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Abstract 
Optimal control theory is applied to an SEIR model that includes 
a constant inflow of infective immigrants. Seeking to reduce the 
latent and infectious groups, we use two controls representing the 
effort that reduces the contact between the infectious and 
susceptible individuals, and a therapeutic treatment. The 
objective function is based on a combination of minimizing the 
number latent and infected individuals and the cost. The optimal 
controls are obtained by solving the optimality system. The 
results were analyzed and interpreted numerically using 
MATLAB. 
 
Keywords: Optimal control, SEIR model, Immigration, 
Pontryagin's maximum principle. 

1. Introduction 

Due to a combination of factors including social, 
economic and demographic inequalities, whether in terms 
of employment opportunities, resources, education or 
human rights; people leave their countries in search of a 
safer or better life. In recent decades, global human 
mobility, or international migration, is a growing 
phenomenon affecting almost all countries in the world. 
According to recent DESA estimates there were, in 2011, 
some 214 million international migrants worldwide, 
representing three per cent of the total global population 
[1]. In epidemiology, it is well established that human 
mobility plays an important role in the spread of an 
epidemic. Indeed, some communicable diseases like HIV, 
SARS, avian influenza and measles; may be introduced 
into a population through the migration of infective 
individuals from outside into the host population. 
 
In literature, a variety of models have been formulated and 
mathematically analyzed to describe the behavior of an 
epidemic disease when spreading into a population with 
immigrants. Brauer and van den Driessche [2] considered 
simple models for disease transmission that include 
immigration of infective individuals and variable 
population size. Ram et al. [3] propose and analyze a 

nonlinear mathematical model of the spread of HIV/AIDS 
in a population of varying size with immigration of 
infectives. Wenjuan Wang et al. [4] incorporate the 
immigration of susceptible individuals into an SEIR 
epidemic model. An SEIR that includes the immigration of 
distinct compartments is formulated in [5]. Also, there has 
been some work where the immigrants are considered as a 
separate subpopulation [6,7,8]. 
 
One of the purposes of modelling epidemics is to provide 
a rational basis for policies designed to control the spread 
of a disease. The inclusion of practical control strategies in 
models allows assessing the intervention of public health 
authorities. There are two major types of control strategies 
available to curtail the spread of infectious diseases: 
pharmaceutical interventions (drugs, vaccines) and non-
pharmaceutical interventions (social distancing, quarantine 
and a campaign for information and education). In this 
spirit, the focus of this study is to investigate an effective 
strategy to control the spread of infectious diseases by 
setting an optimal control problem in the SEIR model 
when there is immigration with some infectives. Two 
controls representing the effort that reduces the contact 
between the infectious and susceptible individuals, and a 
therapeutic treatment are considered in order to minimize 
the number of exposed and infected individuals during the 
course of an epidemic and also the cost of this strategy.  
 
The paper is organized as follows. In section 2, we present 
a mathematical model including a constant inflow of 
infective immigrants and control terms. The analysis of 
optimization problem is presented in section 3. In section 
4, we give a numerical appropriate method and the 
simulation corresponding results. Finally, the conclusions 
are summarized in section 5. 

2. Mathematical model 

In this paper, we consider an SEIR epidemic model with a 
constant inflow of infective immigrants. The population is 
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divided into four disease-state compartments: susceptible 
individuals (S), people who can catch the disease; exposed 
individuals (E), people whose body is a host for the 
infectious agent but are not yet able to transmit the 
disease; infectious (infective) individuals (I), people who 
have the disease and can transmit the disease; recovered 
individuals (R), people who have recovered from the 
disease. We assume that an individual can be infected only 
through contacts with infectious individuals and that 
immunity is permanent. Schematically, the flow between 
compartments is represented as 

 
 
The population dynamics is given by the following system 
of ordinary differential equations subject to non-negative 
initial conditions. 
 

( )

( )

1

2
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dt N
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Here ( ) ( ) ( ) ( ) ( )N t S t E t I t R t= + + +  is the total 
population number at time t and the parameters are defined 
as follows 

Table 1: Parameter definition 
Parameter Definition 

β  Effective contact rate 

1Λ  Recruitment rate of susceptibles 

2Λ  Constant inflow of infectives rate 
d  Natural mortality rate 

α  Rate that exposed individuals become 
infectious 

γ  Recovery rate 
ε  Disease induced death rate 

 
Into the model (1) we include two controls u and v that 
represent, respectively, the effort that reduces the contact 
between the infectious and susceptible individuals, and the 
rate at which infectious individuals are treated at each time 
period. We assume that vI individuals per time are 

removed from the infected class and added to the 
recovered class. The mathematical system with controls is 
given by the nonlinear differential equations 
 

( )

( ) ( )

( )

1

2

dS I1 u S dS
dt N
dE I1 u S d E
dt N
dI E d v I
dt
dR I dR vI
dt
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⎧ = − − −⎪
⎪
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⎨
⎪ = + − + + +
⎪
⎪
⎪ = − +
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 (2) 

with ( ) ,  ( ) ,  ( )S 0 0 E 0 0 I 0 0≥ ≥ ≥  and ( )R 0 0≥ are 
given. 

