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Abstract 
 

This work is mainly motivated by the description of a new 

approach for calculating the structural similarity of XML 

documents. Practically, the majority of existing work on XML 

documents clustering considers the tree structures of these 

documents as mere vectors and, therefore, does not take into 

account their hierarchical contexts. Furthermore, in order to 

calculate the structural similarity of XML documents, most 

methods encountered in these works perform depth-first traversal 

to visit the nodes of the tree structures of these documents. More 

precisely, it is the preorder tree walk which is usually the most 

used. Recently, other studies present an alternative approach that 

takes into account the hierarchical contexts of these tree 

structures, but unfortunately, they have particularly high time 

complexity in the calculation of structural similarity. In this 

paper, we propose a new method based on breadth-first traversal 

of these tree structures. The goal consists in clustering more 

rapidly XML documents sharing similar structures. Besides the 

fact that the method is fast, it also takes into account the 

hierarchical contexts of XML documents. Reconciling the speed 

required for clustering XML documents with taking into account 

the hierarchical contexts of their tree structures ensures higher 

reliability of the proposed method. To validate our proposal, 

experiments were conducted on both real and synthetic XML 

data. The results clearly demonstrate the viability of our 

approach. 

Keywords: Clustering, Structural similarity, hierarchical 

context, Tree level, Ancestor and descendant levels, depth- and 

breadth-first traversals. 

1. Introduction 

XML has now become an unchallenged standard for the 

representation and exchange of data on the web. This has 

led to the increase in heterogeneous XML sources. 

Furthermore, not only the collections of XML documents 

are reused but their interchange volume is continuously 

growing. However, with the current available means, the 

search information in these documents is not a trivial task. 

XML documents are characterized by content and 

structure. However, such documents cannot be exploited 

efficiently by the conventional information retrieval 

methods. Indeed, these methods are based on content 

oriented models, while the XML format allows adding 

structural constraints. This then requires adapting these 

models to better exploit the available XML data. Similarly, 

traditional approaches to data processing, such as 

relational databases have proven ineffective. These are 

mainly designed for strongly structured data, whereas 

XML data are semi-structured [20]. In addition to this, 

given the heterogeneity and proliferation of XML 

documents on the web, it becomes difficult for a user to 

access the desired information. In this context many 

authors propose methods of classification to organize and 

analyze large collections of XML documents. Our work 

falls within this perspective; we are interested in the 

clustering of XML documents based on their structures. 

The idea behind the clustering is that if XML documents 

share similar structures, they are more likely to correspond 

to the structural part of the same query. This therefore 

allows reducing the response time and increasing the 

accuracy of search engines. In other words, it can 

substantially improve the process of information retrieval. 

Thus, the search for relevant information in a large 

collection of documents will then return to interrogate 

small classes of documents. 

XML clustering task consists in grouping XML documents 

into clusters containing similar documents. This similarity 

could be thematic or structural. In this paper, we are 

particularly interested in XML document clustering using 

the structural similarity of their descriptions, i.e., the XML 

ordered labeled tree providing the relations between the 

document elements. We will therefore address the 

“structural clustering of XML documents” problem as we 

would have done with a “clustering of tree structures” 

problem [1, 2, 3, 14, 41]. In other words, structural 

clustering of XML documents approach can be exploited 

in various areas that require management of hierarchical 

structures, such as the discovery of structurally similar 

web navigational pathways, or tree-like patterns, and the 

discovery of structurally similar macromolecular tree 

patterns in bioinformatics [14, 34, 17]. 

The structural similarity allows to group documents that 

share similar structures [12]. It will help to better organize 

XML documents on the one hand and, on the other hand, 

to better answer, in terms of efficiency and effectiveness, 
queries containing structural conditions. We recall that 

queries in XML information retrieval could contain 
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keywords only or keywords and structural conditions. The 

main question we address in this context is how to cluster 

structurally XML documents when their DTD is unknown. 

Our methodology in this paper is two-step. In the first step, 

each XML document is represented by its tree summary 

structure, which is used as a representation model to 

classify the corresponding XML document. In the second 

step, an efficient structural similarity measure based on 

breadth-first traversal of these tree summary structures is 

proposed. Within this framework, the most important 

question deals with the way to measure the structural 

similarity of XML documents. This is the question we 

attempt to answer in this work. 

This paper is organized as follows. Section 2 provides a 

summary view of related work about classification of 

XML documents by structure. Section 3 describes our 

clustering approach. Section 4 is dedicated to the 

experimentation. Finally, in section 5 we conclude and 

describe the future work. 

2. State-of-the-Art 

The classification approaches are divided in two main 

variants called supervised classification and unsupervised 

classification (or clustering). 

Existing works on the classification of XML documents 

can be distinguished by the way they represent the 

documents, but also by the classification and/or clustering 

methods used. We focus here on approaches that represent 

documents by structure only. Within this framework, we 

distinguish two main categories: document-based 

clustering, where the clustering is based on the document 

structure itself, and DTD-based clustering, where 

documents are clustered according to their DTD. We 

briefly describe below some of the most known 

approaches, highlighting their main features. We are 

particularly focus on approaches that represent the 

document structures by labeled trees. 

In the first category, namely clustering based on document 

structure; the structure that is used to classify a document 

is issued from the document itself. 

– This structure could be either a labeled tree 

corresponding to the original structure of the XML 

document (the whole structure of document) [5, 21, 29, 30, 

31, 40] or a rooted ordered labeled tree summary [1, 2, 3, 

14]. The latter has the advantage of reducing the 

computational complexity in the clustering, but has 

nevertheless the drawback of breaking the relationships 

between XML elements. In the study by [14], a tree 

summary is obtained by two transformations, as shown in 

Fig. 1: (i) the first one reduces the depth of the tree so that 

the children of any node having the same label as one of 

its ancestors become direct descendants (child) from this 

ancestor, (ii) the second one eliminates duplication of 

sibling nodes, while in the study by [1, 2, 3], the tree 

summary is obtained only by eliminating duplication of 

sibling nodes, i.e., hierarchical relationships between XML 

elements are not completely changed, and so there is no 

loss of information. 

 

Fig. 1 Tree summary extraction 

In the study by [11, 15, 39],  another way for 

representing the structure of XML documents is proposed, 

namely these approaches are based on the discovery of 

sub-trees that most frequently occur in collections of 

labeled trees representing XML documents. More 

precisely, in the study by [39], the frequent sub-trees can 

be unordered, whereas, in the other two approaches [11, 

15], they absolutely must be ordered. All sub-trees below 

the arrow in Fig. 2 are frequent according to the approach 

[39]. The last two of them are exact and ordered, so they 

are also frequent according to the approach [11, 15]. This 

indicates that the approach [39] is more general and easily 

applied to heterogeneous XML documents, as opposed to 

the approaches [11, 15] that only apply to XML 

documents sharing the same DTD or XML Schema. 

Another proposal [20] consists of linearizing the structure 

of each XML document, by representing it as a numerical 

sequence and, then, comparing such sequences through the 

analysis of their frequencies. 

– The clustering consists then to compare the extracted 

structure with a cluster or its representative. This 

representative, usually called a centroid, is the most 

representative tree summary of all XML documents in the 

cluster [1, 2, 3]. The centroid may change, i.e., it can be 

replaced by a more appropriate tree, depending on the 

assignment of new documents to the cluster. In the study 

by [39], a cluster is characterized by the maximal frequent 

sub-tree, i.e., the frequent sub-tree that has the greatest 

number of nodes among all sub-trees in this cluster. 

