
 

An Improved Cost-Efficient Thinning Algorithm for Digital 
Image 

Liang Jia 1, Zhenjie Hou 2 
 

 1 School of Information Science and Engineering, Chang Zhou University,  
Changzhou, Jiangsu 213164, China 

 
2 School of Information Science and Engineering, Chang Zhou University,  

Changzhou, Jiangsu 213164, China 
 

 
Abstract 

Digital image processing plays an important role in our ever-
evolving ubiquitous information society with an increasing need 
of automatic and efficient information collection. Thinning 
algorithms have been widely developed and applied in Optical 
Character Recognition (OCR) to eliminate the redundant data as 
well as keep the essential features of digital images. Inspired by 
the in-depth analysis of results obtained from Davies’s classical 
algorithm, this paper proposes an improved and cost-effective 
thinning algorithm to enhance the accuracy of digital image 
skeletonization and also maintain the computation complexity at 
a low level. The extensive experiments show that the results of 
this improved thinning algorithm is able to achieve the similar 
accuracy of other advanced algorithms and inherits the advantage 
of low complexity of Davies’s classical algorithm. 
Keywords: Skeletonization, Thinning Algorithm, Medial Axis, 
Binary Image Processing, Image Erosion 

1. Introduction 

Since the skeleton greatly decreases the complexity of the 
object shapes and thus reduces the number of pixels 
required for further processing, it facilitates many 
important applications, such as OCR [2, 3, 4] and Hough-
based algorithms [1, 5]. To obtain skeletons, various 
thinning algorithms have been developed. These 
algorithms can be coarsely classified into two main 
categories according to their distinct nature, i.e., distance-
transform-based and non-distance-transform-based 
algorithms. The former is a traditional means to extracting 
skeletons and the latter is a relatively new rising area in 
skeletonization, e.g., neural networks [6], wavelet [7] and 
curvature flow [8], etc. Although the number of non-
distance-transform-based algorithms rapidly grows and 
such algorithms can obtain skeletons in 3-dimentional (3-
D) space, they are commonly over complicated for 
processing an object in 2-D digital image and require 
considerable computation [9]. Therefore, the improvement 
of classical distance-transform-based algorithms is still 
required for 2-D digital image processing. 

 

During the past decades, a great number of the distance-
transform-based algorithms are developed. There mainly 
exist two different categories formed by there algorithms, 
i.e., the raster-scan-based algorithms and the medial-axis-
based algorithms [10]. Davies proposed a well-known 
raster-scan-based algorithm in 1981 [5]. This classical 
algorithm does not employ a lookup table to estimate 
connectedness or additional data structures except the 
simple 2-D array, and thus it is easy to be analyzed and 
implemented. However the skeleton generated by this 
algorithm is nearly useless when the shape of the object in 
2-D images becomes complicated. Although the modern 
algorithm, e.g., the one developed by Wong et al in 2006 
[9], gives a good result, a heavy cost is required to achieve 
it. For instance, Wong employed quadtree and octree for 
analyses. The usage of additional data structures 
introduces several data-structure-associated methods and 
therefore adds considerable computation. 

 
Algorithm proposed by Davies is fast and efficient for 
simple 2-D processing and modern algorithms such as 
algorithm proposed by Wong are useful but 
computationally expensive for complicated 2-D 
processing. If a algorithm can combine their merits and 
simultaneously eliminates their drawbacks, then this 
algorithm should be valuable for 2-D processing. This idea 
motivates the improvements of Davies’s classical 
algorithm. The author made detailed investigation and 
analysis of the results of algorithm proposed by Davies, 
and found that most of the false branches leading to the 
useless skeletons share three special features. First, the 
isolated ends always consist of 3 or less local maxima, i.e., 
the centers of inscribed floating circles of the object to 
skeletonize. Second, the intermediate parts between the 
isolated ends and the ends joining to the main skeleton 
only comprise non-maxima pixels. Third, the parts of the 
main skeleton joining the false branches are formed by 
clusters of local maxima. Local maxima are mean to 
denote the core segments of the final skeleton, but through 
the investigation, the author found that they may not 
necessarily be the core segments, especially when 3 or less 
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such local maxima are isolated far from the clusters of 
local maxima. The improvements are made based on these 
findings, i.e., to trim the false branches from the skeleton. 
To seamlessly merge algorithms with the technical trend, 
the implementations of the improvements are made by 
using C#. Since the improved algorithm is developed by 
using C#, it can be directly applied or integrated in various 
Microsoft platforms. 

