

Efficient Efficient Efficient Efficient structural structural structural structural similarity computation similarity computation similarity computation similarity computation between between between between XML XML XML XML

documentdocumentdocumentdocumentssss

Ali Aïtelhadj

Computer Science Department, Faculty of Electrical Engineering and Computer Science

Mouloud Mammeri University of Tizi-Ouzou (UMMTO)

Tizi-Ouzou, Algeria

Abstract

This work is mainly motivated by the description of a new

approach for calculating the structural similarity of XML

documents. Practically, the majority of existing work on XML

documents clustering considers the tree structures of these

documents as mere vectors and, therefore, does not take into

account their hierarchical contexts. Furthermore, in order to

calculate the structural similarity of XML documents, most

methods encountered in these works perform depth-first traversal

to visit the nodes of the tree structures of these documents. More

precisely, it is the preorder tree walk which is usually the most

used. Recently, other studies present an alternative approach that

takes into account the hierarchical contexts of these tree

structures, but unfortunately, they have particularly high time

complexity in the calculation of structural similarity. In this

paper, we propose a new method based on breadth-first traversal

of these tree structures. The goal consists in clustering more

rapidly XML documents sharing similar structures. Besides the

fact that the method is fast, it also takes into account the

hierarchical contexts of XML documents. Reconciling the speed

required for clustering XML documents with taking into account

the hierarchical contexts of their tree structures ensures higher

reliability of the proposed method. To validate our proposal,

experiments were conducted on both real and synthetic XML

data. The results clearly demonstrate the viability of our

approach.

Keywords: Clustering, Structural similarity, hierarchical

context, Tree level, Ancestor and descendant levels, depth- and

breadth-first traversals.

1. Introduction

XML has now become an unchallenged standard for the

representation and exchange of data on the web. This has

led to the increase in heterogeneous XML sources.

Furthermore, not only the collections of XML documents

are reused but their interchange volume is continuously

growing. However, with the current available means, the

search information in these documents is not a trivial task.

XML documents are characterized by content and

structure. However, such documents cannot be exploited

efficiently by the conventional information retrieval

methods. Indeed, these methods are based on content

oriented models, while the XML format allows adding

structural constraints. This then requires adapting these

models to better exploit the available XML data. Similarly,

traditional approaches to data processing, such as

relational databases have proven ineffective. These are

mainly designed for strongly structured data, whereas

XML data are semi-structured [20]. In addition to this,

given the heterogeneity and proliferation of XML

documents on the web, it becomes difficult for a user to

access the desired information. In this context many

authors propose methods of classification to organize and

analyze large collections of XML documents. Our work

falls within this perspective; we are interested in the

clustering of XML documents based on their structures.

The idea behind the clustering is that if XML documents

share similar structures, they are more likely to correspond

to the structural part of the same query. This therefore

allows reducing the response time and increasing the

accuracy of search engines. In other words, it can

substantially improve the process of information retrieval.

Thus, the search for relevant information in a large

collection of documents will then return to interrogate

small classes of documents.

XML clustering task consists in grouping XML documents

into clusters containing similar documents. This similarity

could be thematic or structural. In this paper, we are

particularly interested in XML document clustering using

the structural similarity of their descriptions, i.e., the XML

ordered labeled tree providing the relations between the

document elements. We will therefore address the

“structural clustering of XML documents” problem as we

would have done with a “clustering of tree structures”

problem [1, 2, 3, 14, 41]. In other words, structural

clustering of XML documents approach can be exploited

in various areas that require management of hierarchical

structures, such as the discovery of structurally similar

web navigational pathways, or tree-like patterns, and the

discovery of structurally similar macromolecular tree

patterns in bioinformatics [14, 34, 17].

The structural similarity allows to group documents that

share similar structures [12]. It will help to better organize

XML documents on the one hand and, on the other hand,

to better answer, in terms of efficiency and effectiveness,
queries containing structural conditions. We recall that

queries in XML information retrieval could contain

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 1, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 421

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

keywords only or keywords and structural conditions. The

main question we address in this context is how to cluster

structurally XML documents when their DTD is unknown.

Our methodology in this paper is two-step. In the first step,

each XML document is represented by its tree summary

structure, which is used as a representation model to

classify the corresponding XML document. In the second

step, an efficient structural similarity measure based on

breadth-first traversal of these tree summary structures is

proposed. Within this framework, the most important

question deals with the way to measure the structural

similarity of XML documents. This is the question we

attempt to answer in this work.

This paper is organized as follows. Section 2 provides a

summary view of related work about classification of

XML documents by structure. Section 3 describes our

clustering approach. Section 4 is dedicated to the

experimentation. Finally, in section 5 we conclude and

describe the future work.

2. State-of-the-Art

The classification approaches are divided in two main

variants called supervised classification and unsupervised

classification (or clustering).

Existing works on the classification of XML documents

can be distinguished by the way they represent the

documents, but also by the classification and/or clustering

methods used. We focus here on approaches that represent

documents by structure only. Within this framework, we

distinguish two main categories: document-based

clustering, where the clustering is based on the document

structure itself, and DTD-based clustering, where

documents are clustered according to their DTD. We

briefly describe below some of the most known

approaches, highlighting their main features. We are

particularly focus on approaches that represent the

document structures by labeled trees.

In the first category, namely clustering based on document

structure; the structure that is used to classify a document

is issued from the document itself.

– This structure could be either a labeled tree

corresponding to the original structure of the XML

document (the whole structure of document) [5, 21, 29, 30,

31, 40] or a rooted ordered labeled tree summary [1, 2, 3,

14]. The latter has the advantage of reducing the

computational complexity in the clustering, but has

nevertheless the drawback of breaking the relationships

between XML elements. In the study by [14], a tree

summary is obtained by two transformations, as shown in

Fig. 1: (i) the first one reduces the depth of the tree so that

the children of any node having the same label as one of

its ancestors become direct descendants (child) from this

ancestor, (ii) the second one eliminates duplication of

sibling nodes, while in the study by [1, 2, 3], the tree

summary is obtained only by eliminating duplication of

sibling nodes, i.e., hierarchical relationships between XML

elements are not completely changed, and so there is no

loss of information.