(i) 

(ii) 
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Note that with frequent sub-trees technique, an XML 

document may belong to several clusters. In the study by 

[14, 21, 29, 30, 31, 40], each cluster is represented by a 

subset of similarly structured XML documents, whereas 

with [1, 2, 4, 39] approaches, a cluster has only one 

representative (the centroid or the maximal frequent sub-

tree); this means that, in the process of detecting the 

appropriate cluster, the representative of a new document 

is compared only with the representative of the cluster. 

Note that in some approaches like [1, 2, 4], a new 

comparison is undertaken for a possible change of the 

centroid. 

 

 

Fig. 2 Frequent sub-trees detection  

– Concerning the clustering process itself, several 

approaches have been proposed. Authors in [30, 40] 

propose an incremental clustering based on common path 

similarity taking into account different criterions as the 

number of common nodes between the XML tree (that of 

the XML document to be classified) and the trees of the 

cluster considered, the number of common nodes paths, 

and the order of the nodes of the XML tree. In the study by 

[1, 2, 3], the authors also perform an incremental 

clustering, but it is based on structural similarity between 

the centroid and the structure of XML document to be 

classified. For detecting structural similarity between 

XML documents, the authors in [20] exploit the theory of 

discrete Fourier transform to effectively and efficiently 

compare the encoded documents (i.e., signals) in the 

domain of frequencies. This approach significantly differs 

from standard methods based on graph-matching 

algorithms and allows a significant reduction in the 

required computation costs. Indeed, if N is the maximum 

number of tags in two documents, their matching 

complexity is O(N log N), whereas it is O(N 
2
) with those 

based on edit distance, as the Chawathe’s algorithm [6] 

and one proposed in [14]. In the study by [11, 14, 21, 31], 

the similarity between two trees is based on their edit 

distance. Edit distance measures the number of elementary 

operations to transform one tree into another. Most 

algorithms for calculating the tree edit distance are based 

on the dynamic programming techniques [6–9, 35, 37, 42, 

4]. Note, however, that there may be several sequences of 

edit operations to transform one tree into another. 

Therefore, the cost of the operations in each sequence is 

considered, and the lowest cost sequence among these 

defines the edit distance between trees [31]. Edit distance 

allows performing a clustering of these trees using a 

bottom-up hierarchical classification method [11, 14, 21, 

31]. In the clustering approaches based on frequent sub-

trees, the authors [39] have developed an algorithm to 

detect the maximal sub-tree. Similarly, the authors in [15] 

also have developed their algorithm very close to the 

algorithms FREQT and TREEMINER proposed 

respectively by [4] and [45]. An XML tree can appear in 

multiple clusters. In other words, an XML document can 

be shared by several clusters, i.e., it consists of several 

sub-trees appearing respectively in several different 

clusters. Thus, under these characteristics, we can say that 

these approaches belong to the family of non-exclusive (or 

overlapping) clustering. 

Concerning the second category approaches, namely DTD 

classification, we list below some of the most known. 

Recall that the DTD is considered as a context-free 

grammar that generates a potentially infinite number of the 

XML documents. From this fact, instead of classifying 

directly the XML documents, the approach proposes to 

classify their DTDs in clusters. Thus, each cluster becomes 

the representative of a set of structurally similar XML 

documents. The advantage is that it is possible to more 

quickly integrate a considerable number of XML 

documents together. The drawback is that the nodes of 

DTD trees often denote regular expressions whose 

handling is not always trivial task and furthermore causes 

(in some cases) a loss of information [28]. 

– In [28], the authors propose a DTDs clustering model, 

named “XClust”. Each DTD is represented by its tree 

structure. The similarity of two nodes is calculated by 

exploiting different levels of the tree, namely the 

ontological similarity of the nodes (using a dictionary), the 

similarity of their immediate descendants (children), the 

similarity of their ancestors and finally, that of the sub-

trees’ leaves whose they are respectively the roots. 

– In [36], the authors propose a mechanism which 

identifies syntactically the similarity of DTDs by adopting 

an ascending clustering strategy. Compared with 

“XClust”, the authors in [41] exploit only the immediate 

descendant context. 

– In [27], the authors develop an algorithm which is based 

on generic scheme of the DTD matching. The matching 

goal is to reach a median scheme corresponding to the 

DTDs that are similarly structured. Like [28], in order to 
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calculate the DTDs’ similarities [27] relies on the 

dictionary, but it only exploits the leaves’ context. 

– Finally, the approach proposed in [18] is based on the 

learning and inference combined with an instance of DTD. 

In fact, it works with a supervised classification, i.e., the 

classes are known before starting this classification. 

There exist other methods such as approaches of [16, 19, 

23, 24, 25, 41, 43, 44] originally dedicated for classifying 

or clustering XML documents using both structure and 

content. These methods are in fact more general since they 

offer flexible models that can easily be adapted for dealing 

with structure only. For instance, in the study by [16, 43], 

the authors propose a network-based stochastic model that 

is able to describe different kind of relationships of XML 

elements. It was proved that this model is easily adapted to 

the structure alone. The model is based on Bayesian 

networks [32], to infer the different type of structural 

relationships in XML tree. 

3. Clustering approach based on structural 

similarity 

Our clustering approach belongs to the first category, 

namely, clustering based on document structure. The 

structure used to structurally classify a document is issued 

from the document itself. Specifically, for classifying 

(clustering in our case) XML documents by structure, we 

suggest the usage of their corresponding labeled tree 

structural summaries. The labels correspond to tags or 

attributes. In our approach, attributes are treated as mere 

tags. A labeled tree summary representing an XML 

document is automatically extracted from the document by 

a parser. This extracted “tree summary” is then used as a 

model of representation by a classifier to classify the 

corresponding XML document. We show and explain in 

Subsection 3.1, how this parser works. Finally, we give a 

description of the proposed similarity measure in 

Subsection 3.2. Note that the latter is based on the breadth-

first traversal of XML documents’ tree structures. 

3.1 Tree structural summary extraction 

We propose to represent XML documents by their tree 

structural summaries that need minimal processing and 

especially avoid the loss of information. The basic idea is 

that repetitions of tags and/or the possibility to have 

optional tags (and sub-trees consequently) are one of the 

reasons why XML documents can be structurally different 

even though they share the same DTD. In this context, our 

tree summary is regarded as a generic structure in the 

sense that, when sibling tags are duplicated, it is not 

necessary to have this duplication in the structure that we 

wish to extract. Note however, that to avoid losing 

information, duplications of nested and/or cousin tags are 

not removed as duplications of sibling tags. One way to 

avoid this is to consider them as immediate descendants 

(sub-tags) of tags in which they appear in XML 

documents. In Fig. 3 we show an overview of this 

representation approach focusing on all its features. 

Indeed, the transformation of the original tree (i) in the tree 

summary (ii) shows that the attribute “t” becomes in fact 

an immediate (direct) descendant (son) node of the root 

node “a”. As for the duplication of sibling nodes “b”, it is 

removed while keeping the children (“c”, “b” and “c”) 

attached to a single occurrence of “b”, but the nodes “c”, 

which were originally cousin nodes on (i), have become 

brothers, whose we also eliminated duplication. However, 

as recommended, duplications of nested nodes “a” and “b” 

are maintained. 