 
During the experiments, massive binary images are tested 
by using the improved algorithm and other modern 
algorithms of skeletonization, e.g., the algorithms 
proposed by Wong [9]. Some experimental results show 
the significant differences between the improved 
algorithms and other algorithms. These results are 
presented and analyzed in the experiment section of the 
paper. The performance of the improved algorithm 
approximates the algorithms for comparisons, and it’s 
even better than the compared algorithms in some cases. 
The rest of this paper is organized as follows. The theories 
and improvements of the algorithm are described in 
Section 2. There are two subsections in Section 2. In the 
first subsection, the original thinning algorithm designed 
by Davies is analyzed. In the second subsection, the 
improved algorithm is introduced. Experimental results are 
discussed in Section 3 and the final conclusion is made in 
Section 4. 

2. Related Works 

The core of the algorithm proposed by Davies [5] is the 
distance function for finding the local maximum. The 
finding procedure is essentially implemented by the 
ultimate erosion [13]. If p denotes a pixel in the object of a 
binary image denoted by X; the erosion employs an 
inscribed ball B of a given radius inside the object; n and 
N respectively represent the times of erosions and the set 
of positive integers, then the ultimate erosion Ult(X) can 
be expressed in the following formula [13]. 


N

)X( )))1(X(\)X(()X(Ult
∈

• +••=
n

nB BnnB ρ                  (1) 

where ∪  denotes union operation of sets, ● denotes 
erosion operation, \ denotes the subtraction of sets and 
ρA(B) denotes the reconstruction of set A from set B [13]. 
Since the different parts of the object may be completely 
erased in different n steps, i.e., these parts are of different 
thicknesses. The Ult(X) is a union of erosions in different 
parts. Assuming X contains one object that can be totally 
erased by a single procedure of erosions, i.e., the pixels in 
the core of the object are of same distances from the 
borders.  

))1(X(\)X()X(Ult )X( BnnB nB +••= •ρ                        (2) 

The part ρ(X ● nB)(X ● (n + 1) B) actually represents the 
condition of halting erosion. Since the erosion will finally 
erase the whole object by using B, there is a moment in 
which the erosion just completely erased the object. 
Assuming this moment occurs at the (n + 1)th step of 
erosion, then (X ● (n + 1) B) is an empty set. Consequently, 
the ρ(X●nB)(X ● (n + 1) B) is also an empty set inasmuch as 
(X ● nB) can not be reconstructed from an empty set. 
Therefore, 
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Namely, Ult(X) represents the set of pixels surviving 
through n times of erosions, but can not survive one 
additional erosion. They are core of the object and 
definitely should be the part of the final skeleton. Once 
Ult(X) is obtained, it can be employed to guide the 
thinning process. The distance function denoted by distx(p) 
is defined by the the following formula[13]. 

