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Abstract 
Software cost estimation accuracy is one of the biggest 

challenges in the field of software development for developer and 

customers. In general, many algorithmic models like 

Constructive Cost Model (COCOMO) are used to estimate cost 

but they have inability to deal with uncertainties related to 

software development environment and other factors influencing 

the software development process.  The Evolutionary 

computation approaches provide the solution for estimating the 

effort along with handling these uncertainties. In this paper, 

COCOMO is used as algorithmic model and an attempt is being 

made to validate the soundness of genetic algorithm using NASA 

project data. The main objective of this work is to analyze the 

influence of project duration constraints on efforts and to 

improve accuracy of system’s output when evolutionary 

computation based approach is applied to the NASA dataset to 

derive the software effort estimates. Proposed approach is 

validated by using 63 NASA project dataset. Empirical results 

show that application of the proposed approach for software 

effort estimates resulted in  smaller mean magnitude of relative 

error (MMRE) for all cases and probability of a project(PRED) 

having a relative error of less than or equal to 0.35 as compared 

with results obtained with COCOMO is improved significantly 

for most of the cases. 

Keywords: Evolutionary Computation, Genetic Algorithm, 

COCOMO, Effort estimation, Mean Magnitude of Relative Error, 

Probability of a project. 

1. Introduction 

The software project management is a set of activities that 

span all phases of the software development life cycle.  

The most important part of the software project 

management is to estimate a proposed project effort, 

duration and cost more accurately [39]. Estimation  of  

effort  and  schedule of  software  development  has  

become  a  topic  of growing  importance of interest, which 

is not so much surprising.  It  often  happens  that  software  

is  more expensive  than  estimated cost  and  completion  

is  later  than estimated time.  Moreover it  turns  out  that  

most of the software  do not  meet  the  demands  of  the  

customer[15]. It is due to the characteristics of software 

and software development makes estimating difficult.  For  

example,  the level  of  abstraction,  complexity, 

measurability  of product  and  process,  innovative  

aspects,  etc. A  big  number  of factors  have  an  influence 

on  the  effort, cost  and  time  to  develop  software.  

These factors are widely known as ‘cost drivers’. Few of 

them  are  size  and  complexity  of  the  software,  

commitment  and  participation  of  the  user  organization,  

experience and expertise  of the  development  team.  In  

general  these  cost  drivers are  difficult  to  determine 

accurately  in  operation. 

Several prerequisites  must  be  fulfilled  to  address  the  

problems listed  above  and  to  guarantee  a  sound  basis  

for  predicting  effort,  duration  and  the  cost  for software 

development [15]. Many project managers like Team 

leaders and system analysts have developed their own 

intuitive techniques for dealing with the problems in real 

world and they face and operate.  Many of these techniques 

are adequate but most of them provide far less precise 

estimates and control than desired. There is no question 

that the software development industry desperately needs 

better techniques of estimating software project costs and 

completion times, controlling the development process and 

eliminating errors which are costlier [39]. Software project 

Management process is used for carefully considering 

costs and software benefits before committing the required 

resources to that project or bidding for a contract [2]. 

In recent times, many quantitative models of software cost 

estimation have been developed. Most of these models are 

based on the size measure, such as Source Lines of Code 

(SLOC) and Function Point (FP), obtained from size 

estimation. Based on the context that the accuracy of size 

estimation has direct impact on the accuracy of cost 

estimation, a new alternative approach in soft computing 

techniques such as evolutionary algorithms (EA) can be a 

good choice for software development effort estimation 

task. 

Recently,  many  questions  about  the  applicability  of 

using  evolutionary  computational  methods  to  build 

software estimation models have been introduced [14]. The 
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major objective of this study is to focus on building an 