3. The optimal control problem 

In this section we use the optimal control theory to analyze 
the behavior of the model (2). Our goal is to minimize the 
number of exposed and infected individuals during the 
course of an epidemic and the cost of this strategy. 
Mathematically, for a fixed terminal time ft , the problem 
is to minimize the objective functional 

( , ) ( ) ( ) ( ) ( )
t 2 21 2
0
f A A

J u v E t I t u t v t dt
2 2

⎧ ⎫
= + + +⎨ ⎬

⎩ ⎭
∫    (3) 

where the parameter 1A 0≥  and 2A 0≥  denote weights 
that balance the size of the terms. 
 
In other words, we seek the optimal control ( )* *,u v  such 

that 
 ( ) { }* *, min ( , ) :   (u,v)J u v J u v U= ∈           (4) 

Where U  is the set of admissible controls defined by 
 

[ ]{
}

( , ) :  , ,  , ,

 and  are Lebesgue mesurable
fU u v 0 u v 1 t 0 t

u v

= ≤ ≤ ∈
 

The Pontryagin's maximum principle [9] converted (2), 
(3), (4) into problem of minimizing an Hamiltonian, H, 
defined by 

   ( ) ( ) ( ) ( )
4

2 21 2
i i

i 1

A A
H E t I t u t v t f

2 2
λ

=
= + + + + ∑      (5) 

where if is the right side of the differential equation of the 
thi state variable. By applying the Pontryagin's maximum 

principle [9] and the existence result of optimal control 
from [10], we obtain the following theorem: 
 
Theorem 1 
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There exists an optimal control * *( , )u v U∈ , and 

corresponding solution * * *,  ,  S E I  and *R , that 
minimizes ( , )J u v  over U. Moreover, there exists adjoint 
functions, ,  ,  1 2 3λ λ λ and 4λ  verifying 

( ) ( )
*

*
*1 1 1 2

Id 1 u
N

λ λ λ λ β= + − −�  

( )2 2 3 21 dλ λ λ α λ= − + − +�  
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*
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*3 1 2 3 3 4

S1 1 u d v
N
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4 4 dλ λ=�  
with the transversality conditions 

( ) ( ) ( ) ( ) = 1 f 2 f 3 f 4 ft t t t 0λ λ λ λ= = =  

Furthermore, the optimal control pair ( )* *,u v  is given by 

            

( )

( )

* *
*

*

* *

min , max ,

min , max ,

2 1

1

3 4

2

I Su 1 0
A N

v 1 0 I
A

λ λ
β

λ λ

⎛ ⎞⎛ ⎞−
⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞−
⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

         (6) 

 
Proof. 
The existence of optimal control can be proved by using 
the results from [10] (see Theorem 2.1). The adjoint 
equations and transversality conditions can be obtained by 
using Pontryagin's Maximum Principle such that 
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The optimal control pair ( )* *,u v  can be solve from the 

optimality condition 
H 0
u

∂
=

∂
 and H 0

v
∂

=
∂

 

By the bounds in U of the controls, it is easy to obtain 

( )* *,u v in the form of (6). 

 
 
4. Numerical simulations 
 
In this section we present the results obtained by solving 
numerically the following optimality system 
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with ( ) ,  ( ) ,  ( ) ,  ( )0 0 0 0S 0 S E 0 E I 0 I R 0 R= = = =  and 

( ) ( ), ,i ft 0 i 1 4λ = = …  
 
In this formulation, there were initial conditions for the 
state variables and terminal conditions for the adjoints. 
That is, the optimality system is a two-point boundary 
value problem, with separated boundary conditions at 
times t=0 and ft . An efficient method to solve the 
optimality system (7) consists in the following semi-
implicit finite difference method. We discretize the 
interval ,0 ft t⎡ ⎤⎣ ⎦  at the points ( )  , , ,i 0t t ih 0 1 n= + = … , 
where h is the time step such that n ft t= , [11]. Then, we 
define the state and adjoint variables 