})X(innot,Nmin{)(dist,X X nBpnpp •∈=∈∀      (4) 
The above formula gives the value of distance for each 
pixel of the object. If p is erased in the (n + 1)th time of 
erosion, then n is recorded and compared with any other 
such values, the smallest one is taken as the distx(p). The 
whole procedure of the improved algorithm is depicted by 
Fig. 3 which satisfies the standards of Unified Modeling 
Language (UML) activity diagram [14, 15]. There are 
three main steps, Step 1 Compute Local Maximum, Step 2 
Generate Skeleton and Step 3 Trim False Branches. The 
sub steps excluding the one labeled by Delete Isolated 
Local Maximum in Step 1 and Step 2 represent the 
procedure of the algorithm proposed by Davies. The sub 
step marked by Delete Isolated Local Maximum and Step 
3 are originally developed by the author. 
In Fig. 3, Step 1 involves two main variables: binaryImage 
and maxImage. The former is a container of the input 
binary image and the latter is an image space only 
consisting of local maximum found by the algorithm. Both 
are of the same dimension of the input image. The distance 
function defined by (4) is implemented by two raster scans, 
the forward scan and the reverse scan. For making the 
explanation more comprehensible, every pixel in a 3-by-3 
mask in binaryImage is denoted by one of notations A0, 
A1, … , A8 as following: 

















876
105
234

AAA
AAA
AAA

                                                         (4) 

The pseudo codes for the first three sub steps except the 
one of initialization in Step 1 in Fig. 3 are as following: 
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;0=0else;0=0     )8,7,6                       
,5,4,3,2,1max(>0&&0>0(if:maxlocate
;1+)1,8,7,6min(=0   )0>0(if :scanreverse
;1+)5,4,3,2min(=0   )0>0(if:scanforward

BABAAA
AAAAAAA

AAAAAA
AAAAAA

         

(5)

 

The symbol B0 in (5) denotes the pixel in maxImage with 
the same coordinates of A0 in binaryImage. Note the 
direction of moving mask in curly brackets of reverse scan 
is the inverse direction of forward scan and locate max, 
and the raster scans are sequential and locate max is 
parallel. Fig. 1 shows the illustrative procedure. 

  

  

Fig. 1 Finding local maxima. 

The subfigures in clockwise order in Fig. 1 respectively 
are the original binary image, the visualized result of 
forward scan, the result of reverse scan and the local 
maxima finally obtained by Step 1 excluding its last sub 
step in Fig. 3. Once the maxima are found and recorded in 
maxImage, thinning represented by Step 2 in Fig. 3 is 
performed according to the connectedness of each pixel, 
which is estimated by computing the crossing number χ 
(chi) [5]. The pseudo code is given by: 

)}.1!&&8&&7(!)7!&&6&&5(!
)5&&4&&3(!)3!&&2&&1{(!*2

)1!7()7!5()5!3()3!1(

AAAAAA
AAAAAA

AAAAAAAAchi

+
++

+=+=+=+==      

(6)

 

Where &&, != and ! respectively denote logical AND, 
NOT EQUAL and NOT operators, and the connectedness 
criterion must be 8-connectedness. The value of χ is 
preserved in the variable chi in Step 2 and the main 
procedure in this step is essentially iterative which is 
implemented by iteratively setting and checking the states 
of the variable changed. This iterative procedure can be 
described by the following formula [13]. 

)B)...B)BX(((}B{X )()2()1()( ni ⊗⊗⊗=⊗                         (7) 

The notation {B(i)} denotes the Golay alphabet [7] and 
operator denotes the stripping operation. Here n is 4, and 
B(1) , B(2) , B(3) , B(4) ,i.e., the north, south, west and east 
templates, are shown in the following formula: 
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Notation * denotes the pixel whose value can be 0 or 1. 
The condition for stripping directional pixels is: 

)1=!(
&&)2==(&&)0(

&&)max0(&&)0>0(

odneighborhoofsum
chipixelsldirectionaA

imalocalAA
∈                  

(9)
 

The four combinations of (8) and (9) lead to the four sub 
steps involving stripping in Step 2. When the iterative 
procedure finally ends, the last sub step of Step 2 employs 
the following condition to remove spurs of the skeleton. 

)1!(&&)2(&&)00( ===> odneighborhoofsumchiA       (10) 
The original algorithm proposed by Davies terminates 
when Step 2 ends and offers the skeleton stored in the 
variable thinnedImage as the final result. 