Our extracting algorithm of tree summary is two-step. The 

first step is based on SAX (Simple API for XML) API 

(Application Programming Interface), which returns all the 

tags and attributes encountered in an XML document. 

These tags (or attributes) are intercepted, filtered and then 

transformed by our parser into an intermediate form as 

shown through the parenthesized expression in Fig. 4. In 

the second step, this intermediate parenthesis expression is 

transformed by another parser into the corresponding tree 

summary, according to projections of our approach. i.e., by 

eliminating duplication of sibling nodes and considering 

each attribute as an immediate descendant of the element 

(tag) which it is attached in the XML document. Most of 

the extraction task is performed during this second step. In 

fact, three essential operations are performed at this level: 

− Passage from the linear form of the XML document to 

its hierarchical representation; 

− Removal of repetitions of sibling nodes; 

− Transforming possible attributes into immediate 

descendants of the elements which they are attached 

in the XML document. 

 

Fig. 3 Representation approach of an XML document 

Thus, instead of the original trees to represent XML 

documents, we use their “tree structural summaries”, but 

without loss of information, since we remove only the 

repetitions of sibling nodes. This allows, on the one hand, 

performing the matching of these trees more quickly and 

easily and, on the other hand, to provide high-quality 

clustering. 

a 

a b t 

c b 

a 

a b b b 

c b c 

t {Attribute} 

 
(i) 

(ii) 
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Fig. 4 An XML document and its corresponding tree summary 

3.2 XML documents clustering  

3.2.1 Overview of the clustering technique used 

For clustering XML documents based on structural 

similarity we use well-known techniques in hierarchical 

agglomerative clustering (although any form of clustering 

could be used). Hierarchical methods perform mergers 

between data sets; the peers of elements (or clusters) are 

successively merged until there is only one large set 

containing all elements. The end result can be 

schematically represented as a tree of clusters named 

dendrogram, as shown in Fig. 5. 

 

Fig. 5 Dendrogram of the ascending hierarchical classification 

The dendrogram shows the clusters that were merged 

together, and the minimum similarity between these 

merged clusters. 

There are several methods of hierarchical ascending 

classification. They all are based on the following idea: 

a) Initially, each element of the data set to be classified 

is regarded as a cluster. 

b) Clusters separated by a minimum distance (i.e., 

maximum similarity) are grouped together. The 

distances between the remaining clusters and the new 

cluster set are recalculated. 

c) If there is more than one cluster or has not yet reached 

the minimum distance (or maximum similarity 

threshold), go to step b. 

With some methods, the distance between two clusters X 

and Y is defined as the minimum distance (maximum 

similarity) between all the peers of elements (x, y) such 

that x is in X and y in Y. With other methods, this is the 

average distance (average similarity) which is considered 

as a parameter of the separation of clusters. We chose 

clustering method which is based on the minimum 

distance (i.e., the maximum similarity). We then used the 

single link clustering algorithm using Prim’s algorithm 

[10] to calculate the MST (Minimum Spanning Tree or 

shortest path) of a graph.  

Given a graph G = (N, A) with a set of weighted edges A, 

and a set of nodes N. The minimum spanning tree (MST) 

of a graph is an acyclic subset T ⊆ A that chain all nodes 

whose total weight (cost, distance, value, etc.) denoted 

W (T) (the weight sum of T'’s edges) is minimized. It was 

shown in [22] that the MST contains all the information 

required to implement the single link clustering. 

Given a set of rooted labeled ordered trees representing 

XML documents, we form a complete graph G with n 

nodes ∈ N and 
�������  weighted edges ∈ A. The weight of 

an edge is the structural distance between the nodes it 

connects. Nodes represent XML trees in our case. For 

example, the single link clustering for threshold l can be 

carried out by removing all the edges having a weight ≥ l 

of MST in the G graph. The connected nodes of the 

remaining graph are the single link clusters. 

It can be seen in Fig. 6 a graph with 7 nodes 

(corresponding to 7 XML documents), and 10 edges. 

 

Fig. 6 Graphical representation of the distances between XML trees  

<a> 
<-- !comment -->… 
<b> TEXT <c> TEXT </c></b> 
<b    t ="val1"> TEXT </b> 
<b    t = ‘’ s ="val2">TEXT</b> 
</a> 
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As indicated above, the weight of an edge is the structural 

distance between XML documents. For example, the 

structural distance between the tree 1 and tree 2 is 0.2. 

Missing edges are the additional edges which make the 

complete graph; their weights are equal to 1. Fig. 7 shows 

the shortest path on the graph in Fig. 6. It can be seen in 

Fig. 8 the parts of graph remaining after deleting all edges 

with weight ≥ 0.4. 

 

 

Fig. 7 The shortest path in the graph of Fig. 6 

 

Fig. 8 Resulting graph after deleting all edges having weight ≥ 0.4 

There are two new components that are formed, containing 

the nodes (1, 2, 3, 6) and the nodes (5, 7), respectively.  

This indicates the presence of two new clusters, namely 

cluster1 with (1, 2, 3, 6) as members and cluster2 with 

(5, 7) as members. Nodes that are not connected to other 

nodes are considered as a single node clusters. 

The graph is represented by a matrix called the associated 

matrix. Is associated to the graph G = (N, A) of order n, a 

square matrix of order n. This matrix is formulated as 

follows: 

��	 
 	� � ��� 	|	���..�,���..�	�  �� � ��������	��	�� � ,  �� ∈ "#   

In Tables 1, 2 and 3 are shown matrices respectively 

associated with graphs of Figs 6, 7 and 8. 

It suffices now to use the matrix obtained after applying 

the threshold ≥ 0.4 to deduce the remaining links between 

nodes (representing XML documents) and then build the 

corresponding clusters. 

Table 1: Matrix associated with the graph of Fig. 6 ��7 
 7� 1 2 3 4 5 6 7 

1        

2 0.2       

3  0.2      

4   0.6     

5    0.8    

6 0.6 0.1   0.9   

7   0.8  0.3 0.4  

Table 2: MSP matrix of the matrix of Fig. 7 ��7 
 7� 1 2 3 4 5 6 7 

1        

2 0.2       

3  0.2      

4   0.6     

5        

6  0.1      

7     0.3 0.4  

Table 3: Matrix after applying threshold 0.4 ��7 
 7� 1 2 3 4 5 6 7 

1        

2 0.2       

3  0.2      

4        

5        

6  0.1      

7     0.3   

3.2.2 Overview of using Prim’s algorithm 

As announced above, Prim’s algorithm [33] allows 

calculating the shortest path (or MST) in a given weighted 

graph G. In an informal way, we apply the following 

points: 

− Create a tree containing a single node, chosen 

arbitrarily from the graph G 

− Create a set containing all the edges in the graph G 

− loop until every edge in the set connects two nodes in 

the tree  

� remove from the set an edge with minimum 

weight that connects a node in the tree with a 

node not in the tree 

� add that edge to the tree 
Thus, the algorithm continuously increases the size of a 

tree, one edge at a time, starting with a tree consisting of a 

single node, until it spans all nodes of the initial graph G. 

A pseudo-code for Prim’s algorithm is given in Fig. 9.  