evolutionary model for estimating software effort using 

genetic algorithms. Genetic algorithms  will  be  used  to  

estimate  the  parameters  of  a COCOMO  based  effort  

estimation  model.  Genetic algorithm is an adaptive search 

algorithm based on the Darwinian theory of natural 

selection. Genetic algorithm searches the space  of  all  

possible  solutions  using  a  population  of individuals 

which is considered as potential solutions of the  problem  

under  consideration.  These solutions are computed based 

on their fitness.  The  solutions  that  best  fit  to  the 

objective  criterion  survive  in  the  upcoming  generations 

and  produce  “offspring”  which  are  variations  of  their 

parents[35]. Various papers [17, 21, 24, 27, 28, 29, 30, 31, 

and 38] in a review of the literature show that there are two 

major types of cost estimation methods i.e. Algorithmic 

and Non algorithmic models are the records of the 

conference. ACM hopes to give these conference by-

products a single, high-quality appearance. To do this, we 

ask that authors follow some simple guidelines. In essence, 

we ask you to make your paper look exactly like this 

document. The easiest way to do this is simply to down-

load a template from [39], and replaces the content with 

your own material. 

2.  About The Problem 

2.1 Algorithmic models  
Since, at the early stages of the software project 

development process, all the earned information is not 

adequately available, the predictions may be inaccurate 

and this problem is seen in most of the software projects 

rather than the other project types. 

The first idea for software effort estimation was introduced 

in 1950 by presenting the manual rule of thumb [23]. The 

late 1970s produced a flowering of more robust models for 

estimation.  In 1965, by increasing the number of software 

projects and need of user society to earn high quality 

software, some models based on the linear equations were 

presented as the software effort techniques [5].  We can 

consider the name of Larry Putnam, Barry Boehm and Joe 

Aron, as the ancestors of software estimation methods [23]. 

Onwards in 1973, the IBM researchers presented the first 

automated tool, interactive productivity and quality (IPQ) 

[23]. Barry Boehm proposed a new method based on 

computing some of the software project factors by means 

of several mathematical equations called COCOMO [4]. In 

addition, Boehm explained several algorithms in his book 

“Software Engineering Economics” [4] that are still used 

by researchers. Other models such as Putnam Lifecycle 

Management (SLIM) [27] and software evaluation and 

estimation of resources – software estimating model 

(SEER - SEM) [22] were influenced by the principals of 

COCOMO [5]. Albrecht and Gaffney [1] introduced the 

function point (FP) as a metric for software size estimation 

which was the other important event in that decade.  

Analogy based method was proposed in 1997 [33]. 

These Traditional algorithmic techniques require long term 

estimation process. Algorithmic  models  are based  on  the  

statistical  analysis  of  historical  data  (past  projects)  [19, 

37]. All of them need  inputs,  which are accurate  estimate  

of  specific  attributes, such  as  Line  Of  Code  (LOC),  

number  of  user  screens, interfaces  and  complexity,  

which  are  not  easy  to acquire at the early stages of 

software development. Besides, attributes  and  

relationships  used  to  predict  software  development  

effort  could  change  over  time  and/or  vary  for different 

software  development  environments  [36]. 

Understanding and calculation of algorithmic techniques 

based past projects are different due to implicit complex 

relationship between the related attributes. Attributes and 

relationships used to estimate software development effort 

could change overtime and differ for software development 

environment and hence may create problems to software 

developers in committing resources and controlling costs. 

Although most of these pioneers started working on 

developing models of software cost estimation at about the 

same time, they all faced the same dilemma: as the 

software size increases and importance there is also a 

growth in complexity, which makes it very difficult to 

accurately predict the cost of software development. In 

order to address and overcome these problems, a new 

model with accurate estimation is always desirable. This 

dynamic field of software cost estimation sustained the 

researcher's interests who succeeded in setting the 

stepping-stones of software engineering cost models. 

 

2.1.1 Constructive Cost Model (COCOMO) 
COCOMO[4,8] is  the  best  documented  and  most 

transparent  model  currently  available.  The  main  focus  

in COCOMO  is  upon  estimating  the  influence  of  15  

cost drivers  on  the  development  effort.  Before this can 

be done, an estimate of the software size must be available.  

COCOMO does not support  the  sizing  estimation stage:  

it  only  gives  several  equations  based  on  63  completed  

projects  at  TRW.  The  equations  represent  the  

relationships  between  size  and  effort and  between effort 

and  development  time. Estimation is dependent on the 

various modes of projects which are shown in table-1. 
 