3. The Improved Thinning Algorithm 

The algorithm proposed by Davies [5] is simple and easy 
to be understood and implemented, but the simplicity can 
simultaneously leads to the merit as well as the drawback 
of the algorithm. Fig. 2 shows some negative results. 

  

Fig. 2 Negative results. 

Obviously, the skeletons obtained by using algorithm 
proposed by Davies are nearly useless and misleading for 
further processing. Conversely, the modern thinning 
algorithms can offer the appropriate skeletons of the above 
binary images, but the costs are heavy. For instance, the 
algorithm proposed by Wong [9] employs a lookup table 
to estimate the connectedness, quadtree and octree to 
support the skeleton analysis. The introduced data 
structures except 2-D array not only complicate the 
programming but also make the algorithm computationally 
expensive. Hence, there are two possible ways to improve. 
One is enhancing the classical algorithm so that its results 
can approximate those of the modern algorithms as much 
as possible, and the other is reducing the computation 
complexity of the modern algorithm. The latter is hard 
clearly and even impossible, e.g., the algorithm proposed 
by Wong intrinsically depends on quadtree and octree. 
The algorithm proposed by Imiya [8] does not work 
without the curvature flow. Thus, the former is more 
feasible to be achieved. As a classical thinning algorithm, 
the algorithm proposed by Davies is based on the 
traditional medial axis and thus is simple and relatively 
fast for processing binary image. As a result, this 
algorithm is an ideal classical algorithm to be improved. 
 
To improve the algorithm, the reason of the negative 
results must be investigated through extensive experiments. 
The author observed that some tiny spurs on the edge of 
the object in the original image generate wrong local 
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maxima. After further analysis, these wrong local maxima 
are not the real generators of the false branches shown in 
the above figure. Since even the wrong local maxima are 
deleted, the false branches can still occur. Actually, this 
reflects the nature of the algorithm that purely depends on 
the simple local operators. Therefore, two main 
improvements are made with respect to these facts, which 
are shown in Fig. 3, i.e., the sub step marked by Delete 
Isolated Local Maximum in Step 1 and the whole 
procedure of Step 3. The former is expanded in Fig. 4 and 
the latter is visualized in details by Fig. 5 and Fig. 6. 

binary image

Initialize two image spaces: binaryImage and maxImage, 
and write the binary image data to binaryImage

Forward scan

Reverse scan

Locate maximum

Delete isolated local maximum

Step 1 Compute Local Maximum

Initialize variables chi, changed and image space thinnedImage. 
Write the original binary image data to thinnedImage

Set changed to FALSE

Strip north pixel

Strip south pixel

Strip east pixel

Strip west pixel

Erode the skeleton to unit-width skeleton

[changed == FALSE] [otherwise]

Step 2 Generate Skeleton

Initialize variables ceased，suspiciousTerminals

Set changed to FALSE

Locate ends of the branches

Delete the false branches

[changed == FALSE][otherwise]

return thinnedImage

Step 3 Trim False Branches

binaryImage and maxImage

binaryImage and maxImage

thinnedImage and maxImage

thinnedImage and maxImage

thinnedImage

Set changed to FALSE

[changed == FALSE] [otherwise]

 

Fig. 3 The improved thinning algorithm. 

Fig. 3 depicts the whole procedure of the proposed 
algorithm obtained by improving the algorithm proposed 
by Davies. Step 1 and Step 2 are inherited nearly 
unchanged except the sub step shown in Fig. 4 which is 
originally developed by the author. This sub step is an 
additional post processing of Step 1. It is aimed to 
eliminate the isolated local maxima generated by Step 1.  
The local maxima are represented by non-zero pixels in 
the variable maxImage in Fig. 4 and the elimination is 
implemented by checking the neighborhood of these non-
zero pixels to see whether there are other non-zero pixels. 
If none is found, then the checked pixel is set to 0, i.e., the 
value of the background. Through the observation of the 
massive experimental results of the algorithm proposed by 
Davies, a few false branches originate from these isolated 
maxima. Since the elimination of isolated local maxima 
can not stop the growing of all false braches. The 
elimination can only trim a small part or even just several 
points of each branch. A through trimming is necessary. 

