56E-39 

(1.55E-39) + 

F02 6.62E+01 
(5.41E+00) 

2.65E+01
(7.55E+00) + 2.86E-09 

(1.26E-09)
2.75E-18 

(1.81E-18) + 

F03 2.24E+04 
(2.61E+03) 

1.62E+04
(1.83E+03) + 1.69E-03 

(8.02E-04)
1.01E-10 

(9.51E-11) + 

F04 5.22E+01 
(2.24E+00) 

4.43E+01
(3.20E+00) + 1.02E-03 

(3.33E-04)
4.76E-01 

(5.84E-01) - 

F05 1.45E+07 
(3.33E+06) 

7.70E+05
(2.96E+05) + 9.70E-02 

(5.67E-01)
2.09E+01 

(2.13E+00) - 

F06 1.29E+04 
(1.44E+03) 

2.22E+03
(4.60E+02) + 0.00E+00

(0.00E+00)
0.00E+00 

(0.00E+00) = 

F07 5.30E+08 
(1.31E+08) 

3.40E+07
(1.32E+07) + 9.53E-03 

(2.68E-03)
4.74E-03 

(1.55E-03) + 

F08 -4.92E+03 
(2.35E+02) 

-5.00E+03
(2.51E+02) = -4.89E+03

(2.56E+02)
-4.92E+03
(2.86E+02) = 

F09 2.57E+02 
(1.30E+01) 

2.49E+02
(1.19E+01) + 1.87E+02

(1.01E+01)
1.74E+02 

(1.17E+01) + 

F10 1.65E+01 
(3.58E-01) 

1.05E+01
(6.61E-01) + 1.78E-11 

(5.53E-12)
6.84E-15 

(1.53E-15) + 

F11 1.14E+02 
(1.47E+01) 

2.06E+01
(4.67E+00) + 3.15E-03 

(6.31E-03)
1.33E-03 

(3.60E-03) + 

F12 1.17E+07 
(4.23E+06) 

3.89E+05
(4.39E+05) + 1.85E-20 

(3.20E-20)
1.57E-32 

(1.38E-47) + 

F13 3.97E+07 
(1.45E+07) 

1.99E+06
(1.41E+06) + 2.00E-20 

(1.33E-20)
1.36E-32 

(6.97E-34) + 

w/t/l 12/1/0 9/2/2 
⋆ “+”, “-”, and “=” indicate our approach is respectively better than, worse than, or similar to its competitor according to the Wilcoxon signed-rank test at 
α = 0.05 
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3.3 DE with (μ+λ)-selection 

Combining (μ+λ)-selection with the original DE, the 
(μ+λ)-selection with DE algorithm are present. The 
pseudo-code of (μ+λ)-DE with “DE/rand/1/bin” mutation 
is shown in Algorithm 2. We can see the main difference 
between Algorithm 1 and 2 is the selection operation. 
Algorithm 2 selects the individuals from mixed population. 
In this way, the elitism individuals can survive. And the 
individuals surviving can not from the same ancestor, so 
the strength of mutation can also be guaranteed. 

4. Experiment and Analysis 

In this section, we perform comprehensive experiments to 
verify the performance of the proposed (μ+λ)-DE 
algorithm. We use 13 benchmark functions presented in 
the CEC-2005 competition [21] on real-parameter 
optimization as the test suite. Functions f1-f5 are unimodal. 
Function f6 is the step function which has one minimum 
and is discontinuous. Function f7 is a noisy quadratic 
function. Functions f8-f13 are multimodal functions where 
the number of local minima increases exponentially with 
the problem dimension [16], [23], [24]. More details for 
these functions can be found in [22]. 
 

4.1 Parameter settings 

In order to compare the performance of (μ+λ)-DE and the 
original DE, we make the same settings for them, 

according to [14], [15] and [17]. For each function, we set 
the probability of crossover Cr=0.9, the scale factor F=0.5, 
maximal number of fitness function evaluations 
max_evaluations = 5,000D [23], and get the statistics 
from 50 runs independently. We adopts five mutations to 
test the performance separately, and combine them with 
the (μ+λ)-selection to test. 
 

4.2 Comparison DE with different mutation strategies 

The proposed (μ+λ)-DE roots in original DE, so we 
compare the performance of them with different mutations. 
In Table 3, we record the results of them at D=30 and 
NP=100.  The “w/t/l” represents the comparison results of 
the benchmark functions.  From Table 2, we can see that 
the (μ+λ)-DE has lower fitness value. And for the most 
benchmark functions, (μ+λ)-DE are superior to the 
original DE to the final results. Only in the 
“DE/best/2/bin” mutation, the (μ+λ)-DE’s number of win 
is less than the original DE. In other mutations, (μ+λ)-DE 
is over, or at least equal to, the original DE for most 
function. 
 