To show how to apply Prim’s algorithm to find a 

minimum spanning tree in the weighted graph, we rely on 

the example of graph in Fig. 10. Prim’s algorithm will 

proceed as follows. First we arbitrarily choose to start with 

the node d, and then we add edge {d, e} of weight 1. Next, 

0.3 
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we add edge {c, e} of weight 2. Next, we add edge {d, f} 

of weight 2. Next, we add edge {b, e} of weight 3. And 

finally, we add edge {a, b} of weight 2. This produces a 

minimum spanning tree of weight = 10. The minimum 

spanning tree found is given in Fig. 11. 

 

Fig. 9 Prim's algorithm pseudo-code 

 

 

 

Fig. 10 An example of a weighted connected graph 

 

 

 

Fig. 11 Minimum spanning tree (MST) produced by applying Prim’s 

algorithm on the graph in Fig. 10 

We could start with any node to determine the MSP. In the 

case of the previous example (in Fig. 10), we arbitrarily 

chose to start with the node d. But any node can be used to 

start the process with Prim’s algorithm. 

The time complexity of the algorithm depends heavily on 

how the choice is implemented in the edge / node to add to 

the set at each stage. With a naive representation, using an 

adjacency matrix graph representation and searching an 

array of weights to find the minimum weight edge to add 

requires O (N 
2
) running time. Using a simple binary heap 

data structure and an adjacency list representation, Prim’s 

algorithm can be shown to run in time O (A log N). Using 

a more sophisticated Fibonacci heap, this can be brought 

down to O (A + N log N), which is asymptotically faster 

when the graph is dense enough that A is ω (N), i.e. A 

dominates N asymptotically. However, we chose, for the 

purposes of our tests in this article, the adjacency matrix 

for the simplicity of its implementation. 

At this stage, as previously announced, we focus in 

Subsection 3.3, on the description of the structural 

similarity measure proposed. 

3.3 Tree structure similarity 

Usually, to compare two words we use a thesaurus or 

dictionary. But when these words correspond to node 

names (labels) in a tree, it is necessary to take into account 

their respective tree relationships. The idea is that even 

though two nodes are represented by the same name, or by 

synonymous names, this does not mean that they remain 

necessarily similar in the context of their respective 

ancestors, descendants, siblings and/or cousins, which can 

be completely different. Thus, the similarity of two nodes 

depends not only on their ontological similarity (terms 

could be similar because they have same string or could be 

semantically related using a dictionary), but also on their 

respective tree relationships that play a crucial role in the 

similarity calculation. 

Most methods for clustering XML documents by structure 

use the edit distance for measuring the similarity between 

their structures. We recall that tree edit distance measures 

the number of elementary operations (insertions, deletions 

and replacements of nodes) required to transform one tree 

into another. On the other hand, all these methods perform 

depth-first traversal to visit nodes of tree. 

We propose a novel method for calculating the similarity: 

− Firstly, instead of performing depth-first traversal to 

visit nodes of a tree, our proposal is to perform 

breadth-first traversal, also called level by level 

traversal. In other words, we explore the breadth, i.e., 

full width of the tree at a given level, before going 

deeper.  

− Secondly, we take into consideration the hierarchical 

contexts of XML tree structures. 

Before describing in detail our method, it is necessary to 

introduce some fundamental concepts. 

3.3.1 Basic preliminary notions 

A tree level consists of sibling and/or cousin nodes. As 

suggested in our approach, repetitions of sibling nodes will 

be eliminated, but not those of the cousin nodes. 

Therefore, it is possible to encounter on a same tree level 

several duplications of cousin nodes. It is then necessary in 

such case to take them into account in the similarity 

calculation. To express that, we can use the concept of 

weight. Indeed, let % � & �,  �, … ,  �( be a vector ∈ )�; 

its norm (Euclidean distance) is ‖%‖ � +∑  ������-
. The 

usage of the norm allows exploiting efficiently the concept 

Input: Given a non-empty connected weighted graph 

G = (N, A), (the weights can be negative) 
Initializations: 

N
new

 ← {x}; A
new

 ← φ ;   (where x is an arbitrary     

node (starting point) from N) 
repeat  

choose an edge {u, v} with minimal weight such     

that u is in N
new

 and v is not (if there are multiple 

edges with the same weight, any of them may be 

picked) 
    N

new
← N

new
 ∪ {v}; A

new
 ← N

new
 ∪ {u, v}  

until N
new

 = N 

Output: N
new

 and  A
new

 describe an MST 
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of weight. We can extend its use even to objects that are 

not necessary vectors of )� . Indeed, for example, if . � ��, , , /, /, /, �� is a tree level, then the weights (or 

frequencies) of a, b and c are 2, 2 and 3, respectively. 

Therefore, if these weights are stored in a vector such as � � &2, 2, 3( then the norm associated with L is ‖�‖ �√2� 3 2� 3 3�- � √17-
. The norm will serve thereafter for 

the normalization of the similarities’ values. 

Moreover, in order to fully highlight features of our 

approach, it should also recall some notions on depth- and 

breadth-first traversals of trees. Indeed, there are 

essentially two different methods in which to visit 

systematically all the nodes of a tree, namely, depth-first 

traversal and breadth-first traversal. Certain depth-first 

traversal methods occur frequently enough that they are 

given names of their own: preorder traversal, inorder 

traversal and postorder traversal. To describe these 

concepts easily and clearly it is better to rely on concrete 

examples. In fact, we do not really need dwell too long on 

the details of the tree traversal; we give only the minimum 

necessary to distinguish the breadth-first traversal (which 

characterizes our proposed method) and the depth-first 

traversal that was used in most existing clustering 

methods. Thus, for example, given the tree in the Fig. 12: 

a preorder traversal would visit the elements in the order: 

A, B, C, D, E, F, G, H, I. This type of traversal is called a 

depth-first traversal because it tries to go deeper in the tree 

before exploring sibling nodes. 

 

Fig. 12 Simple general tree  

For example, the traversal visits all the descendants of B 

(i.e., keeps going deeper) before visiting B’s sibling D 

(and any of D's descendants). 

As we have seen, this kind of traversal can be achieved by 

a simple recursive algorithm given in Fig. 13. 

Whereas the depth-first traversals are defined recursively, 

breadth-first traversal is best understood as a non-recursive 

traversal. The breadth-first traversal of a tree visits the 

nodes in the order of their depth in the tree. Breadth-first 

traversal algorithm first visits all the nodes at level 0 (i.e., 

the root), then all the nodes at level one, and so on. At 

each level the nodes are visited from left to right. Thus, a 

breadth-first traversal of the tree shown in Fig. 12 visits 

the nodes in the following order: A, B, D, C, E, H, F, G, I. 

 

Fig. 13 Preorder traversal algorithm  

3.3.2 Breadth- first tree traversal 

To our knowledge, the breadth-first traversal algorithm has 

not been practically applied in existing work on clustering 

of XML documents. We encountered only one approach in 

[29] that addressed the similarity computation according to 

the similarities of the levels of XML tree structures. 

Recall that in our approach, the representative structures of 

XML documents are tree structural summaries, structured 

as general trees, i.e., where each tree node can have any 

number of children. The algorithm in Fig. 14 allows 

exploring a general tree and retrieving its nodes, adopting 

the breadth-first traversal. The breadth-first traversal has 

linear time complexity O (N) in the worst case, as the 

depth-first traversal. 