Fig. 1 Tree summary extraction

In the study by [11, 15, 39], another way for

representing the structure of XML documents is proposed,

namely these approaches are based on the discovery of

sub-trees that most frequently occur in collections of

labeled trees representing XML documents. More

precisely, in the study by [39], the frequent sub-trees can

be unordered, whereas, in the other two approaches [11,

15], they absolutely must be ordered. All sub-trees below

the arrow in Fig. 2 are frequent according to the approach

[39]. The last two of them are exact and ordered, so they

are also frequent according to the approach [11, 15]. This

indicates that the approach [39] is more general and easily

applied to heterogeneous XML documents, as opposed to

the approaches [11, 15] that only apply to XML

documents sharing the same DTD or XML Schema.

Another proposal [20] consists of linearizing the structure

of each XML document, by representing it as a numerical

sequence and, then, comparing such sequences through the

analysis of their frequencies.

– The clustering consists then to compare the extracted

structure with a cluster or its representative. This

representative, usually called a centroid, is the most

representative tree summary of all XML documents in the

cluster [1, 2, 3]. The centroid may change, i.e., it can be

replaced by a more appropriate tree, depending on the

assignment of new documents to the cluster. In the study

by [39], a cluster is characterized by the maximal frequent

sub-tree, i.e., the frequent sub-tree that has the greatest

number of nodes among all sub-trees in this cluster.

(i)

(ii)

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 1, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 422

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Note that with frequent sub-trees technique, an XML

document may belong to several clusters. In the study by

[14, 21, 29, 30, 31, 40], each cluster is represented by a

subset of similarly structured XML documents, whereas

with [1, 2, 4, 39] approaches, a cluster has only one

representative (the centroid or the maximal frequent sub-

tree); this means that, in the process of detecting the

appropriate cluster, the representative of a new document

is compared only with the representative of the cluster.

Note that in some approaches like [1, 2, 4], a new

comparison is undertaken for a possible change of the

centroid.

Fig. 2 Frequent sub-trees detection

– Concerning the clustering process itself, several

approaches have been proposed. Authors in [30, 40]

propose an incremental clustering based on common path

similarity taking into account different criterions as the

number of common nodes between the XML tree (that of

the XML document to be classified) and the trees of the

cluster considered, the number of common nodes paths,

and the order of the nodes of the XML tree. In the study by

[1, 2, 3], the authors also perform an incremental

clustering, but it is based on structural similarity between

the centroid and the structure of XML document to be

classified. For detecting structural similarity between

XML documents, the authors in [20] exploit the theory of

discrete Fourier transform to effectively and efficiently

compare the encoded documents (i.e., signals) in the

domain of frequencies. This approach significantly differs

from standard methods based on graph-matching

algorithms and allows a significant reduction in the

required computation costs. Indeed, if N is the maximum

number of tags in two documents, their matching

complexity is O(N log N), whereas it is O(N
2
) with those

based on edit distance, as the Chawathe’s algorithm [6]

and one proposed in [14]. In the study by [11, 14, 21, 31],

the similarity between two trees is based on their edit

distance. Edit distance measures the number of elementary

operations to transform one tree into another. Most

algorithms for calculating the tree edit distance are based

on the dynamic programming techniques [6–9, 35, 37, 42,

4]. Note, however, that there may be several sequences of

edit operations to transform one tree into another.

Therefore, the cost of the operations in each sequence is

considered, and the lowest cost sequence among these

defines the edit distance between trees [31]. Edit distance

allows performing a clustering of these trees using a

bottom-up hierarchical classification method [11, 14, 21,

31]. In the clustering approaches based on frequent sub-

trees, the authors [39] have developed an algorithm to

detect the maximal sub-tree. Similarly, the authors in [15]

also have developed their algorithm very close to the

algorithms FREQT and TREEMINER proposed

respectively by [4] and [45]. An XML tree can appear in

multiple clusters. In other words, an XML document can

be shared by several clusters, i.e., it consists of several

sub-trees appearing respectively in several different

clusters. Thus, under these characteristics, we can say that

these approaches belong to the family of non-exclusive (or

overlapping) clustering.

Concerning the second category approaches, namely DTD

classification, we list below some of the most known.

Recall that the DTD is considered as a context-free

grammar that generates a potentially infinite number of the

XML documents. From this fact, instead of classifying

directly the XML documents, the approach proposes to

classify their DTDs in clusters. Thus, each cluster becomes

the representative of a set of structurally similar XML

documents. The advantage is that it is possible to more

quickly integrate a considerable number of XML

documents together. The drawback is that the nodes of

DTD trees often denote regular expressions whose

handling is not always trivial task and furthermore causes

(in some cases) a loss of information [28].

– In [28], the authors propose a DTDs clustering model,

named “XClust”. Each DTD is represented by its tree

structure. The similarity of two nodes is calculated by

exploiting different levels of the tree, namely the

ontological similarity of the nodes (using a dictionary), the

similarity of their immediate descendants (children), the

similarity of their ancestors and finally, that of the sub-

trees’ leaves whose they are respectively the roots.

– In [36], the authors propose a mechanism which

identifies syntactically the similarity of DTDs by adopting

an ascending clustering strategy. Compared with

“XClust”, the authors in [41] exploit only the immediate

descendant context.

– In [27], the authors develop an algorithm which is based

on generic scheme of the DTD matching. The matching

goal is to reach a median scheme corresponding to the

DTDs that are similarly structured. Like [28], in order to

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 1, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 423

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

calculate the DTDs’ similarities [27] relies on the

dictionary, but it only exploits the leaves’ context.

– Finally, the approach proposed in [18] is based on the

learning and inference combined with an instance of DTD.

In fact, it works with a supervised classification, i.e., the

classes are known before starting this classification.

There exist other methods such as approaches of [16, 19,

23, 24, 25, 41, 43, 44] originally dedicated for classifying

or clustering XML documents using both structure and

content. These methods are in fact more general since they

offer flexible models that can easily be adapted for dealing

with structure only. For instance, in the study by [16, 43],

the authors propose a network-based stochastic model that

is able to describe different kind of relationships of XML

elements. It was proved that this model is easily adapted to

the structure alone. The model is based on Bayesian

networks [32], to infer the different type of structural

relationships in XML tree.