The Fig.3 shows comparison of (μ+λ)-DE and the original 
DE with the benchmark function 1 evolution process in 
different mutation strategies. In the process of evolution, 
(μ+λ)-DE and the original has the same start points, and 
has similar process of convergence, but (μ+λ)-DE has 
faster convergence speed. 
 

 

 

Fig.3:   the comparison of (μ+λ)-DE and the original DE for the process of evolution with different mutation in the condition 1. 
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Table 3: Comparison on the error values between DE and its corresponding (μ+λ)-DE variant for functions F01-F13 at D=30 
 

NP=50 
Mean(Std Dev) 

NP=100 
Mean(Std Dev) 

NP=200 
Mean(Std Dev) 

NP=200 
Mean(Std Dev) 

Pro 

DE (μ+λ)-DE DE (μ+λ)-DE DE (μ+λ)-DE DE (μ+λ)-DE 

F01 2.72E-43 
(9.71E-43) 

5.09E-56 
(1.62E-55) 

+ 
5.71E-14 

(4.90E-14) 
7.84E-20 

(7.68E-20)
+

8.45E-03 
(3.29E-03)

5.35E-05 
(2.40E-05)

+ 
6.51E+01 

(1.35E+01) 
8.50E+00

(1.60E+00)
+

F02 1.94E-23 
(1.66E-23) 

6.48E-31 
(6.72E-31) 

+ 
3.47E-07 

(1.37E-07) 
4.94E-10 

(3.19E-10)
+

1.25E-01 
(2.51E-02)

9.05E-03 
(3.02E-03)

+ 
9.03E+00 

(1.12E+00) 
2.81E+00
(7.90E-01)

+

F03 1.94E-05 
(4.59E-05) 

1.05E+00 
(3.68E+00) 

- 
4.48E-01 

(2.86E-01) 
4.67E-03 

(4.12E-03)
+

7.06E+02 
(2.27E+02)

1.50E+02 
(4.38E+01)

+ 
7.20E+03 

(1.42E+03) 
4.68E+03

(7.81E+02)
+

F04 8.08E+00 
(3.31E+00) 

1.15E+01 
(4.58E+00) 

- 
1.39E-01 

(3.45E-01) 
7.29E-01 

(1.19E+00)
-

2.28E+00 
(4.06E-01)

7.08E-01 
(1.45E-01)

+ 
1.92E+01 

(1.82E+00) 
1.22E+01

(1.35E+00)
+

F05 2.68E+01 
(1.29E+01) 

4.39E+01 
(4.69E+01) 

- 
1.68E+01 
(8.06E-01) 

2.22E+01 
(1.04E+00)

-
2.92E+01 
(9.24E-01)

2.41E+01 
(4.43E-01)

+ 
5.03E+03 

(1.70E+03) 
6.98E+02

(1.80E+02)
+

F06 0.00E+00 
(0.00E+00) 

2.00E-01 
(6.39E-01) 

- 
0.00E+00 

(0.00E+00) 
0.00E+00 

(0.00E+00)
=

0.00E+00 
(0.00E+00)

0.00E+00 
(0.00E+00)

= 
6.70E+01 

(1.03E+01) 
1.15E+01

(1.88E+00)
+

F07 8.08E-03 
(3.88E-03) 

3.46E+03 
(1.77E+04) 

- 
1.28E-02 

(2.93E-03) 
9.27E-03 

(2.56E-03)
+

1.97E-01 
(7.08E-02)

5.05E-02 
(1.23E-02)

+ 
9.57E+04 

(2.96E+04) 
3.74E+03

(1.82E+03)
+

F08 -1.00E+04 
(1.74E+03) 

-1.19E+04 
(4.75E+02) 

+ 
-5.30E+03 
(3.57E+02) 

-5.56E+03
(3.97E+02)

+
-5.10E+03
(3.25E+02)

-5.18E+03
(2.69E+02)

= 
-4.99E+03 
(2.70E+02) 

-5.00E+03
(2.66E+02)

=

F09 2.10E+01 
(1.21E+01) 

1.36E+01 
(3.77E+00) 

+ 
1.74E+02 

(1.09E+01) 
1.67E+02 

(1.39E+01)
=

1.94E+02 
(1.49E+01)

1.93E+02 
(9.41E+00)

= 
2.12E+02 

(9.93E+00) 
2.08E+02

(1.03E+01)
=

F10 4.14E-15 
(0.00E+00) 