Delete isolated local maximum
Try to scan a new pixel just adjacent to a scanned one from left to right 
in a single row and from the top row to the bottom row in maxImage

[There is a pixel which has not been scanned]

[New scanned pixel is non-zero AND 
all pixels in its neighborhood are 0]

Scan a pixel

[otherwise]

Set the new scanned pixel to 0

[otherwise]

Initialize two image spaces: binaryImage and maxImage, 
and write the binary image data to binaryImage

Forward scan Reverse scan

maxImage

Modified maxImage

Step 2 Generate Skeleton

Step 3 Trim False Branches

Locate maximum

Step 1 Compute Local Maximum binary image

binaryImage and modified maxImage

 

Fig. 4 Sub Step Delete Isolated Local Maximum in Step 1 

Step 3 in Fig. 3 consists of two essential sub steps, i.e., 
Step 3.1: Locate Ends of The Branches and Step 3.2: 
Delete the False Branches. Step 3 is essentially iterative, 
i.e., it repeatedly searches and deletes the false branches 
until there is no false branch can be found in the skeleton.  
This is implemented by checking the variable ceased. This 
variable indicates whether there is a branch deleted by 
Step 3.2. If Step 3.2 does not delete any branches, then the 
value of ceased remains unchanged which implies there is 
no necessity to continue. Step 3.1 is visualized in Fig. 5. 
This sub step collects the ends of branches around which 
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there are 2 or less local maxima. Through the investigation, 
the author found the essential branches of the skeleton 
always start from clusters of about 2 or more local maxima 
and end at clusters of 2 or more local maxima. The 
skeleton generated by Step 2 is represented by the variable 
thinnedImage, the local maxima offered by Step 1 are 
stored in the variable maxImage and the coordinates of the 
collected ends are preserved in suspiciousTerminals in Fig. 
5. The collecting is implemented by simultaneously 
checking the neighborhoods of pixels with the same 
coordinates in thinnedImage and maxImage. Variable 
suspiciousTerminals only records the coordinates 
corresponding to end pixels in thinnedImage and non-zero 
pixels in maxImage around which there are 0 or 1 non-
zero pixels. 

Step 1 Compute Local Maximum

Step 2 Generate Skeleton

Try to scan a new pixel just adjacent to a scanned one from left to right 
in a single row and from the top row to the bottom row in thinnedImage

[There is a pixel which has not been scanned]

Scan a pixel

[New scanned pixel is non-zero] [otherwise]

Check the neighborhood of the new scanned pixel and 
the neighborhood of the pixel which is of the same 
coordinates of the new scanned pixel in maxImage

[otherwise]

Locate ends of the branches

Initialize variables ceased and suspiciousTerminals

[There is only one non-zero pixel in the neighborhood of the 
new scanned pixel AND the number of non-zero pixels in the 
neighborhood of the checked pixel in maxImage is less than 2][otherwise]

Preserve the coordinates of the new 
scanned pixel in suspiciousTerminals

maxImage，thinnedImage and
 suspiciousTerminals

set ceased to FALSE

maxImage，thinnedImage and modified suspiciousTerminals

Delete the false branches

[ceased is FALSE][otherwise]

return thinnedImage

 

Fig. 5 Step 3.1 locate ends of the branches in Step 3. 