 

Fig. 14 Breadth-first traversal algorithm  

Indeed, given a tree of N nodes, the algorithm in Fig. 14 

clearly shows the linearity of the complexity time. At each 

level, the nodes are visited from left to right, and then 

stored in lists that will be used thereafter for calculating 

similarities. The advantage of storing the nodes in the lists 

is twofold: On the one hand, this allows easy calculation of 

basic similarities between levels of trees. On the other 

hand, given two tree levels belonging respectively to two 

trees, it is possible to know the similarities of their 

respective ancestor and descendant levels. As suggested 

above, the ancestor and descendant levels represent 

somehow hierarchical contexts to take into account in 

calculating the similarity of two levels of two given trees. 

These levels are somehow implicitly linked by hierarchical 

relationships in trees. The underlying idea is that even 

though two tree levels are identical, or very similar, this 

A 

B 
D 

C E H 

F G I 

level 0 

level 1 

level 2 

level 3 

root 

preorder (tree) 

  if (tree not empty) 

     visit root of tree 

      preorder (left sub_tree)  

      preorder (right sub_tree)  

  

breadh_traversal (n : Node) 
      begin 
        level ← {n} 
        while level ≠ φ ; 
          {dept_level ← φ ; 
            for each node a ∈ level 
              {store a in list; 
               depth_level ← depth_level ∪ child_of (a);} 
            level ← depth_level ;} 
      end 
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does not mean that they remain necessarily similar in the 

context of their respective ancestor and descendant levels 

which can be completely different. 

So, given all these characteristics, we describe and explain 

in Subsection 3.3.3, the structural similarity measure that 

we propose, taking into account the hierarchical 

relationships between levels in each tree. 

3.3.3 Structural similarity measure based on breadth-first 

tree traversal 

Let T1 and T2 be two trees representing respectively two 

XML documents. We propose to compute their similarity 

as follows: 5�6�7�, 7�� � ∑ ∑ 8�9:;<;:�=>?,=-@�A@B>C?B> DEF��,9�   (1) 5�6=GHG=�I�� , I��� is the similarity of the levels l1i and l2j. 

The levels l1i and l2j belong respectively to T1 and T2. The 

bounds n and m are the levels’ numbers of T1 and T2 

respectively. 

Given two levels l1i and l2j, we define their similarity 

according to their hierarchical context as follows: 

5�6=GHG=JI�� , I��K � �� ∗ 5� 3 �� ∗ 5� 3�M ∗ 5M  (2) 

w1 ≥ 0, w2 ≥ 0 and w3 ≥ 0 are weights such that w1 + w2 + 

w3 = 1.  

S1 is the basic similarity of l1i and l2j. It is expressed as 

follows: 

5� � ∑ ∑ 8�9CNO;�G>P,G-:�Q:B>RPB> ‖S>‖∗‖S-‖    (3) 

The term 5�6�TUG���V , ��=� is the ontological similarity of 

the nodes e1k and e2l (obtained using a dictionary). In other 

words, 5�6�TUG���V , ��=� � 1  if e1k = e2l, 5�6�TUG���V , ��=� ≅ 1  if e1k and e2l are synonymous, 

otherwise 5�6�TUG���V, ��=� � 0 .  The nodes e1k and e2l 

belong respectively to the levels l1i and l2j. The bounds p 

and q are the nodes’ numbers of l1i and l2j respectively. 

The product ∥ Z� ∥	∗	∥ Z� ∥  allows normalizing the sum ∑ ∑ 5�6�TUG���V, ��=�[=��\V�� . The terms N1 and N2 are two 

vectors whose elements are weights of nodes belonging 

respectively to the tree levels l1i and l2j. Thus, S1 is 

calculated for each pair of levels (l1i, l2j). So the result is 

the basic similarity matrix of trees T1 and T2. In Subsection 

3.3.4, we give an idea about the calculation of this matrix. 

S2 and S3 in some way reflect the hierarchical context in 

calculating the similarity of each pair of levels (l1i, l2j). S2 

represents the similarity of descendant levels of l1i and l2j 

respectively. It is expressed as follows: 

5� � ∑ ∑ 8�9O;]^�U>P,U-:�]:B>_PB> DEF	�`,a�    (4) 

The term 5�6UGab�c�V , c�=� represents the basic similarity 

of the levels d1k and d2l. The levels d1k and d2l belong 

respectively to desc1 and desc2. The terms desc1 and desc2 

are the sets of descendant levels of l1i and l2j, respectively. 

The bounds r and s are the levels’ numbers of desc1 and 

desc2, respectively. 

S3 is the similarity of ancestor levels of l1i and l2j 

respectively. It is expressed as follows: 

5M � ∑ ∑ 8�9dC^�e>P,e-:�f:B>gPB> DEF	�h,i�    (5) 

The term 5�6e�b���V , ��=� represents the basic similarity 

of the levels a1k and a2l. The levels a1k and a2l belong 

respectively to anc1 and anc2. The terms anc1 and anc2 

represent the sets of ancestor levels of l1i and l2j, 

respectively. The bounds t and u are the levels’ numbers of 

anc1 and anc2, respectively. 

3.3.4 Illustrative example 

This example shows the different steps followed in 

computing the similarity of the two trees T1 and T2 in Fig. 

15 using the proposed structural similarity measure based 

on breadth-first tree traversal. 

The first step is to use Eq. (3) to calculate the similarity 

matrix of levels of T1 and T2. As there are three levels in 

each tree (T1 and T2), we will have a matrix (3×3). The 

calculation gives the following matrix: 

j1 0 00 1 00 0 �√M- ∗ √�-
k � l1 0 00 1 00 0 0.82n 

We note that the similarity between the last levels of T1 

and T2 respectively is equal to 0.82, while it is equal to 1 

between the other levels of the same rank. It is equal to 0 

everywhere else. 

 

Fig. 15 Comparison of two XML trees using the calculation of the 

structural similarity based on the breadth-first traversal 

Before calculating S2 and S3, it would be appropriate to 

define how to use the weights w1, w2 and w3. Indeed, if we 

ignore the hierarchical contexts (descendant levels and 

ancestors levels), it is not necessary to calculate S2 and S3, 

in this case we take w1 = 1 with w2 = 0 and w3 = 0. 

Otherwise, in particular in the case of XML documents, it 

is more natural to give to S1, S2 and S3 the weights w1 =	�M, 
w2 = 

�M, and w3 = 
�M, respectively. Thus, with respect to the 

first case mentioned, namely that we do not consider the 

hierarchical contexts, the similarity between two tree 

levels of two trees, respectively, is defined by S1. 
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Indeed, with (w1 = 1, w2 = 0 and w3 = 0), we 

have	5�6=GHG=JI�� , I��K � �� ∗ 5� � 5�, because w1 = 1. So 

the final similarity calculation of the two trees T1 and T2 

becomes easy and requires only exploring the matrix (3×3) 

calculated above with the formula (1). There will therefore 5�6�7�, 7�� � ∑ ∑ 8�9:;<;:�=>?,=-@�A@B>C?B> DEF��,9�  =
�	o	�	o	p.q�	DEF�M,M� 	 =

�,q�	M �0.94 which is relatively a good similarity value that we 

could get by comparing two vectors, so it does not reflect 

the tree view of XML documents.  