5.33E-06 
(3.74E-05) 

- 
6.37E-08 

(2.07E-08) 
7.10E-11 

(2.64E-11)
+

3.32E-02 
(8.15E-03)

2.38E-03 
(4.80E-04)

+ 
3.62E+00 
(1.86E-01) 

2.15E+00
(1.80E-01)

+

F11 2.61E-03 
(5.32E-03) 

2.02E-03 
(4.92E-03) 

= 
1.48E-04 

(1.05E-03) 
4.93E-04 

(1.99E-03)
+

3.28E-02 
(2.29E-02)

1.52E-04 
(1.27E-04)

+ 
1.57E+00 
(9.81E-02) 

1.07E+00
(1.59E-02)

+

F12 1.57E-32 
(1.38E-47) 

1.09E+01 
(7.69E+01) 

- 
5.08E-15 

(5.71E-15) 
4.00E-21 

(4.43E-21)
+

1.65E-03 
(1.07E-03)

6.70E-06 
(3.95E-06)

+ 
8.04E+00 

(1.55E+00) 
2.19E+00
(5.40E-01)

+

F13 2.20E-04 
(1.55E-03) 

8.97E+02 
(6.28E+03) 

- 
2.86E-14 

(2.75E-14) 
2.68E-20 

(2.93E-20)
+

8.51E-03 
(3.88E-03)

3.72E-05 
(1.94E-05)

+ 
2.57E+01 

(5.41E+00) 
6.16E+00

(1.96E+00)
+

w/t/l 4/1/8 9/2/2 10/3/0 11/2/0 
⋆ “+”, “-”, and “=” indicate our approach is respectively better than, worse than, or similar to its competitor according to the Wilcoxon signed-rank test at 
α = 0.05 

4.3 Influence of the population size 

In our experiments, different parameters settings have 
different optimization performance.  For population size, 
the individuals stick into local convergence easily, when it 
is small.  However, when it is large, the individuals can not 
get good optimization results.  Thus we make experiments 
at the same problem dimensionality D=30 and different 
population size NP=50, 100, 200 and 400.  The 
comparison of the original DE and our (μ+λ)-DE results 
are recorded in the Table 3.  At population size NP=50, the 
performance of (μ+λ)-DE does not get better optimization 
results.  But when the population size is large, the (μ+λ)-
DE performs better than, or at least equal to, the original 
DE from the number of the win function.  With our 
improved idea, only the function 8 does not get obvious 
optimization, but the others have better performance, when 
the population size is large. 

4.4 Scalability study 

In our above experiments, we set all the dimension of the 
benchmark functions D=30.  In this section, we make 
scalability study, and the dimensions are scaled at D=30, 
100 and 200. For higher dimension problems, larger 
population size is a must.  Thus we set the population size 
NP=4D with “DE/rand/1/bin” mutation strategy for both 
the original DE and  the (μ+λ)-DE.  The results are 
represented in the Table 4.  For most benchmark functions, 
(μ+λ)-DE still has better optimization performance.  And 
comparing the results of the “w/t/l”, we can see the results 
in higher dimensions are better than that in lower.  Only 
the F08 doesn’t get obvious optimization in all the 
conditions, but for the others, the (μ+λ)-DE all gets better 
optimization. In high dimension benchmark function, 
(μ+λ)-DE are better or at least equal to the original DE.  So, 
we can conclude that (μ+λ)-DE has better performance for 
the high-dimensional problems. 
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Table 4: Comparison on the error values between DE and its corresponding (μ+λ)-DE variant for functions F01-F13 

D=30 
Mean(Std Dev) 

D=100 
Mean(Std Dev) 

D=200 
Mean(Std Dev) 

Prob 

DE (μ+λ)-DE DE (μ+λ)-DE DE (μ+λ)-DE 

F01 8.08E-10 
(5.49E-10) 

2.09E-14 
(2.16E-14) 

+ 
4.15E+02

(8.40E+01)
6.17E+01 

(1.53E+01)
+

2.20E+04 
(2.33E+03)

1.07E+04 
(1.27E+03) 

+ 

F02 4.24E-05 
(1.88E-05) 

2.35E-07 
(1.19E-07) 

+ 
1.01E+02

(2.09E+01)
4.78E+01 

(1.20E+01)
+

2.91E+02 
(1.89E+01)

1.46E+02 
(5.95E+01) 

+ 

F03 6.03E+00 
(2.81E+00) 

1.53E-01 
(1.19E-01) 

+ 
1.07E+08

(1.44E+07)
7.39E+07 

(1.30E+07)
+

8.78E+05 
(6.99E+04)

