

Analyzing the Makier Virus

Ritwik M1 and Praveen K2

 1 TIFAC CORE in Cyber Security, Amrita Vishwa Vidyapeetham,

Coimbatore, Tamil Nadu, India

2 TIFAC CORE in Cyber Security, Amrita Vishwa Vidyapeetham,

Coimbatore, Tamil Nadu, India

Abstract
Malware is most rampant in the modern era. Security

professionals remain one step behind the attackers as they are

reactive rather than proactive. This paper conducts an analysis of

a recent malware strain henceforth called The Makier Virus.

Keywords: Analysis, Computer Virus, Makier, Malware,

Malware Analysis.

1. Introduction

Shared resources, such as the Internet, have created a

highly interconnected cyber infrastructure. Critical

infrastructures in domains such as military,

telecommunications, medical, power and finance are

highly dependent on information systems. These two

factors have exposed our critical infrastructures to

malicious attacks and accidental failures. Disruption of

services caused by such undesirable events can have

catastrophic effects, including loss of human life,

disruption of essential services, and huge financial losses.

The arrival of the STUXNET worm [10] as well as its

variant Duqu and the recently famous flame virus are

perfect examples of cyber terrorism. Given the devastating

effect malicious code can have on our cyber infrastructure,

identifying and containing malicious programs is an

important goal for malware researchers.

Malware is usually classified according to its

propagation method [9] and goal as viruses, worms,

Trojans, backdoors, spyware, droppers, etc. There exist

several techniques for creation, detection and analysis of

such a variety of malware. In this paper we will focus only

on computer viruses.

2. Virus Analysis Techniques

Many techniques for detecting, neutralizing and

analyzing viruses exist and are being used in practice.

There are two main families of analysis techniques. These

are Static and Dynamic analysis. Both methods provide

their own set of strengths and weaknesses while their

success hinges largely on the type of virus involved [2].

2.1 Static Analysis

Static malware analysis can be loosely defined as searching

for malicious intent within a binary executable. This has

been the tried and proven malware analysis and detection

technique for many years. In this technique, the computer

program is viewed as a series of instruction sets which can

be seen from within the binary executable. Many malware

detection programs and software were initially based on

signatures or patterns which were provided by the malware

analyst, to characterize malicious behavior. The limits of

this approach as the sole analysis technique has been

discussed in the paper by Kruegel, et al [3].

2.2 Dynamic Analysis

Dynamic techniques for malware detection and analysis

attempt to solve the problem from a different perspective.

This focuses on observing a program's behavior as it runs.

Rather than attempt to detect malicious intent before run-

time, dynamic analysis systems monitor running programs

for malicious behavior. The benefit to this approach is that

one doesn't have to guess whether the program will do

something malicious or not, but can observe it.

In reality though, defining malicious behavior is itself not

always so clear-cut. The resulting high number of false-

positives over static methods are one of the issues

researchers face when developing new dynamic analysis

techniques.

Monitoring a process' environment for certain properties is

the most common way dynamic analysis tools track

process behavior. This can (and usually does) have an

adverse effect on performance. A common approach to this

type of monitoring is to run a program inside an emulated

environment because of the extra monitoring capabilities

available [11]. Emulation typically does not perform

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 1, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 530

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

particularly well though, especially while simultaneously

handling and processing events occurring within the

emulation platform.

3. Packing and Packers

Packing is a strategy used by malware writers to mask

the meaning of their malicious software in an attempt to

foil signature-based analysis. A packing operation

compresses a portable executable (PE), masking its

behavior and producing a packed version of the original

executable [6]. This interferes with most static analysis of

the resulting file. The majority of new malware variants

utilize some form of packing to defend against detection.

A packer, on the other hand, is a packaging tool

designed to perform compression on an executable

program, with the added side-effect that much of the

internal meaning of the program is hidden. A packed

executable will typically look either normal, or entirely

undecipherable normally, but at runtime, the executable

will unpack itself and execute the packed segments of

program code

4. Analysis of the Makier Virus

The Makier virus is a fairly recent virus strain that

attacked the windows operating system and was first

reported in September 2012. Initial scans with popular

anti-viruses offered no suggestions other than the fact that

it could be a variant of a worm, Trojan or W32 Cryptor

virus [12]. The papers by R. Flores [1] and Kendall [7]

gave us an understanding of the analysis goals and

methodology. The analysis of this virus was performed

with four goals in mind.

(i) Identify the extent of virus activity.

(ii) Does this virus act as a dropper for another malware?

(iii) Is the program packed? If so what was the packer

used?

(iv) Identify and locate the various windows dll's used by

the virus.

Viruses are created with only one major goal in mind.

Namely, to stealthily destroy a computer. This of course

implies that a dedicated and isolated environment is

required to "analyze" malware. One solution to this

problem is to set up a network of computers that are

isolated from the rest of the world. These machines should

have software that can be restored from an image after the

malware has finished its evil work. However, it is much

easier, but less safe to create a simulated environment by

making use of a single machine that makes use of a

virtualized environment to create a simulated lab

environment. It is this second (much easier) method that

we have followed. We have also made use of popular

malware analysis tools in order to perform this analysis [4]

[5].

4.1 Packer Detection

One of the major complicating factors in performing

malware analysis is the proliferation of programs that

modify an executable file to obfuscate its contents and hide

the actual program logic from a reverse engineer

performing static analysis. These "Packers" modify the

executable so that the original program data is very hard to

recover. Here we use PEiD [13] to identify the packer, if it

is used. PEiD also provides other details (Fig. 1, Fig. 2)

such as entry point, size of image, export table, etc.