Having said this, but if we consider the case where w1 =	�M, 
w2 = 

�M  and w3 = 
�M , the calculation is obviously more 

complicated, but in principle reflects more reliable 

similarity calculation. The elements of the new similarity 

matrix, before calculating the final similarity, are 

calculated using Eq. (2), with w1 =	�M, w2 = 
�M and w3 = 

�M. So 

we will have  5�6=GHG=JI�� , I��K � 8>o8-o8tM  . In this case, 

we must also calculate S2 and S3 using Eqs. (4) and (5). 

But to go faster, we calculate S2 and S3 only for non-zero 

similarity of the matrix calculated above. The elements 

concerned are those of the main diagonal of the matrix, 

namely (1, 1), (2, 2) and (3, 3) which are represented by 

the values 1, 1 and 0.82, respectively. Moreover, it should 

also be noted that some elements of the matrix are not 

concerned by the calculation of S2 or S3, as for example 

those of the last row or those of the first row of the matrix. 

But for not distort the similarity computation, we attribute 

the value 1 to S2 and S3, in the case of the last row and the 

first row of the matrix, respectively. Thus, for each 

element of the matrix equal to 0, we calculate the values of 

S2 and S3 as follows: 

The element (1, 1) has no ancestor levels so  5�6e�b � 1, 

i.e., S3 = 1, but it has two descendant levels, namely (2, 2) 

and (2, 3) such that 5�6UGab�2, 2� � 1  and 5�6UGab�2, 3� � 0, that is to say 5�=
�	o	puev��,�� � �� � 0.5. So 

by applying Eq. (2) we have  5�6=GHG=�1, 1� � 8>o8-o8tM ��op.xo�M � 0.834. The element (2, 2) has only one ancestor 

level and one descendant level, corresponding respectively 

to (1, 1) and (3, 3), which gives 5�6e�b�1, 1� � 1  and 5�6UGab�3, 3� � 0.82 , i.e., 5� � 8�9O;]^�M,M�uev��,�� � p.q�� � 0.82 

and 5M � 8�9dC^��,��uev��,�� � �� � 1. So by applying Eq. (2) we 

have 5�6=GHG=�2, 2� � 8>o8-o8tM � �op.q�o�M � �.q�M � 0.94 . 

The last case concerns the element (3, 3) that has no 

descendant levels, but has four ancestor levels, namely 

(2, 2), (2, 1), (1, 2) and (1, 1). Regarding the descendant 

level, we assign the value 1, as expected, to  5�6UGab � 1, 

i.e., S2 = 1. Other values are calculated as follows: 5�6e�b�2, 2� � 1, 5�6e�b�2, 1� � 0, 	5�6e�b�1, 2� � 0 

and 5�6e�b�1, 1� � 1. Thus, we have  5M � �opopo�uev��,�� � 1. 

Finally, we obtain  5�6=GHG=�3, 3� � 8>o8-o8tM � p.q�o�o�M �0.94 . The final matrix formed by the elements 5�6=GHG=JI�� , I��K	���..M,���..M  before calculating the 

similarity of the two trees T1 and T2 is given as follows: 

l0.834 0 00 0.94 00 0 0.94n 

Applying the equation (1), we obtain 	5�6�7�, 7�� �∑ ∑ 8�9:;<;:�=>?,=-@�t@B>t?B> DEF�M,M� � p.qMyop.zyop.zyM � 0.905 . Unlike 

the first result (namely 0.94) without taking into account 

the hierarchical contexts of trees T1 and T2, i.e., with w1 = 

1, w2 = 0 and w3 = 0, the latter result (namely 0.905), 

seems to better reflect the reality of the tree structure of 

XML documents. This example gives an idea on how to 

calculate the similarity according to our approach, but to 

validate our proposal we will make several tests in the 

experimental part of this paper. 

3.3.5 Complexity of the structural similarity calculation 

Given a general tree of M nodes and height h, this latter is 

equal to the number of tree levels. So, a tree level, other 

than that of the root contains on average 
u{  nodes. 

Therefore, given two trees having levels containing 

respectively 
u>{>  and 

u-{-  nodes, then the calculation of their 

basic similarity matrix is achieved on average in M1×M2 

operations since they have respectively h1 and h2 levels. 

In other words, it requires time complexity of order 

O (M1×M2), which is the same as that of calculating the 

similarity based on edit distance. However, in our 

approach, unlike approaches based on edit distance, we 

extend the similarity calculation taking into account the 

tree relationships between nodes. It will therefore be 

necessary to add the calculation of descendant and 

ancestor levels’ similarities, respectively. Indeed, based on 

a basic similarity matrix S1 [1..h1, 1..h2], the worst case 

time complexity of the additional calculation is on the 

order |���� 
 ����� . Note however, that the heights h1 

and h2 are usually relatively much smaller than the tree 

sizes (numbers of nodes) M1 and M2 respectively. We thus 

obtain a time complexity slightly higher than that of the 

edit distance, but this is acceptable given the relevance of 

the proposed similarity measure that takes into account the 

hierarchical relationships of nodes. 

Remark given that we have proposed a similarity measure 

other than that based on the distance for clustering XML 

documents, on the one hand and, on the other hand, we 

relied on Prim’s algorithm that computes the shortest path 

(MST) in a graph which is then exploited for clustering 

XML documents based on their structural distances (each 

node of the MST, symbolizes the structure of an XML 

document), it is then necessary to adapt our similarity 

measure. To do this, it suffices to replace the similarity 
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value calculated on the basis of the similarity measure 

proposed by the distance value according to the following 

Eq. (6). 

}����	/�	 � 	5�6�I�~���	– 	1   (6)	
In the next section, we evaluate the effectiveness and 

efficiency of our approach. To this end, we conducted our 

experiments relying on several different tests. 	
4. Experiment and results 

4.1. Implementation of the clustering system  

We developed a first program in java, under the Jcreator 

environment. The developed program consists of two 

modules: the first one is based on SAX to carry out the 

first parsing as announced in Subsection 3.1. This module 

provides for each treated XML document an intermediate 

file intercepted by a second module to finalize the 

extraction of its corresponding tree summary. For 

clustering XML summary trees obtained using the 

previous parsing program (i.e., tree structural summaries’ 

extraction program) we wrote a second program in C++ 

that uses the files (representing the tree summaries) 

generated by the first program for clustering them. 

4.2. Experimental framework 

Our experiments are carried out on a Lenovo, Intel Core 2 

Duo 2 GHz CPU and 2.99 GB of RAM. For data set, the 

experiments were carried out on both real (ACM 

SIGMOD Record
1
) and synthetic XML collections. ACM 

SIGMOD Record
 

corpus concerns scientific articles 

published by ACM SIGMOD conference and is composed 

of approximately 1,000 XML documents sharing 5 DTDs, 

namely HomePage, IndexTermsPage, OrdinaryIssuePage, 

ProceedingsPage, and SigmodRecord. These DTDs can, in 

fact, be considered as target classes against which we can 

assess our clustering approach. This corpus is distributed 

as shown in Table 4. 