8.49E+05 
(6.50E+04) 

= 

F04 4.61E-02 
(5.48E-02) 

7.40E-01 
(1.81E+00) 

= 
4.42E+01

(3.20E+00)
3.28E+01 

(3.01E+00)
+

8.25E+01 
(1.60E+00)

8.16E+01 
(2.16E+00) 

= 

F05 1.92E+01 
(6.79E-01) 

2.02E+01 
(1.19E+00) 

- 
3.71E+04

(1.32E+04)
3.40E+03 

(9.16E+02)
+

1.08E+07 
(1.87E+06)

2.93E+06 
(6.79E+05) 

+ 

F06 0.00E+00 
(0.00E+00) 

0.00E+00 
(0.00E+00) 

= 
7.54E+02

(1.41E+02)
1.22E+02 

(2.89E+01)
+

2.20E+04 
(2.94E+03)

1.04E+04 
(1.53E+03) 

+ 

F07 1.98E-02 
(5.41E-03) 

1.27E-02 
(3.10E-03) 

+ 
6.69E+08

(2.05E+08)
3.35E+07 

(1.50E+07)
+

3.13E+09 
(6.02E+08)

8.39E+08 
(1.85E+08) 

+ 

F08 -5.12E+03 
(2.69E+02) 

-5.41E+03 
(2.35E+02) 

+ 
2.95E+04

(7.73E+02)
2.93E+04 

(7.31E+02)
=

-1.35E+04
(5.89E+02)

-1.36E+04 
(6.51E+02) 

= 

F09 1.86E+02 
(1.10E+01) 

1.81E+02 
(1.14E+01) 

+ 
1.28E+03

(4.03E+01)
1.22E+03 

(3.88E+01)
+

2.05E+03 
(5.02E+01)

1.99E+03 
(4.25E+01) 

+ 

F10 8.36E-06 
(2.39E-06) 

4.14E-08 
(1.47E-08) 

+ 
5.40E+00
(3.82E-01)

3.24E+00 
(1.86E-01)

+
1.17E+01 
(3.67E-01)

9.30E+00 
(3.57E-01) 

+ 

F11 2.46E-04 
(1.74E-03) 

1.48E-04 
(1.05E-03) 

+ 
6.15E+02

(5.42E+01)
2.83E+02 

(4.30E+01)
+

1.96E+02 
(2.18E+01)

9.59E+01 
(1.04E+01) 

+ 

F12 9.61E-11 
(9.86E-11) 

1.62E-15 
(1.67E-15) 

+ 
1.63E+01

(2.89E+00)
5.58E+00 

(1.46E+00)
+

2.78E+06 
(1.57E+06)

2.39E+05 
(1.73E+05) 

+ 

F13 5.80E-10 
(6.86E-10) 

1.22E-14 
(1.19E-14) 

+ 
8.97E+02

(1.61E+03)
5.69E+01 

(1.23E+01)
+

1.41E+07 
(3.89E+06)

2.54E+06 
(9.71E+05) 

+ 

w/t/l 10/2/1 12/1/0 10/3/0 
⋆ “+”, “-”, and “=” indicate our approach is respectively better than, worse than, or similar to its competitor according to the Wilcoxon signed-rank test at 
α = 0.05 
 

5. Conclution 

DE is a simple yet effective global optimization algorithm. 
And there are already many improved methods [14-17] 
have been improved, but most of them still adopt one-to-
one tournament selection, but superior individuals may be 
abandoned in the process of evolution. Inspired by the 
(μ+λ)-ES, we propose (μ+λ)-DE, which combines the 
original DE with the (μ+λ)-selection. (μ+λ)-DE combine 
the parent population and the offspring population into the 
mixed population, and sorts its individuals with object 
function value from low to high, then the individuals 
before NP can survive in the next generation.  
 
We tested the performance of the (μ+λ)-DE with five 
mutation strategies in two conditions, and they all get 
better results for most benchmark functions, especially in 
high dimension and large population size conditions.  All 
elitism individuals must survive in each generation, and 

the individuals in each generation can not from the same 
ancestor. Therefore, the (μ+λ)-DE has stronger mutation 
ability compared with the original DE, and can get faster 
convergence speed. 
 
(μ+λ)-DE has been proved that it has better performance 
than the original DE， especially for high dimension and 
the large population size problems.  In this paper, we 
conduct experiment for five mutation startegies, and set 
different parameter to research our (μ+λ)-DE performance.  
For further works, we can combine (μ+λ)-selection with 
other proposed DE improvement strategies, and study its 
performance of optimization. 
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