Step 3.2 follows Step 3.1. This sub step deletes pixels in 
thinnedImage connecting to the pixels with the 
coordinates recorded in suspiciousTerminals. The deleted 
pixel must satisfy the condition employed by Step 3.1, i.e., 
Step 3.2 essentially repeats the checking of Step 3.1 for 

the pixels on the false branches. If the condition is 
satisfied, then the checked pixels in thinnedImage and 
maxImage are simultaneously deleted. The checking and 
deletion repeats until the next pixel does not satisfy the 
condition. In this case, one more checking is made by 
estimating the connectedness represented by the variable 
chi in Fig. 6. This checking determines whether the last 
pixel which does not satisfy the condition should be 
deleted or not. The last deletion actually removes the tiny 
spurs generated by Step 3. 

Step 1 Compute Local Maximum

Step 2 Generate Skeleton

Initialize variables ceased，suspiciousTerminals

Set ceased to FALSE

Delete the false branches

Try to read a record of coordinates in suspiciousTerminals

[There is a record which has not been read]

Read a record and copy its value to the variable coordinate

[otherwise]

Check the neighborhoods of Pt and Pm

Compute the value of chi with respect to Pt

[otherwise]

Initialize variables coordinate，Pt and Pm

Set ceased to FALSE

Assign the coordinates of the non-zero pixel 
in the neighborhood of Pt to coordinate

Mark the pixels with the coordinates whose value are identical with 
coordinate in thinnedImage and maxImage respectively by Pt and Pm

Set Pt to 0

[otherwise]

Set ceased to TRUE

[otherwise] [ceased == FALSE]

[ceased == FALSE][otherwise]

Return thinnedImage

Set Pt and Pm to 0

Locate ends of the branches

maxImage，thinnedImage and suspiciousTerminals

maxImage，thinnedImage and modified suspiciousTerminals

[There is only one non-zero pixel in the 
neighborhood of Pt AND the number of the non-
zero pixels in the neighborhood of Pm is less than 2]

[the number of the non-zero pixels in the 
neighborhood of Pm is less than 3 AND chi < 4]

 

Fig. 6 Step 3.2 Delete the False Branches in Step 3. 
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During the implementation, several problems arise one 
after another. The most difficult problems include how to 
implement logical operations of numbers belonging to the 
value type Double and how to save computation overloads 
in subroutines of the thinning algorithm. The former is 
solved by employing extension methods which are 
features of C# and the latter is handled by interchanging 
pointers of image matrices. These may be the best solution 
in this particular situation. 

3. Results and Analysis 

The experiments mainly consist of three parts. The first 
part is designed to prove the validity of the improvement; 
the rest parts show the comparisons with the advanced 
thinning algorithms. The experiments are performed by 
using the image processing application developed in 
Windows XP Professional SP3 on a laptop with Intel Core 
2 Duo 1.6 GHz CPU. Fig. 7 shows the first part. The 
binary images are randomly chosen from Kimia’s database 
[18]. The sizes of the tested images mostly are of 160*160 
in pixel. Clearly, the qualities of most skeletons generated 
by the improved algorithm are better than the algorithm 
proposed by Davies. In Fig. 8, the skeletons created by 
algorithm proposed by Wong are added for comparisons. 

 

Fig. 7 Comparisons of algorithms of improved and Davies versions 

 

Fig. 7 Comparisons of three algorithms 

The results are listed in three columns. For the original 
algorithm, the worst cases are F11 and F61, in other cases 
the number and the lengths of the false branches both are 
less than the two cases. If only F11 is given, even a human 
can hardly guess the correct original object. The other case 
F61 is nearly impossible for a machine to recognize 
inasmuch as the skeleton is severely distorted by too many 
false branches. Thus, these cases show the drawbacks of 
algorithm proposed by Davies [5]. The corresponding 
results of improved algorithm, i.e., F12 and F62, are more 
recognizable and clearer. The most false branches are 
eliminated except a few spurs, such as the spurs on the 
head and the belly of the chick in F12. But the sizes and 
the number of remained spurs are acceptable and the 
general shapes of the skeletons approximate the results of 
algorithm proposed by Wong. 
 