Table 4: ACM SIGMOD Record corpus distribution 

DTD Number of XML documents 

IndexTermsPage 920 

OrdinaryIssuePage 30 

ProcedingsPage 16 

SigmodRecord 1 

HomePage 1 

                                                           
1
 http://www.sigmod.org/publications/sigmod-

record/xml-edition  

 

4.3. Evaluation metrics 

The evaluation is to verify to what extent the clustering is 

susceptible to find clusters in agreement with the classes of 

the labeled corpus, which are considered as target classes. 

To validate our approach, we used the F-measure, Recall 

and Precision measures, which are commonly used 

metrics to assess the clustering results. 

F1 (F-measure) [26] is a combination of Precision and 

Recall. It measures the balance between P (Precision) and 

R (Recall) expressed respectively by the following Eqs. (7) 

and (8). 

� � �OS^      (7) 

� � �OSO      (8) 

Nc is the number of documents in the cluster C, Nd is the 

number of documents in the target class (DTD) and Xd is 

the number of documents in the target class assigned to 

cluster C. We recall that each DTD is considered as a 

target class with which we can evaluate our clustering. So 

we know a priori these classes, i.e., we know their 

numbers and the names of the documents they contain. 

The F-measure F1, in turn, is expressed by Eq. (9) 

representing the harmonic mean of Precision and Recall. 

�� � �∗�∗��o�      (9) 

4.4. Evaluation and discussion 

In this phase, we first derive from the previous XML 

collection, the corresponding “tree summaries”, and we 

then respectively proceeded to their clustering. The first 

clustering test consists in comparing the measure of 

similarity proposed with the similarity measure based on 

“tree edit distance” and the similarity measure proposed in 

[3]. The second test is to compare some of our results with 

those of existing approaches. Finally, the third test is to 

confirm the asymptotic time complexity of our similarity 

measure. 

4.4.1 Similarity measure proposed versus other similarity 

measures 

In the first test, as expected, we compared the similarity 

measure proposed to another measures, namely the edit 

distance and the similarity measure proposed in [3]. We 

chose to compare our similarity measure with the edit 

distance, because the latter is a measure of similarity that 

has been widely used in many clustering approaches. The 

comparison with the work presented in [3], is justified by 

the fact that we use exactly the same model for 

representing XML documents, in this case, structural tree 

summaries. This comparison test is particularly motivated 

by the response time of our clustering on the one hand and, 

on the other hand, by the reliability of our similarity 
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measure. For this, we first replaced in our clustering 

algorithm, the similarity measure described by Eq. 6, 

respectively, by the edit distance and similarity measure 

proposed in [3]. We then performed three series of tests 

with the same values of distance threshold in the interval 

[0.1- 0.9]. However, given the recurring results (especially 

for the 920 documents corresponding to IndexTermsPage 

which are almost identical, thus structurally very similar), 

we used only 
�M  of the corpus, namely 348 XML 

documents, i.e., (300 + 30 + 16 + 1 + 1) corresponding 

respectively to IndexTermsPage, OrdinaryIssuePage, 

ProceedingsPage, SigmodRecord, and HomePage. 

To have a clear idea about the performance and reliability 

of our tests, it would be appropriate to report the 

comparative results (for the same type of test) published in 

[3]. These results are given in Table 5. Some abbreviations 

used in Table 5: NC is the number of clusters. The time 

unit on the column named “Time” is the second. The 

abbreviations SM and ED denote respectively “Similarity 

Measure” and “Edit Distance”. Finally, the abbreviation 

TH represents the similarity threshold. 

Table 5: [3]’similarity measure versus edit distance 

TH 
[3]’ SM ED 

NC Time NC Time 

0.1 1 1.67×103 1 1.43×102 

0.2 2 1.52×103 2 1.31×102 

0.3 2 1.52×103 2 1.31×102 

0.4 3 1.43×103 2 1.31×102 

0.5 4 1.35×103 4 1.16×102 

0.6 5 1.28×103 5 1.02×102 

0.7 5 1.28×103 5 1.02×102 

0.8 7 1.17×103 5 1.02×102 

0.9 9 1.10×103 7 0.85×102 

 

Note that the clustering algorithm in [3] is completely 

different from the clustering algorithm we proposed in this 

article. In this regard, we recall that our clustering here is 

based on a conventional agglomerative hierarchical 

classification, while that of the approach [3] is an 

incremental clustering. 

As anticipated above, after completing the first test with 

our similarity measure (based on Eq. 6), we replace, in our 

clustering algorithm, our similarity measure, successively, 

by the edit distance and [3]’similarity measure. We then 

perform two new series of tests whose the results are 

collected in Table 6. Other abbreviations concerning Table 

6 are DT and OSM; they denote respectively the distance 

threshold and similarity measure (based on Eq. 6).  

As can be seen (Table 6), in all cases, i.e., with the 

similarity measure proposed (OSM) or with other 

measures (ED and [3]’ SM), clustering time remains 

practically the same when the similarity threshold changes 

(increases or decreases). Indeed, our clustering is based on 

the “minimum distance” as a “criterion for aggregation”. 

In other words, the number of comparisons is practically 

the same for each threshold distance value. 

As for differences, there is a lag in response times and 

differences between the similarities’ values obtained. The 

difference in response times, as expected, is obvious, given 

the differences between the equations used by all three 

measures tested. The time parameter is not very restrictive 

and should not weigh heavily on the feasibility of such 

applications (clustering is not an interactive application 

where time is always critical parameter). Note, however, 

that differences in the values of the similarities are crucial, 

since it is on the basis of similarity that it is decided that a 

document is or is not assigned to a cluster. Moreover, 

these differences have a direct impact on the number of 

clusters (NC) obtained in each test. Indeed, with these 

thresholds, some documents are structurally very distant to 

stay together in the same cluster. This is due to [3]’ 

similarity measure and our similarity measure that take 

into account the ancestor and descendant context of nodes, 

so that we find in the same cluster as the documents 

having very close hierarchical structures. Thus, XML 

documents that do not satisfy this condition, i.e., that are 

not sufficiently structurally similar, will migrate to other 

newly created clusters. In fact, these new clusters are 

considered as not corresponding to any DTD. We recall 

that each DTD is considered as target class against which 

we can assess our clustering. 

Table 6: Our similarity measure versus [3]’measure and edit distance 

measure 

DT 
[3]’ SM ED OSM 

NC Time NC Time NC Time 

0.9 1 8.61×102 1 0.97×102 1 3.49×102 

0.8 1 8.75×102 1 0.97×102 1 3.49×102 

0.7 2 8.75×102 1 1.06×102 2 3.51×102 

0.6 2 8.78×102 1 1.06×102 2 3.51×102 

0.5 3 8.81×102 2 1.07×102 4 3.54×102 

0.4 5 8.88×102 4 1.09×102 5 3.57×102 

0.3 5 8.88×102 4 1.09×102 5 3.57×102 

0.2 7 8.91×102 5 1.11×102 5 3.57×102 

0.1 8 8.96×102 6 1.13×102 7 3.61×102 

When we compare the results in Tables 5 and 6, there are 

some differences. Indeed, if we consider the column 

named “[3]’ SM” in the two tables in question, we find 

that there is a clear difference in the clustering time. This 

is certainly due to our clustering algorithm, which is faster 

compared to the algorithm of the study by [3], which is 

relatively slow. 