Table 1: Describing the values of a and b for intermediate COCOMO 

Project modes A B 

Organic 3.2 1.05 

Semidetached 3.0 1.12 

Embedded 2.8 1.20 
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A distinction  is  made  between  three  development 

modes: the  organic  mode  (stable  development 

environment,  less  innovative,  relatively  small in size); 

the  semi-detached  mode  (between  organic  and 

embedded  mode) and the  embedded  mode  (developing  

within  tight  constraints, innovative,  complex,  high  

volatility  of  requirements). The effort estimation is 

adjusted by the influence of 15 cost drivers. 

In Table 2, the 15 COCOMO cost drivers are listed with 

the adjustment for each driver value.  For example:  where 

the complexity of the software is determined to be extra 

high, the effort has to be calculated by multiplicative factor 

of 1.65.  Furthermore  COCOMO  provides tables  to  

apportion  the  adjusted  estimated  effort  and 

development over the project phases and, in  the detailed 

version  of the  model,  to  refine  the  adjustment  for  each 

phase.  For  example:  the  quality of the  programmer  has 

less  influence in  the  feasibility phase  than  in  the  design 

phase.  Thus  phase  dependent  adjustment  factors  are 

used  in  the  detailed  model. 

 
Table 2: Describing fifteen cost drivers 

The three ways of estimating software project effort/cost 

with increasing levels of accuracy are simple, intermediate 

and complex models. These three models are defined by 

increasing the details in mathematical relationship between 

the developed time, the effort and the maintenance effort 

[9]. The software cost estimation accuracy is significantly 

improved when we adopt models such as the Intermediate 

and Complex COCOMOs [6]. The COCOMO for effort 

estimation has the form given in Equation 1. 

Effort = a (KLOC)
b
 * EAF   (1) 

The software effort is computed in person-months. The 

values of the parameters a and b depend mainly on the 

class of software project. Software projects were classified 

based on the complexity of the project into three categories 

EAF is Effort Adjustment factor which depends on the 

values 15 cost drivers. In this paper, the intermediate 

COCOMO is used. The effort multipliers fall into three 

groups: those that are positively correlated to more effort; 

those that are negatively correlated to more effort; and a 

third group containing just schedule information. In 

COCOMO-I, cost driver "SCED" has a U-shaped 

correlation to effort; i.e. giving programmers either too 

much or too little time to develop a system can be 

disruptive [7]. This exhibits some nonlinearity 

characteristics. 

The  limitations  of  the algorithmic  models  led  to  the  

exploration  of  the  non-algorithmic techniques which are 

soft computing based. So, based on these contexts, new 

alternative approaches like soft computing techniques are 

required for better solutions. 

 

3. Solution of the Problem 

3.1 Non-Algorithmic Models 

Newer computation techniques, to estimate the software 

effort are non-algorithmic approaches. Most of them came 

in 1990s are soft computing based, and drew the attention 

of researchers towards them. This section discusses a few 

of such non-algorithmic models for software development 

effort estimation. Soft computing consists of various 

approaches like evolutionary algorithm (EA), fuzzy logic 

(FL) and artificial neural networks (ANN). These 

methodologies use flexible data processing mimicking 

human behavior to deal with real life problems. Soft 

computing techniques have been widely used by 

researchers for software development effort prediction, 

with an objective to manage the imprecision in data and 

uncertainty in data. The Evolutionary Algorithms have to 

been effectively used to search the optimal solution for a 

given problem. The first model based on fuzziness of 

several aspects is one of the best known [10], most 

successful and widely used model for cost estimation, 

COCOMO, was that of Fei and Liu [40]. They observed 

that is not feasible before starting the project to accurately 

estimate the delivered source instruction (KDSI); and it is 

unreasonable to assign a finite number for it. 

Cost 

Driver 

Ratings 

Very 

Low Low Nominal High 

Very 

High 

Extra 

High 

product 

attribute 

RELY 0.75 0.88 1.00 1.15 1.4 - 

DATA - 0.94 1.00 1.08 1.16 - 

CPLX 0.70 0.85 1.00 1.15 1.3 1.65 

Computer 

Attribute 

TIME - - 1.00 1.11 1.3 1.66 

STOR - - 1.00 1.06 1.21 1.56 

VIRT - 0.87 1.00 1.15 1.3 - 

TURN - 0.87 1.00 1.07 1.15 - 

Personnel 

Attribute 

ACAP 1.46 1.19 1.00 0.86 0.71 - 

AEXP 1.29 1.13 1.00 0.91 0.82 - 

PCAP 1.42 1.17 1.00 0.86 0.7 - 

VEXP 1.21 1.10 1.00 0.9 - - 

LEXP 1.14 1.07 1.00 0.95 - - 

Project 

Attribute 

MODP 1.24 1.10 1.00 0.91 - - 

TOOL 1.24 1.10 1.00 0.91 - - 

SCED 1.23 1.08 1.00 1.04 - - 
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In summary, the previous research reveals that all of the 