3. Clustering approach based on structural

similarity

Our clustering approach belongs to the first category,

namely, clustering based on document structure. The

structure used to structurally classify a document is issued

from the document itself. Specifically, for classifying

(clustering in our case) XML documents by structure, we

suggest the usage of their corresponding labeled tree

structural summaries. The labels correspond to tags or

attributes. In our approach, attributes are treated as mere

tags. A labeled tree summary representing an XML

document is automatically extracted from the document by

a parser. This extracted “tree summary” is then used as a

model of representation by a classifier to classify the

corresponding XML document. We show and explain in

Subsection 3.1, how this parser works. Finally, we give a

description of the proposed similarity measure in

Subsection 3.2. Note that the latter is based on the breadth-

first traversal of XML documents’ tree structures.

3.1 Tree structural summary extraction

We propose to represent XML documents by their tree

structural summaries that need minimal processing and

especially avoid the loss of information. The basic idea is

that repetitions of tags and/or the possibility to have

optional tags (and sub-trees consequently) are one of the

reasons why XML documents can be structurally different

even though they share the same DTD. In this context, our

tree summary is regarded as a generic structure in the

sense that, when sibling tags are duplicated, it is not

necessary to have this duplication in the structure that we

wish to extract. Note however, that to avoid losing

information, duplications of nested and/or cousin tags are

not removed as duplications of sibling tags. One way to

avoid this is to consider them as immediate descendants

(sub-tags) of tags in which they appear in XML

documents. In Fig. 3 we show an overview of this

representation approach focusing on all its features.

Indeed, the transformation of the original tree (i) in the tree

summary (ii) shows that the attribute “t” becomes in fact

an immediate (direct) descendant (son) node of the root

node “a”. As for the duplication of sibling nodes “b”, it is

removed while keeping the children (“c”, “b” and “c”)

attached to a single occurrence of “b”, but the nodes “c”,

which were originally cousin nodes on (i), have become

brothers, whose we also eliminated duplication. However,

as recommended, duplications of nested nodes “a” and “b”

are maintained.

Our extracting algorithm of tree summary is two-step. The

first step is based on SAX (Simple API for XML) API

(Application Programming Interface), which returns all the

tags and attributes encountered in an XML document.

These tags (or attributes) are intercepted, filtered and then

transformed by our parser into an intermediate form as

shown through the parenthesized expression in Fig. 4. In

the second step, this intermediate parenthesis expression is

transformed by another parser into the corresponding tree

summary, according to projections of our approach. i.e., by

eliminating duplication of sibling nodes and considering

each attribute as an immediate descendant of the element

(tag) which it is attached in the XML document. Most of

the extraction task is performed during this second step. In

fact, three essential operations are performed at this level:

− Passage from the linear form of the XML document to

its hierarchical representation;

− Removal of repetitions of sibling nodes;

− Transforming possible attributes into immediate

descendants of the elements which they are attached

in the XML document.

Fig. 3 Representation approach of an XML document

Thus, instead of the original trees to represent XML

documents, we use their “tree structural summaries”, but

without loss of information, since we remove only the

repetitions of sibling nodes. This allows, on the one hand,

performing the matching of these trees more quickly and

easily and, on the other hand, to provide high-quality

clustering.

a

a b t

c b

a

a b b b

c b c

t {Attribute}

(i)

(ii)

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 1, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 424

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 4 An XML document and its corresponding tree summary

3.2 XML documents clustering

3.2.1 Overview of the clustering technique used

For clustering XML documents based on structural

similarity we use well-known techniques in hierarchical

agglomerative clustering (although any form of clustering

could be used). Hierarchical methods perform mergers

between data sets; the peers of elements (or clusters) are

successively merged until there is only one large set

containing all elements. The end result can be

schematically represented as a tree of clusters named

dendrogram, as shown in Fig. 5.

Fig. 5 Dendrogram of the ascending hierarchical classification

The dendrogram shows the clusters that were merged

together, and the minimum similarity between these

merged clusters.

There are several methods of hierarchical ascending

classification. They all are based on the following idea:

a) Initially, each element of the data set to be classified

is regarded as a cluster.

b) Clusters separated by a minimum distance (i.e.,

maximum similarity) are grouped together. The

distances between the remaining clusters and the new

cluster set are recalculated.

c) If there is more than one cluster or has not yet reached

the minimum distance (or maximum similarity

threshold), go to step b.

With some methods, the distance between two clusters X

and Y is defined as the minimum distance (maximum

similarity) between all the peers of elements (x, y) such

that x is in X and y in Y. With other methods, this is the

average distance (average similarity) which is considered

as a parameter of the separation of clusters. We chose

clustering method which is based on the minimum

distance (i.e., the maximum similarity). We then used the

single link clustering algorithm using Prim’s algorithm

[10] to calculate the MST (Minimum Spanning Tree or

shortest path) of a graph.

Given a graph G = (N, A) with a set of weighted edges A,

and a set of nodes N. The minimum spanning tree (MST)

of a graph is an acyclic subset T ⊆ A that chain all nodes

whose total weight (cost, distance, value, etc.) denoted

W (T) (the weight sum of T'’s edges) is minimized. It was

shown in [22] that the MST contains all the information

required to implement the single link clustering.

Given a set of rooted labeled ordered trees representing

XML documents, we form a complete graph G with n

nodes ∈ N and
������� weighted edges ∈ A. The weight of

an edge is the structural distance between the nodes it

connects. Nodes represent XML trees in our case. For

example, the single link clustering for threshold l can be

carried out by removing all the edges having a weight ≥ l

of MST in the G graph. The connected nodes of the

remaining graph are the single link clusters.

It can be seen in Fig. 6 a graph with 7 nodes

(corresponding to 7 XML documents), and 10 edges.

Fig. 6 Graphical representation of the distances between XML trees

<a>
<-- !comment -->…
 TEXT <c> TEXT </c>
<b t ="val1"> TEXT
<b t = ‘’ s ="val2">TEXT

(a (b (c)) (b (t)) (b (t) (s)))

Distance

threshold=0.1
(8 Clusters)

Distance

threshold=0.5
(3 Clusters)

Distance

threshold=1.0
(1 Cluster)

1.0

0.0

0.5

0.2

2

1

6

7

3

5 4

0.6

0.2

0.6 0.8

0.8 0.9

0.3
0.4

0.1

a

b

c t s

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 1, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 425

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

As indicated above, the weight of an edge is the structural

distance between XML documents. For example, the

structural distance between the tree 1 and tree 2 is 0.2.