The number of clusters NC does not change rapidly with 

the distance threshold in Table 5 compared to NC in Table 

6. This is due to clustering algorithms that are different. 

The clustering algorithm used in this article is a simple 

algorithm based on a conventional agglomerative 

hierarchical classification, while the clustering approach 

by [3] is an incremental clustering. Our clustering 
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algorithm uses only the minimum distance as aggregation 

criterion, while the clustering approach by [3] is 

characterized by the mobility of the centroid, representing 

each cluster. Each time an XML document must be added, 

and its representative is systematically compared with all 

existing centroids and all the trees in the cluster to which it 

is assigned. During the comparison process, we can either 

have a new centroid, which is systematically assigned to a 

newly created cluster, or an existing centroid can be 

replaced by another tree more representative, among those 

of the same cluster. This clearly explains the differences 

between the two approaches particularly regarding the 

time variation in the clustering (SM column) in Table 5.  

If we compare the column OSM in Table 6, representing 

our approach, we see that it is somewhat close to the result 

of the ED column in Table 5, in terms of clustering time 

and the number of clusters NC. But it is somewhat far 

from the result of the ED column in Table 6, particularly 

in terms of time clustering.  

We conclude that our method is better because it is reliable 

in terms of clustering time and the quality of clustering. 

4.4.2 Comparison of some of our results with those of 

other clustering methods 

The second test is to compare some of our results with 

those obtained in [3, 6, 13, 31, 38] approaches on a portion 

of ACM SIGMOD collection. To this end we used the 

sample of XML documents in Table 7. 

Table 7: Distribution of ACM Sigmod record subset 

Name of the DTD Number of XML documents 

IndexTermsPage 

OrdinaryIssuePage 

ProceedingsPage 

SigmodRecord 

HomePage 

52 

30 

16 

1 

1 

We chose to compare our method with those developed in 

[3, 6, 13, 31, 38] approaches for several raisons. First, as 

our approach, these approaches use very close 

representation, namely tree structures to structurally 

represent XML documents. Second, because they use the 

same data set, namely ACM SIGMOD corpus. Third, their 

clustering methods are all based on edit distance or 

similarity that is different from our measure of similarity. 

Recall that these results do not depend only on the 

similarity measure, but also and especially, of the model 

(original XML tree structure or XML tree structure 

summary) used to represent the structures of XML 

documents. In Table 8, we can see the results of this 

comparison. Note that [3, 6, 13, 31, 38] results were 

reported in [3, 38]. These values represent the average 

Precision, Recall, and F-measure, in the interval [0, 1]. 

The results in Table 8 show that our clustering has a 

slightly lower precision than those of [6, 13, 38]’ 

approaches, but it is very close to those of [3, 

31]’approaches.  

But it nevertheless has a better Recall than the majority of 

other approaches, with the exception of that of the [3]’ 

approach. 

Finally, the F-measure obtained by our clustering also 

seems to be higher than all others, with the exception of 

that of the approach [3]. However, our clustering is better 

overall, since it has a better Precision than that of the 

approach [3]. 

Table 8: Comparison of our results with those of other approaches 

Approach Precision Recall F-measure 

[3] 0.78 0.97 0.86 

[6] 0.86 0.57 0.68 

[13] 0.86 0.67 0.68 

[31] 0.81 0.64 0.72 

[38] 0.90 0.61 0.73 

Our approach 0.82 0.71 0.76 

 

4.4.3 Time needed to calculate the structural similarity 

between two XML documents 

Finally, as expected, in this third test, we will conduct 

experiments to determine the time required to calculate the 

structural similarity between two XML documents.  

To conduct these experiments, we generated a set of 10 

synthetic XML documents whose the number of nodes 

varies respectively from 50 to 500. 

We conducted two sets of tests with the group of XML 

documents previously generated: 

− The first one was conducted by setting the values of 

the weights ��, �� and �M to 
�M  in Eq. (2). As we have 

already considered, it is more natural, in the case of 

XML documents, to give to S1, S2 and S3 the same 

weight, namely w1 =	�M, w2 = 
�M, and w3 = 

�M. Recall that 

S2 and S3 represent respectively ascendant (ancestor) 

and descendant contexts. For more details see the 

equations for calculating the similarity. 

− The second one was conducted by setting the values 

of the weights �� � 1 , ��  = �M  = 0, in the same 

equation. In other words, we ignore the hierarchical 

contexts (descendant levels and ancestors levels). 

Therefore, it is not necessary to calculate S2 and S3. In 

this case our similarity measure behaves like the edit 

distance. Thus, the time complexity of calculating the 

similarity between two trees T1 and T2 is in the worst 

case O (N 
2
). 

What matters in this test is not the quality of clustering, 

but the time required for comparison of two XML 

documents’ structures. Therefore, it is not necessary to 

have summaries of XML trees. For this, we slightly 

modified our parser, so as not remove repetitions of sibling 

nodes and thus to obtain the original XML tree structures 

(the whole structure of document). For more details about 

this question, see Subsection 3.1. 
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We recall that the timing experiments were carried out on 

a Lenovo PC Intel (R) Core (TM) 2 Duo CPU, 2.00 GHz 

for each Processor, and 2.99 GB of RAM.  

 

Fig. 16 Timing results with weights  �� � �� = �M = 
�M 

 

Fig. 17 Timing results with weights  �� � 1, �� = �M = 0 

The graphs in Figs. 16 and 17 express the results of timing 

experiments performed on the group of 10 previously 

generated XML documents. 

In the first case, namely with weights  �� � �� = �M = 
�M 

as shown in Fig. 16, the time required for the similarity 

calculation in the case of our approach is between the time 

required to calculate the similarities in the approaches [6, 

13, 31, 38] and [3]. This time seems much closer to the 

time needed in the approaches [6, 13, 31, 38]. Indeed, 

according to Fig. 16, we can see that the time required for 

calculating the similarity between two trees T1 and T2 of 

various sizes grows in quasi linear fashion with tree size 

(of each tree). 

In the second case, however, as shown in Fig. 17, namely 

with �� � 1 , ��  = �M  = 0, our similarity calculation 

algorithm behaves like the algorithm of [6, 13, 31, 38], i.e., 

with a time complexity of O (N 
2
). The time needed to find 

the similarity between pairs of trees of various sizes 

increases in linear fashion with tree size (of each tree). 

Under all these experiments and according to the results 

obtained in all previous tests, we can say that our proposed 

similarity measure and our way of representing XML 

documents are very relevant particularly since it provides 

high-quality clustering. 

5. Conclusion 

We have proposed an approach for representing XML 

documents by their respective structures. We have 

particularly shown how to extract the tree structure of each 

XML document to be classified. We also proposed an 

efficient similarity measure (which is the primary purpose 

in this article), and an algorithm for clustering these 

structures. The clusters containing XML structures 

classified are generated through a conventional 

agglomerative hierarchical technique. 

Our approach touches on two interesting fundamental 

aspects of the Information Retrieval. Indeed, on the one 

hand, the clustering allows to reduce the number of treated 

documents and finally to increase the number of the 

relevant documents returned by the search engine. On the 

other hand, the clusters obtained can constitute an interface 

allowing users to access XML documents they wish to 

query and to reach the specific “information units” that 

interest them. 

The experiment conducted is a small outline for testing the 

feasibility and reliability of our approach. However, to 

perform a good experimentation, it is judicious to prepare 

tests on larger collections of documents. 
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