Compared to the algorithm proposed by Davies, the 
skeletons generated by the improved algorithm are 
acceptable and useful for further processing, but the 
algorithm has its own drawback, i.e., the over trimness. 
The results F32, F62 and F72 uncover the over trimness. 
The worst one among the three is F32. Note F30 just is the 
rotated version of F50, which implies their corresponding 
skeleton should be similar. Results F33 and F53 of 
algorithm proposed by Wong are similar in some degree, 
but the F32 and F52 of the improved algorithm are just 
coarsely similar. From this fact, the improved algorithm is 
proved to be anisotropic. Despite of the isotropy, the 
general shape of F52 is surprisingly better than the 
corresponding F53 of algorithm proposed by Wong. 
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Although the improved algorithm is anisotropic which is 
caused by over trimness, the costs are quite low. This is 
the merit of the improved algorithm. Unlike any other 
modern thinning algorithm, the only data structure 
employed is the simple 2-D array which simplifies 
programming and does not require additional data-
structure-dependent subroutines. Note, the improvements 
are implemented by using only two additional subroutines 
and one of them is so simple that it only needs one loop of 
the array. The other requires several iterations, but it only 
consists of two main blocks in which there are a few lines 
of code. Compared to the data-structure-dependent 
subroutines, it’s relatively simple. More experimental 
results can be found in the following figure. 

 

Fig. 7 Comparisons of three algorithms 

The skeletons in the last column are obtained by using 
thinning algorithms based on pulse coupled neural 
network (PCNN). Skeletons C03, C13 and C23 are 
generated by using the algorithm proposed by Gu [16], 
and the rest skeletons are obtained by using Shang’s 
algorithm [17]. Generally, the improved algorithm 
generates better results than original algorithm except C32 
whose little distortion is clearly caused by over trimness. 
Since the binary images C30 and C40 are too simple, 
results from different algorithms are similar. There’s also a 
better result of the improve algorithm than the algorithm 
proposed by Gu, i.e., C12. There is little difference 
between C11 and C13. Both have obvious spurs. These 
spurs are eliminated or shortened in C12, which again 
proves the improvements are valid. 
The computational complexity of the trimness can be 
easily deduced to be O(m2) where m is the number of all 
ending pixels in a binary image whose size is n2. The first 
step of the Fig.3 consumes 8×n2 times of searching to find 
ending pixels. Then it requires 8×m times of searching to 
detect the neighboring local maxima. There are two 
branches in the iterations. The more expensive branch is 

the one involving the computation of χ and its complexity 
is O (c1+8×m +1) = O (m) where c1 is a constant of 
computing χ. The worst case of iterations is O (m ×

(c2+m))= O (m2) where c2 denotes the number of iterations 
which actually is a constant. Finally, the complexity of the 
proposed algorithm is O (n2) + O (m2) = O (n2) where O 
(n2) is the complexity of the original algorithm proposed 
by Davies. This result is identical with the algorithm 
proposed by Wong. 
Generally, the results of the improved algorithm 
approximate the algorithm proposed by Wong and the 
improvements are implemented by adding two relatively 
simple subroutines, but the improved algorithm is 
anisotropic, which is its the main drawback. 

5. Conclusions 

In this paper, the Davies’s classical thinning algorithm [5] 
is totally analyzed. The simplicity of the algorithm makes 
the understanding and implementation easy, but it also 
leads to some valueless results when the algorithm is 
applied in some binary images. The author observed the 
resulting matrices and found several facts which actually 
cause such valueless results. The improvements are made 
based on these found facts, and tested on a series binary 
image which is also used to test an advanced thinning 
algorithm designed by Wong [9]. Compared to the results 
of algorithm proposed by Wong, the results of the 
improved algorithm are acceptable and even better in 
some case. Consider the complexity and additional 
sophisticated data structures employed by algorithm 
proposed by Wong, the costs of achieving such results are 
quite low, but there are few tiny spurs scattering on the 
skeleton and the algorithm is anisotropic. The isotropy and 
the spurs require deeper analysis and more subtle design to 
be removed. 
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