Missing edges are the additional edges which make the

complete graph; their weights are equal to 1. Fig. 7 shows

the shortest path on the graph in Fig. 6. It can be seen in

Fig. 8 the parts of graph remaining after deleting all edges

with weight ≥ 0.4.

Fig. 7 The shortest path in the graph of Fig. 6

Fig. 8 Resulting graph after deleting all edges having weight ≥ 0.4

There are two new components that are formed, containing

the nodes (1, 2, 3, 6) and the nodes (5, 7), respectively.

This indicates the presence of two new clusters, namely

cluster1 with (1, 2, 3, 6) as members and cluster2 with

(5, 7) as members. Nodes that are not connected to other

nodes are considered as a single node clusters.

The graph is represented by a matrix called the associated

matrix. Is associated to the graph G = (N, A) of order n, a

square matrix of order n. This matrix is formulated as

follows:

��	
 	� � ��� 	|	���..�,���..�	� �� � ��������	��	�� � , �� ∈ "#

In Tables 1, 2 and 3 are shown matrices respectively

associated with graphs of Figs 6, 7 and 8.

It suffices now to use the matrix obtained after applying

the threshold ≥ 0.4 to deduce the remaining links between

nodes (representing XML documents) and then build the

corresponding clusters.

Table 1: Matrix associated with the graph of Fig. 6 ��7
 7� 1 2 3 4 5 6 7

1

2 0.2

3 0.2

4 0.6

5 0.8

6 0.6 0.1 0.9

7 0.8 0.3 0.4

Table 2: MSP matrix of the matrix of Fig. 7 ��7
 7� 1 2 3 4 5 6 7

1

2 0.2

3 0.2

4 0.6

5

6 0.1

7 0.3 0.4

Table 3: Matrix after applying threshold 0.4 ��7
 7� 1 2 3 4 5 6 7

1

2 0.2

3 0.2

4

5

6 0.1

7 0.3

3.2.2 Overview of using Prim’s algorithm

As announced above, Prim’s algorithm [33] allows

calculating the shortest path (or MST) in a given weighted

graph G. In an informal way, we apply the following

points:

− Create a tree containing a single node, chosen

arbitrarily from the graph G

− Create a set containing all the edges in the graph G

− loop until every edge in the set connects two nodes in

the tree

� remove from the set an edge with minimum

weight that connects a node in the tree with a

node not in the tree

� add that edge to the tree
Thus, the algorithm continuously increases the size of a

tree, one edge at a time, starting with a tree consisting of a

single node, until it spans all nodes of the initial graph G.

A pseudo-code for Prim’s algorithm is given in Fig. 9.

To show how to apply Prim’s algorithm to find a

minimum spanning tree in the weighted graph, we rely on

the example of graph in Fig. 10. Prim’s algorithm will

proceed as follows. First we arbitrarily choose to start with

the node d, and then we add edge {d, e} of weight 1. Next,

0.3

0.4

0.2

0.2

2

1

6

7

3

5 4

0.6
0.1

0.3

0.1

0.2

0.2

2

1

6

7

3

5 4

cluster2
cluster1

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 1, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 426

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

we add edge {c, e} of weight 2. Next, we add edge {d, f}

of weight 2. Next, we add edge {b, e} of weight 3. And

finally, we add edge {a, b} of weight 2. This produces a

minimum spanning tree of weight = 10. The minimum

spanning tree found is given in Fig. 11.

Fig. 9 Prim's algorithm pseudo-code

Fig. 10 An example of a weighted connected graph

Fig. 11 Minimum spanning tree (MST) produced by applying Prim’s

algorithm on the graph in Fig. 10

We could start with any node to determine the MSP. In the

case of the previous example (in Fig. 10), we arbitrarily

chose to start with the node d. But any node can be used to

start the process with Prim’s algorithm.

The time complexity of the algorithm depends heavily on

how the choice is implemented in the edge / node to add to

the set at each stage. With a naive representation, using an

adjacency matrix graph representation and searching an

array of weights to find the minimum weight edge to add

requires O (N
2
) running time. Using a simple binary heap

data structure and an adjacency list representation, Prim’s

algorithm can be shown to run in time O (A log N). Using

a more sophisticated Fibonacci heap, this can be brought

down to O (A + N log N), which is asymptotically faster

when the graph is dense enough that A is ω (N), i.e. A

dominates N asymptotically. However, we chose, for the

purposes of our tests in this article, the adjacency matrix

for the simplicity of its implementation.

At this stage, as previously announced, we focus in

Subsection 3.3, on the description of the structural

similarity measure proposed.

3.3 Tree structure similarity

Usually, to compare two words we use a thesaurus or

dictionary. But when these words correspond to node

names (labels) in a tree, it is necessary to take into account

their respective tree relationships. The idea is that even

though two nodes are represented by the same name, or by

synonymous names, this does not mean that they remain

necessarily similar in the context of their respective

ancestors, descendants, siblings and/or cousins, which can

be completely different. Thus, the similarity of two nodes

depends not only on their ontological similarity (terms

could be similar because they have same string or could be

semantically related using a dictionary), but also on their

respective tree relationships that play a crucial role in the

similarity calculation.

Most methods for clustering XML documents by structure

use the edit distance for measuring the similarity between

their structures. We recall that tree edit distance measures

the number of elementary operations (insertions, deletions

and replacements of nodes) required to transform one tree

into another. On the other hand, all these methods perform

depth-first traversal to visit nodes of tree.

We propose a novel method for calculating the similarity:

− Firstly, instead of performing depth-first traversal to

visit nodes of a tree, our proposal is to perform

breadth-first traversal, also called level by level

traversal. In other words, we explore the breadth, i.e.,

full width of the tree at a given level, before going

deeper.

− Secondly, we take into consideration the hierarchical

contexts of XML tree structures.

Before describing in detail our method, it is necessary to

introduce some fundamental concepts.

3.3.1 Basic preliminary notions

A tree level consists of sibling and/or cousin nodes. As

suggested in our approach, repetitions of sibling nodes will

be eliminated, but not those of the cousin nodes.