software effort prediction models based on soft computing, 

have it own pros and cons. Therefore   Selecting a suitable 

technique for the given problem is a difficult decision. It 

itself requires some ranking for each computing technique 

so as to decide when a particular approach is to be  applied 

to any prediction problem. In the present study an effective 

model based on Genetic Algorithm has been proposed to 

heuristically search the various values of the parameters in 

the given search space. 

 

4. Proposed Approach for Solving 

Problem 
 

4.1  Dataset Description  
We have considered the data from 63 NASA projects from 

different centers for projects sourced from Boehm's 1981 

text, p.496-497 Table 29-1, transcribed by Srinivasan and 

Fisher [7]. Dataset consists of 15 cost drivers, 1 attribute of 

the 3 development modes, Project Size (in KLOC), and 

Actual effort used to evaluate the prediction done by 

different approaches. 

4.2 Proposed Approach 

A brief overview of the binary genetic algorithm is as 

follows: 

 

4.2.1Genetic Algorithms 
A genetic algorithm (GA) is a search heuristic method that 

imitates the process of natural evolution. This heuristic is 

routinely used to generate useful solutions to optimization 

and search problems [26]. Genetic algorithms belong to the 

larger class of evolutionary algorithms (EA), which 

generate solutions to optimization problems using 

techniques inspired by natural evolution, such as 

inheritance, mutation, selection, and crossover, based on 

the Darwin theory of natural selection. This concept was 

first introduced by John Holland [20] and considerably 

studied by Goldberg [18], De Jong [12, 13] and back [3]. 

GAs search the space of all possible solutions using a 

population of individuals which is taken as potential 

solutions of the problem under study. These solutions are 

computed based on their fitness. The solutions that best fit 

to the objective criterion survive in the upcoming 

generations and produce “offspring” which are 

transformations of their Parents [34]. 

GAs has   been successfully   used   in   a   wide   range   of   

difficult numerical optimization problems.  They   have 

been successfully used to solve system identification, 

signal processing and path searching problems [11, 16, 24 

and 32]. String   representation of genetic algorithms was 

evolved by Holland [20]. 

 

4.2.2 Evolutionary Process of Genetic 

Algorithm 
In all Evolutionary Algorithms (EAs) techniques, it is 

required to map the problem from its real domain to the 

Evolutionary algorithms domain.  GAs offers various kinds 

of representations. The evolutionary process starts with the 

evaluation of the fitness for each individual belonging to 

initial population set. Until the stopping criterion is not 

reached, the following tasks are to be preformed; 

• Select the good individuals for reproduction in matting 

pool using some selection approach (like. roulette wheel, 

tournament, rank, etc.). 

• Use crossover and mutation operators to generate new 

offspring's. The probability of crossover and mutation are 

selected based on the application. 

• Evaluate the fitness function for offspring's. 

This Stopping condition for above steps is either the 

optimal solution required or the maximum numbers of 

iteration specified are completed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

To see, how the ideas of evolutionary algorithms is 

implemented on function optimization, It is assumed that 

without any loss in generality we are desired to 

minimize/maximize a function of n arguments f(a1,  a2, .....,  

an). Each argument ai of the function has it range from  αi 

to γi, which is used as search space for each parameter that 

can  be given by equation below: 

( ){ }niD iii ≤≤= 1:,γα
  (2) 

f(a1, a2, ......,  an) is positive function, Such that ai always 

in there domain Di. Candidate   solutions are represented 

by n-dimensional vectors of argument of the form: a1, 

a2,..., an  which is known as “Chromosomes”  and these 

chromosomes the order pair of the arguments of the 

functions which can independently called as “genes”. For 

each such vector of arguments, have associated functions 

 
Figure 1: General Scheme of Evolutionary Process 
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to serves a single value that behaves as fitness value. These 

small values are used for minimization problems. 