 Fig.1 Packer Identification using PEiD

Fig.2 Entry Point Identification using PEiD

4.2 Program Static Analysis

To understand what the program does, it would be ideal if

documentation was available. However, malicious

programs come with no such manuals. The simplest way to

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 1, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 531

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

begin analysis, we found, was to analyze the strings of

readable text that are embedded within the program. We

used OllyDbg [14], a powerful windows based debugger.

We found that it is easy to search for strings and their

references to understand the logic of the programmer (Fig.

3). Of course, the more experienced the analyst, the more

the information gleaned from stepping through the

program instruction.

Fig.3 Analysis using OllyDbg

4.3 Program Dynamic Analysis

Process Monitor [15] is a SysInternals tool that allows

users to monitor windows system activity. We used

Process Monitor to view the activity (Fig: 4) of the virus in

the host computer, the observations are mentioned in

section 4.4 of this paper.

Fig. 4 Monitoring process activity with Process Monitor

Further, we made use of SysTracer [16], a system utility

tool that can scan and analyze computer to find changed

(added, modified or deleted) data into registry and files.

Initially we created a base snapshot of the virus free

environment. We termed this snapshot as the baseline.

Then the virus was introduced into the system and then a

second snapshot, which we called the malicious snapshot

(Fig 5), was taken and we compared the results. This also

we include in the observations section (Section 4.4).

Fig. 5 Malicious snapshot

4.4 Observations

The Makier Virus is a PE32 executable for Windows

operating systems. PEiD analysis revealed that this

malware was packed using Microsoft VC++ 6.0, which is a

very common packer for viruses. The propagation

executable was identified as kiddyp.exe. This program

creates and starts a hidden executable rmotsu.exe

(C:/Documents and Settings/User_victim/ rmotsu.exe). A

Microsoft Crypto API import was also detected and so we

classify the program in the category of encrypted viruses.

We noticed that various Microsoft dll files such as

kernel32.dll, USER32.dll, gdi32.dll, camctl32.dll, etc.

were also accessed by kiddyp.exe. From the

www.virustotal.com database, we found that the first

reported date of origin of this virus was September 2012.

The propagation executable of the virus steals memory

resources, creates illegal hidden processes, injects and

executes a hidden windows executable that performs

registry modifications.

During analysis, we noticed that the virus propagation

occurs only through physical media, namely the USB

device. A hidden directory named Makier is created on the

external physical drive and within it, a hidden executable

kiddyp.exe is placed. In fact, one of the main reasons for

calling this malware as the Makier virus is due to the

creation of this hidden folder. We could also say that the

Makier virus is a combination of two programs, namely

kiddyp.exe and rmotsu.exe as they are mutually dependent.

The program is initialized and executed by a hidden

autorun.inf program also injected into the infected USB

device.

5. Conclusion

Computer viruses are becoming the real terrors of the

computer world. With malware becoming increasingly

complicated, analysis of these programs is also very time

consuming. Malware authors use a range of evasion

techniques to harden their creations against accurate

analysis. The evasion techniques [8] aim to obfuscate code

or even disrupt attempts of disassembly, debugging or

analyze in a virtualized environment thus adding to the

difficulty of malware analysis.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 1, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 532

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

This paper provides a simple insight into the world of

malware analysis. By analyzing a fairly recent virus strain

using both static and dynamic analysis techniques, we were

able to identify the extent of virus activity, its propagation

technique, the various dll files used, as well as the packers

employed. Additionally we also identified the original

entry point of the virus code. Using this it is possible to

create signatures for this specific virus strain thus helping

the antivirus industry.

References
[1] R. Flores, “Malware reverse engineering part 1. Static

Analysis”, Official Malware Report,

http://packetstormsecurity.org, 2012

[2] M. Christodorescu et al, Malware Detection, Springer, 2007.

[3] C. Kruegel, A. Moser and E. Kirda, “Limits of Static

Analysis for Malware Detection”, In 23rd Annual Computer

Security Applications Conference (ACSAC), pp. 421430,

2007

[4] M.Egele, T. Scholte, E.Kirda, C. Kruegel, “A Survey on

Automated Dynamic Malware-Analysis Techniques and

Tools”, ACM Computing Surveys (CSUR), Volume 44 Issue

2, February 2012

[5] L. Zeltser, “Reverse Engineering Malware”,

www.zeltser.com, 2001

[6] M. Vuksan and T. Pericin, “Constant insecurity: Things you

didn't know about portable executable file format,” BlackHat,

2011.

[7] K. Kendall, “Practical Malware Analysis,” Mandiant-

Intelligent Information Security, 2007.

[8] R. R. Branco, G. N. Barbosa and P. D. Neto, Scientific but

Not Academical Overview of Malware Anti-Debugging,

Anti-Disassembly and Anti-VM Technologies, BlackHat

2012

[9] A. Miraglia, “Analysing the spreading of computer worms

and viruses: potentials and limits”, Department of Computer

Science, University of Zurich, 2011

[10]J .Larimer, “An inside look at Stuxnet”,

http://blogs.iss.net/archive/papers/ibm-xforce-an-inside-look-

at-stuxnet.pdf, 2009

[11] C. A. Benninger, “Maitland: Analysis of Packed and

Encrypted Malware via Para-virtualization Extensions”, MS

Thesis, University of Victoria, 2010.

[12] http://www.virustotal.com

[13] http://peid.com

[14] http://www.ollydbg.de

[15]http://technet.microsoft.com/en-

in/sysinternals/bb896645.aspx

[16] http://www.blueproject.ro/systracer

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 1, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 533

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