Therefore, it is possible to encounter on a same tree level

several duplications of cousin nodes. It is then necessary in

such case to take them into account in the similarity

calculation. To express that, we can use the concept of

weight. Indeed, let % � & �, �, … , �(be a vector ∈)�;

its norm (Euclidean distance) is ‖%‖ � +∑ ������-
. The

usage of the norm allows exploiting efficiently the concept

Input: Given a non-empty connected weighted graph

G = (N, A), (the weights can be negative)
Initializations:

N
new

 ← {x}; A
new

 ← φ ; (where x is an arbitrary

node (starting point) from N)
repeat

choose an edge {u, v} with minimal weight such

that u is in N
new

 and v is not (if there are multiple

edges with the same weight, any of them may be

picked)
 N

new
← N

new
 ∪ {v}; A

new
 ← N

new
 ∪ {u, v}

until N
new

 = N

Output: N
new

 and A
new

 describe an MST

a

b

c e

d

f

3

2

2

6
3

5

1

2

4

a

b

c e

d

f

2

2

3
1

2

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 1, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 427

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

of weight. We can extend its use even to objects that are

not necessary vectors of)� . Indeed, for example, if . � ��, , , /, /, /, �� is a tree level, then the weights (or

frequencies) of a, b and c are 2, 2 and 3, respectively.

Therefore, if these weights are stored in a vector such as � � &2, 2, 3(then the norm associated with L is ‖�‖ �√2� 3 2� 3 3�- � √17-
. The norm will serve thereafter for

the normalization of the similarities’ values.

Moreover, in order to fully highlight features of our

approach, it should also recall some notions on depth- and

breadth-first traversals of trees. Indeed, there are

essentially two different methods in which to visit

systematically all the nodes of a tree, namely, depth-first

traversal and breadth-first traversal. Certain depth-first

traversal methods occur frequently enough that they are

given names of their own: preorder traversal, inorder

traversal and postorder traversal. To describe these

concepts easily and clearly it is better to rely on concrete

examples. In fact, we do not really need dwell too long on

the details of the tree traversal; we give only the minimum

necessary to distinguish the breadth-first traversal (which

characterizes our proposed method) and the depth-first

traversal that was used in most existing clustering

methods. Thus, for example, given the tree in the Fig. 12:

a preorder traversal would visit the elements in the order:

A, B, C, D, E, F, G, H, I. This type of traversal is called a

depth-first traversal because it tries to go deeper in the tree

before exploring sibling nodes.

Fig. 12 Simple general tree

For example, the traversal visits all the descendants of B

(i.e., keeps going deeper) before visiting B’s sibling D

(and any of D's descendants).

As we have seen, this kind of traversal can be achieved by

a simple recursive algorithm given in Fig. 13.

Whereas the depth-first traversals are defined recursively,

breadth-first traversal is best understood as a non-recursive

traversal. The breadth-first traversal of a tree visits the

nodes in the order of their depth in the tree. Breadth-first

traversal algorithm first visits all the nodes at level 0 (i.e.,

the root), then all the nodes at level one, and so on. At

each level the nodes are visited from left to right. Thus, a

breadth-first traversal of the tree shown in Fig. 12 visits

the nodes in the following order: A, B, D, C, E, H, F, G, I.

Fig. 13 Preorder traversal algorithm

3.3.2 Breadth- first tree traversal

To our knowledge, the breadth-first traversal algorithm has

not been practically applied in existing work on clustering

of XML documents. We encountered only one approach in

[29] that addressed the similarity computation according to

the similarities of the levels of XML tree structures.

Recall that in our approach, the representative structures of

XML documents are tree structural summaries, structured

as general trees, i.e., where each tree node can have any

number of children. The algorithm in Fig. 14 allows

exploring a general tree and retrieving its nodes, adopting

the breadth-first traversal. The breadth-first traversal has

linear time complexity O (N) in the worst case, as the

depth-first traversal.

Fig. 14 Breadth-first traversal algorithm

Indeed, given a tree of N nodes, the algorithm in Fig. 14

clearly shows the linearity of the complexity time. At each

level, the nodes are visited from left to right, and then

stored in lists that will be used thereafter for calculating

similarities. The advantage of storing the nodes in the lists

is twofold: On the one hand, this allows easy calculation of

basic similarities between levels of trees. On the other

hand, given two tree levels belonging respectively to two

trees, it is possible to know the similarities of their

respective ancestor and descendant levels. As suggested

above, the ancestor and descendant levels represent

somehow hierarchical contexts to take into account in

calculating the similarity of two levels of two given trees.

These levels are somehow implicitly linked by hierarchical

relationships in trees. The underlying idea is that even

though two tree levels are identical, or very similar, this

A

B
D

C E H

F G I

level 0

level 1

level 2

level 3

root

preorder (tree)

 if (tree not empty)

 visit root of tree

 preorder (left sub_tree)

 preorder (right sub_tree)

breadh_traversal (n : Node)
 begin
 level ← {n}
 while level ≠ φ ;
 {dept_level ← φ ;
 for each node a ∈ level
 {store a in list;
 depth_level ← depth_level ∪ child_of (a);}
 level ← depth_level ;}
 end

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 1, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 428

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

does not mean that they remain necessarily similar in the

context of their respective ancestor and descendant levels

which can be completely different.

So, given all these characteristics, we describe and explain

in Subsection 3.3.3, the structural similarity measure that

we propose, taking into account the hierarchical

relationships between levels in each tree.

3.3.3 Structural similarity measure based on breadth-first

tree traversal

Let T1 and T2 be two trees representing respectively two

XML documents. We propose to compute their similarity

as follows: 5�6�7�, 7�� � ∑ ∑ 8�9:;<;:�=>?,=-@�A@B>C?B> DEF��,9� (1) 5�6=GHG=�I�� , I��� is the similarity of the levels l1i and l2j.

The levels l1i and l2j belong respectively to T1 and T2. The

bounds n and m are the levels’ numbers of T1 and T2

respectively.

Given two levels l1i and l2j, we define their similarity

according to their hierarchical context as follows:

5�6=GHG=JI�� , I��K � �� ∗ 5� 3 �� ∗ 5� 3�M ∗ 5M (2)

w1 ≥ 0, w2 ≥ 0 and w3 ≥ 0 are weights such that w1 + w2 +

w3 = 1.