The GA search process works on population of individuals 

each of which is assigned a fitness value. Individuals with 

higher fitness value are transferred to the mating pool to      

generate the offspring's which posses many but not all of 

the features of their parents. This is done using genetic 

operators like mutation and crossover [23, 28]. 

 

5. Evaluation Method 
 

The performance of an effort predicting algorithm  can be 

evaluated in many ways but the most commonly used are 

Mean Magnitude of Relative Error (MMRE) and 

probability of a project having a relative error of less than 

or equal to L (PRED(L)). 

MMRE and PRED are computed from the Magnitude 

relative error, or MRE, which is the relative magnitude of 

the difference between the actual and estimated value of 

individual effort i. 

i

ii
i

effortactual

effortactualeffortEstimated
MRE

_

|_`_| −
=

 
The MRE value is calculated for each observation i of actual and 

predicted effort where i range from 1 to N. Then the mean of 

MRE over multiple observations (N) can be achieved through the 

formula of Mean MRE (MMRE) as follows: 

∑=
N

i

iMRE
N

MMRE
1

 

Another criterion is the prediction at level L, Pred(L) = k/N, Here 

k is the number of observations where MRE is less than or equal 

to L and N is the total number of observations. Thus, Pred(35) 

gives the percentage of projects which were predicted with a 

MRE less than or equal to 0.35. 

 

6. Result and Discussion 
 

Initially the data set is divided into different categories 

according to the different values of SCED. The 80 percent 

of each set will be used for evaluating MMRE as the 

fitness function of binary genetic algorithm. The initial 

population is randomly created having the chromosome as 

SCED. This population is assigned a fitness value and 

transferred to matting pool, where crossover and mutation 

are used. After the stopping criterion is reached, the best 

individual will be used for testing the result on the 

complete set. The details about the various genetic 

algorithm operator and parameters are provided below in 

Table 3. 

Table 3: Genetic algorithm operator and parameters 

Population Size 10 

SCED range 0.9 to 1.4 

Selection Operator Tournament Selection 

Cross over Single point crossover 

Probability of Crossover 0.8 

Mutation Single bit mutation 

Probability of Mutation 0.3 

Fitness Function MMRE 

Number of Generations 10 

 

The result obtained at evaluation phase of new values of 

SCED are described and compared with COCOMO values 

on the basis of MMRE and PRED in the Table 4. 

Table 4: Describing COCOMO SCED, NEW SCED, MMRE, PRED 

SCED 

OLD 

SCED 

NEW 

MMRE 

COCOMO 

MMRE   

NEW 

PRED(35) 

COCOMO 

PRED(35) 

NEW 

1 0.9 0.3382421 0.29053524 21 25 

1.04 0.9 0.4004661 0.35403361 7 7 

1.08 1.31935 0.2975117 0.26223239 6 7 

1.23 1.10968 0.1808959 0.18040218 8 6 

 

The Graph 1, Graph 2, Graph 3 and Graph 4 are describing 

the change in the value of MMRE for the various values in 

the range that is from 0.9 to 1.4. 

 

 

 

 

 

 

 

 

 

 

 
Graph 1: MMRE Chart for SCED Nominal 
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7. Conclusion 
 

Paper presented the optimized values of duration 

parameter there by increasing the accuracy of the estimated 

effort. This work has further shown that accurate effort 

estimation is possible by evaluating algorithmic and non 

algorithmic software effort estimation models. The 

proposed model showed better software effort estimates in 

view of the MMRE, Pred(0.35) evaluation criteria as 

compared to the traditional COCOMO. 

The various graph for different values of SCED ie 

Nominal, high, low and very low were plotted as described 

in Graph 1, Graph 2, Graph 3, Graph 4 to show their 

change in MMRE according to the different values of 

SCED. From Table 2 we can see that the MMRE has 

significantly reduced and also for most of the cases, the 

value of PRED (35) has come down. The utilization of 

Soft computing based approaches for searching the optimal 

values software engineering field can also be explored in 

the future. 
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