( ),  ( ),  ( ),  ( ),  ,  ,  ,  1 2 3 4S t E t I t R t λ λ λ λ and the controls u 
and v in terms of nodal points 

i, ,  ,  ,  ,  ,  ,  ,  i i i i
i i i i 1 2 3 4S E I R uλ λ λ λ  and iv . A 

combination of forward and backward difference 
approximation is used as follows: 
The Method, developed by [12] and presented in [13] and 
[14], is then read as: 
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By using a similar technique, we approximate the time 
derivative of the adjoint variables by their first-order 
backward-difference and we use the appropriate scheme as 
follows 
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The algorithm describing the approximation method to 
obtain the optimal control is the following 
 
Algorithm 2 
 Step 1: ( ) ,  ( ) ,  ( ) ,  ( ) ,  0 0 0 0S 0 S E 0 E I 0 I R 0 R= = = =   

( ) ( ) , ,i ft 0 i 1 4λ = = …  and ( ) ( )u 0 v 0 0= =  
Step 2:   For , , ,i 0 n 1= −… do 
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End for 
Step 3: 
For , , ,i 0 n= …  write 

* * * * *( ) ,  ( ) , ( ) ,  ( ) ,  ( ) i
i i i i i i i i iS t S E t E I t I R t R u t u= = = = =

 and * ( ) i
iv t v=  

End for 
 
The simulations were carried out using the following 
values taken from [15]: 

,1 42930Λ =  . ,0 3253β =   .d 0 0005917= / ,1 60α =  
. ,0 005ε =  . ,0 5γ =  

the initial conditions for the ordinary differential system 
were 

( ) ,  ( ) ,  ( ) ,  ( ) ,S 0 28000000 E 0 10543 I 0 200 R 0 7500= = = =
the transversality conditions for the ordinary differential 
system were  ( ) ( ), ,i ft 0 i 1 4λ = = …  
the computer simulation is also performed for the 
following value of 2Λ :  

,     , ,2 2 2500 1000 2000Λ Λ Λ= = =  
 
Figures 1-3 represent the number of exposed individuals 
(E) with and without controls for different value of 2Λ . 
When there are no controls (dashed curve), a steady 
increase in the curve has been observed in the first six 
months. Then it starts to grow efficiently. In presence of 
controls, the number E (solid curve) starts to decrease 
steadily in the beginning. Then, it continues its decrease 
but faster. 
 
Similarly, figures 4-6 represent the number of infected 
individuals (I) with and without controls for different 
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value of 2Λ . When there are no controls (dashed curve), a 
sharp increase in the number of infected individuals has 
been noticed. In presence of controls, the number I (solid 
curve) starts to increase steadily during the first year. 
Then, it continues its increase, but very slowly. 
 
Figure 7-8 gives the optimal control pair * *( , )u v  for 
different values of 2Λ .  
 
Finally, table 2 presents a comparison of the number of 
latent and infected individuals at the final time 

ft 5= (years) in both cases with and without controls. 

 

Fig. 1  The function E with and without controls when 2 500Λ =  

  

Fig. 2  The function E with and without controls when 2 1000Λ =  

 

Fig. 3  The function E with and without controls when 2 2000Λ =  

 

Fig. 4  The function I with and without controls when 2 500Λ =  

 

Fig. 5  The function I with and without controls when 2 1000Λ =  
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Fig. 6  The function I with and without controls when 2 2000Λ =  

 

Fig. 7 The optimal control *u  

 

Fig. 8  The optimal control *v  

 
 
 
 

Table 2:  the number of latent and infected individuals at the final time 
Latent individuals Infectious individuals 

2Λ  w/o 
controls 

with 
controls 

w/o 
controls 

with 
controls 

500 14130 9987 4040 574 
1000 14130 10060 4040 854 
2000 14130 10250 4040 1545 
 
5. Conclusion 
 
In this paper, we proposed an effective strategy to reduce 
the number of exposed and infected individuals when 
there is a constant inflow of infective immigrants. The 
optimal control theory has been applied in the context of 
an SEIR model with immigration of infective; and that 
includes two controls representing the effort reducing the 
contact between the infectious and susceptible individuals, 
and a therapeutic treatment. By using the Pontryagin's 
maximum principle, the explicit expression of the optimal 
controls was obtained. Simulation results indicate that 
despite the presence of a constant inflow of infective 
immigrants, the proposed control strategy is effective in 
reducing the number of patients. 
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