S1 is the basic similarity of l1i and l2j. It is expressed as

follows:

5� � ∑ ∑ 8�9CNO;�G>P,G-:�Q:B>RPB> ‖S>‖∗‖S-‖ (3)

The term 5�6�TUG���V , ��=� is the ontological similarity of

the nodes e1k and e2l (obtained using a dictionary). In other

words, 5�6�TUG���V , ��=� � 1 if e1k = e2l, 5�6�TUG���V , ��=� ≅ 1 if e1k and e2l are synonymous,

otherwise 5�6�TUG���V, ��=� � 0 . The nodes e1k and e2l

belong respectively to the levels l1i and l2j. The bounds p

and q are the nodes’ numbers of l1i and l2j respectively.

The product ∥ Z� ∥	∗	∥ Z� ∥ allows normalizing the sum ∑ ∑ 5�6�TUG���V, ��=�[=��\V�� . The terms N1 and N2 are two

vectors whose elements are weights of nodes belonging

respectively to the tree levels l1i and l2j. Thus, S1 is

calculated for each pair of levels (l1i, l2j). So the result is

the basic similarity matrix of trees T1 and T2. In Subsection

3.3.4, we give an idea about the calculation of this matrix.

S2 and S3 in some way reflect the hierarchical context in

calculating the similarity of each pair of levels (l1i, l2j). S2

represents the similarity of descendant levels of l1i and l2j

respectively. It is expressed as follows:

5� � ∑ ∑ 8�9O;]^�U>P,U-:�]:B>_PB> DEF	�`,a� (4)

The term 5�6UGab�c�V , c�=� represents the basic similarity

of the levels d1k and d2l. The levels d1k and d2l belong

respectively to desc1 and desc2. The terms desc1 and desc2

are the sets of descendant levels of l1i and l2j, respectively.

The bounds r and s are the levels’ numbers of desc1 and

desc2, respectively.

S3 is the similarity of ancestor levels of l1i and l2j

respectively. It is expressed as follows:

5M � ∑ ∑ 8�9dC^�e>P,e-:�f:B>gPB> DEF	�h,i� (5)

The term 5�6e�b���V , ��=� represents the basic similarity

of the levels a1k and a2l. The levels a1k and a2l belong

respectively to anc1 and anc2. The terms anc1 and anc2

represent the sets of ancestor levels of l1i and l2j,

respectively. The bounds t and u are the levels’ numbers of

anc1 and anc2, respectively.

3.3.4 Illustrative example

This example shows the different steps followed in

computing the similarity of the two trees T1 and T2 in Fig.

15 using the proposed structural similarity measure based

on breadth-first tree traversal.

The first step is to use Eq. (3) to calculate the similarity

matrix of levels of T1 and T2. As there are three levels in

each tree (T1 and T2), we will have a matrix (3×3). The

calculation gives the following matrix:

j1 0 00 1 00 0 �√M- ∗ √�-
k � l1 0 00 1 00 0 0.82n

We note that the similarity between the last levels of T1

and T2 respectively is equal to 0.82, while it is equal to 1

between the other levels of the same rank. It is equal to 0

everywhere else.

Fig. 15 Comparison of two XML trees using the calculation of the

structural similarity based on the breadth-first traversal

Before calculating S2 and S3, it would be appropriate to

define how to use the weights w1, w2 and w3. Indeed, if we

ignore the hierarchical contexts (descendant levels and

ancestors levels), it is not necessary to calculate S2 and S3,

in this case we take w1 = 1 with w2 = 0 and w3 = 0.

Otherwise, in particular in the case of XML documents, it

is more natural to give to S1, S2 and S3 the weights w1 =	�M,
w2 =

�M, and w3 =
�M, respectively. Thus, with respect to the

first case mentioned, namely that we do not consider the

hierarchical contexts, the similarity between two tree

levels of two trees, respectively, is defined by S1.

a

d b c

g e

a

c b d

e f g

T1 T
2

level 0

level 1

level 2

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 1, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 429

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Indeed, with (w1 = 1, w2 = 0 and w3 = 0), we

have	5�6=GHG=JI�� , I��K � �� ∗ 5� � 5�, because w1 = 1. So

the final similarity calculation of the two trees T1 and T2

becomes easy and requires only exploring the matrix (3×3)

calculated above with the formula (1). There will therefore 5�6�7�, 7�� � ∑ ∑ 8�9:;<;:�=>?,=-@�A@B>C?B> DEF��,9� =
�	o	�	o	p.q�	DEF�M,M� 	 =

�,q�	M �0.94 which is relatively a good similarity value that we

could get by comparing two vectors, so it does not reflect

the tree view of XML documents.

Having said this, but if we consider the case where w1 =	�M,
w2 =

�M and w3 =
�M , the calculation is obviously more

complicated, but in principle reflects more reliable

similarity calculation. The elements of the new similarity

matrix, before calculating the final similarity, are

calculated using Eq. (2), with w1 =	�M, w2 =
�M and w3 =

�M. So

we will have 5�6=GHG=JI�� , I��K � 8>o8-o8tM . In this case,

we must also calculate S2 and S3 using Eqs. (4) and (5).

But to go faster, we calculate S2 and S3 only for non-zero

similarity of the matrix calculated above. The elements

concerned are those of the main diagonal of the matrix,

namely (1, 1), (2, 2) and (3, 3) which are represented by

the values 1, 1 and 0.82, respectively. Moreover, it should

also be noted that some elements of the matrix are not

concerned by the calculation of S2 or S3, as for example

those of the last row or those of the first row of the matrix.

But for not distort the similarity computation, we attribute

the value 1 to S2 and S3, in the case of the last row and the

first row of the matrix, respectively. Thus, for each

element of the matrix equal to 0, we calculate the values of

S2 and S3 as follows:

The element (1, 1) has no ancestor levels so 5�6e�b � 1,

i.e., S3 = 1, but it has two descendant levels, namely (2, 2)

and (2, 3) such that 5�6UGab�2, 2� � 1 and 5�6UGab�2, 3� � 0, that is to say 5�=
�	o	puev��,�� � �� � 0.5. So

by applying Eq. (2) we have 5�6=GHG=�1, 1� � 8>o8-o8tM ��op.xo�M � 0.834. The element (2, 2) has only one ancestor

level and one descendant level, corresponding respectively

to (1, 1) and (3, 3), which gives 5�6e�b�1, 1� � 1 and 5�6UGab�3, 3� � 0.82 , i.e., 5� � 8�9O;]^�M,M�uev��,�� � p.q�� � 0.82

and 5M � 8�9dC^��,��uev��,�� � �� � 1. So by applying Eq. (2) we

have 5�6=GHG=�2, 2� � 8>o8-o8tM � �op.q�o�M � �.q�M � 0.94 .

The last case concerns the element (3, 3) that has no

descendant levels, but has four ancestor levels, namely

(2, 2), (2, 1), (1, 2) and (1, 1). Regarding the descendant

level, we assign the value 1, as expected, to 5�6UGab � 1,

i.e., S2 = 1. Other values are calculated as follows: 5�6e�b�2, 2� � 1, 5�6e�b�2, 1� � 0, 	5�6e�b�1, 2� � 0

and 5�6e�b�1, 1� � 1. Thus, we have 5M � �opopo�uev��,�� � 1.

Finally, we obtain 5�6=GHG=�3, 3� � 8>o8-o8tM � p.q�o�o�M �0.94 . The final matrix formed by the elements 5�6=GHG=JI�� , I��K	���..M,���..M before calculating the

similarity of the two trees T1 and T2 is given as follows:

l0.834 0 00 0.94 00 0 0.94n

Applying the equation (1), we obtain 	5�6�7�, 7�� �∑ ∑ 8�9:;<;:�=>?,=-@�t@B>t?B> DEF�M,M� � p.qMyop.zyop.zyM � 0.905 . Unlike

the first result (namely 0.94) without taking into account

the hierarchical contexts of trees T1 and T2, i.e., with w1 =

1, w2 = 0 and w3 = 0, the latter result (namely 0.905),

seems to better reflect the reality of the tree structure of

XML documents. This example gives an idea on how to

calculate the similarity according to our approach, but to

validate our proposal we will make several tests in the

experimental part of this paper.

3.3.5 Complexity of the structural similarity calculation

Given a general tree of M nodes and height h, this latter is

equal to the number of tree levels. So, a tree level, other

than that of the root contains on average
u{ nodes.

Therefore, given two trees having levels containing

respectively
u>{> and

u-{- nodes, then the calculation of their

basic similarity matrix is achieved on average in M1×M2

operations since they have respectively h1 and h2 levels.

In other words, it requires time complexity of order

O (M1×M2), which is the same as that of calculating the

similarity based on edit distance. However, in our

approach, unlike approaches based on edit distance, we

extend the similarity calculation taking into account the

tree relationships between nodes. It will therefore be

necessary to add the calculation of descendant and

ancestor levels’ similarities, respectively. Indeed, based on

a basic similarity matrix S1 [1..h1, 1..h2], the worst case

time complexity of the additional calculation is on the

order |����
 ����� . Note however, that the heights h1

and h2 are usually relatively much smaller than the tree

sizes (numbers of nodes) M1 and M2 respectively. We thus

obtain a time complexity slightly higher than that of the

edit distance, but this is acceptable given the relevance of

the proposed similarity measure that takes into account the

hierarchical relationships of nodes.

Remark given that we have proposed a similarity measure

other than that based on the distance for clustering XML

documents, on the one hand and, on the other hand, we

relied on Prim’s algorithm that computes the shortest path

(MST) in a graph which is then exploited for clustering

XML documents based on their structural distances (each

node of the MST, symbolizes the structure of an XML

document), it is then necessary to adapt our similarity

measure. To do this, it suffices to replace the similarity

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 1, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 430

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

value calculated on the basis of the similarity measure

proposed by the distance value according to the following

Eq. (6).

}����	/�	 � 	5�6�I�~���	– 	1 (6)	
In the next section, we evaluate the effectiveness and

efficiency of our approach. To this end, we conducted our

experiments relying on several different tests. 	
4. Experiment and results

4.1. Implementation of the clustering system

We developed a first program in java, under the Jcreator

environment. The developed program consists of two

modules: the first one is based on SAX to carry out the

first parsing as announced in Subsection 3.1. This module

provides for each treated XML document an intermediate

file intercepted by a second module to finalize the

extraction of its corresponding tree summary. For

clustering XML summary trees obtained using the

previous parsing program (i.e., tree structural summaries’

extraction program) we wrote a second program in C++

that uses the files (representing the tree summaries)

generated by the first program for clustering them.

4.2. Experimental framework

Our experiments are carried out on a Lenovo, Intel Core 2

Duo 2 GHz CPU and 2.99 GB of RAM. For data set, the

experiments were carried out on both real (ACM

SIGMOD Record
1
) and synthetic XML collections. ACM

SIGMOD Record

corpus concerns scientific articles

published by ACM SIGMOD conference and is composed

of approximately 1,000 XML documents sharing 5 DTDs,

namely HomePage, IndexTermsPage, OrdinaryIssuePage,

ProceedingsPage, and SigmodRecord. These DTDs can, in

fact, be considered as target classes against which we can

assess our clustering approach. This corpus is distributed

as shown in Table 4.

Table 4: ACM SIGMOD Record corpus distribution

DTD Number of XML documents

IndexTermsPage 920

OrdinaryIssuePage 30

ProcedingsPage 16

SigmodRecord 1

HomePage 1

1
 http://www.sigmod.org/publications/sigmod-

record/xml-edition

4.3. Evaluation metrics

The evaluation is to verify to what extent the clustering is

susceptible to find clusters in agreement with the classes of

the labeled corpus, which are considered as target classes.

To validate our approach, we used the F-measure, Recall

and Precision measures, which are commonly used

metrics to assess the clustering results.

F1 (F-measure) [26] is a combination of Precision and

Recall. It measures the balance between P (Precision) and

R (Recall) expressed respectively by the following Eqs. (7)

and (8).

� � �OS^ (7)

� � �OSO (8)

Nc is the number of documents in the cluster C, Nd is the

number of documents in the target class (DTD) and Xd is

the number of documents in the target class assigned to

cluster C. We recall that each DTD is considered as a

target class with which we can evaluate our clustering. So

we know a priori these classes, i.e., we know their

numbers and the names of the documents they contain.

The F-measure F1, in turn, is expressed by Eq. (9)

representing the harmonic mean of Precision and Recall.

�� � �∗�∗��o� (9)

4.4. Evaluation and discussion

In this phase, we first derive from the previous XML

collection, the corresponding “tree summaries”, and we

then respectively proceeded to their clustering. The first

clustering test consists in comparing the measure of

similarity proposed with the similarity measure based on

“tree edit distance” and the similarity measure proposed in

[3]. The second test is to compare some of our results with

those of existing approaches. Finally, the third test is to

confirm the asymptotic time complexity of our similarity

measure.

4.4.1 Similarity measure proposed versus other similarity

measures

In the first test, as expected, we compared the similarity

measure proposed to another measures, namely the edit

distance and the similarity measure proposed in [3]. We

chose to compare our similarity measure with the edit

distance, because the latter is a measure of similarity that

has been widely used in many clustering approaches. The

comparison with the work presented in [3], is justified by

the fact that we use exactly the same model for

representing XML documents, in this case, structural tree

summaries. This comparison test is particularly motivated

by the response time of our clustering on the one hand and,

on the other hand, by the reliability of our similarity

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 1, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 431

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

measure. For this, we first replaced in our clustering

algorithm, the similarity measure described by Eq. 6,

respectively, by the edit distance and similarity measure

proposed in [3]. We then performed three series of tests

with the same values of distance threshold in the interval

[0.1- 0.9]. However, given the recurring results (especially

for the 920 documents corresponding to IndexTermsPage

which are almost identical, thus structurally very similar),

we used only
�M of the corpus, namely 348 XML

documents, i.e., (300 + 30 + 16 + 1 + 1) corresponding

respectively to IndexTermsPage, OrdinaryIssuePage,

ProceedingsPage, SigmodRecord, and HomePage.

To have a clear idea about the performance and reliability

of our tests, it would be appropriate to report the

comparative results (for the same type of test) published in

[3]. These results are given in Table 5. Some abbreviations

used in Table 5: NC is the number of clusters. The time

unit on the column named “Time” is the second. The

abbreviations SM and ED denote respectively “Similarity

Measure” and “Edit Distance”. Finally, the abbreviation

TH represents the similarity threshold.

Table 5: [3]’similarity measure versus edit distance

TH
[3]’ SM ED

NC Time NC Time

0.1 1 1.67×103 1 1.43×102

0.2 2 1.52×103 2 1.31×102

0.3 2 1.52×103 2 1.31×102

0.4 3 1.43×103 2 1.31×102

0.5 4 1.35×103 4 1.16×102

0.6 5 1.28×103 5 1.02×102

0.7 5 1.28×103 5 1.02×102

0.8 7 1.17×103 5 1.02×102

0.9 9 1.10×103 7 0.85×102

Note that the clustering algorithm in [3] is completely

different from the clustering algorithm we proposed in this

article. In this regard, we recall that our clustering here is

based on a conventional agglomerative hierarchical

classification, while that of the approach [3] is an

incremental clustering.

As anticipated above, after completing the first test with

our similarity measure (based on Eq. 6), we replace, in our

clustering algorithm, our similarity measure, successively,

by the edit distance and [3]’similarity measure. We then

perform two new series of tests whose the results are

collected in Table 6. Other abbreviations concerning Table

6 are DT and OSM; they denote respectively the distance

threshold and similarity measure (based on Eq. 6).

As can be seen (Table 6), in all cases, i.e., with the

similarity measure proposed (OSM) or with other

measures (ED and [3]’ SM), clustering time remains

practically the same when the similarity threshold changes

(increases or decreases). Indeed, our clustering is based on

the “minimum distance” as a “criterion for aggregation”.

In other words, the number of comparisons is practically

the same for each threshold distance value.

As for differences, there is a lag in response times and

differences between the similarities’ values obtained. The

difference in response times, as expected, is obvious, given

the differences between the equations used by all three

measures tested. The time parameter is not very restrictive

and should not weigh heavily on the feasibility of such

applications (clustering is not an interactive application

where time is always critical parameter). Note, however,

that differences in the values of the similarities are crucial,

since it is on the basis of similarity that it is decided that a

document is or is not assigned to a cluster. Moreover,

these differences have a direct impact on the number of

clusters (NC) obtained in each test. Indeed, with these

thresholds, some documents are structurally very distant to

stay together in the same cluster. This is due to [3]’

similarity measure and our similarity measure that take

into account the ancestor and descendant context of nodes,

so that we find in the same cluster as the documents

having very close hierarchical structures. Thus, XML

documents that do not satisfy this condition, i.e., that are

not sufficiently structurally similar, will migrate to other

newly created clusters. In fact, these new clusters are

considered as not corresponding to any DTD. We recall

that each DTD is considered as target class against which

we can assess our clustering.

Table 6: Our similarity measure versus [3]’measure and edit distance

measure

DT
[3]’ SM ED OSM

NC Time NC Time NC Time

0.9 1 8.61×102 1 0.97×102 1 3.49×102

0.8 1 8.75×102 1 0.97×102 1 3.49×102

0.7 2 8.75×102 1 1.06×102 2 3.51×102

0.6 2 8.78×102 1 1.06×102 2 3.51×102

0.5 3 8.81×102 2 1.07×102 4 3.54×102

0.4 5 8.88×102 4 1.09×102 5 3.57×102

0.3 5 8.88×102 4 1.09×102 5 3.57×102

0.2 7 8.91×102 5 1.11×102 5 3.57×102

0.1 8 8.96×102 6 1.13×102 7 3.61×102

When we compare the results in Tables 5 and 6, there are

some differences. Indeed, if we consider the column

named “[3]’ SM” in the two tables in question, we find

that there is a clear difference in the clustering time. This

is certainly due to our clustering algorithm, which is faster

compared to the algorithm of the study by [3], which is

relatively slow.

The number of clusters NC does not change rapidly with

the distance threshold in Table 5 compared to NC in Table

6. This is due to clustering algorithms that are different.

The clustering algorithm used in this article is a simple

algorithm based on a conventional agglomerative

hierarchical classification, while the clustering approach

by [3] is an incremental clustering. Our clustering

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 1, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 432

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

algorithm uses only the minimum distance as aggregation

criterion, while the clustering approach by [3] is

characterized by the mobility of the centroid, representing

each cluster. Each time an XML document must be added,

and its representative is systematically compared with all

existing centroids and all the trees in the cluster to which it

is assigned. During the comparison process, we can either

have a new centroid, which is systematically assigned to a

newly created cluster, or an existing centroid can be

replaced by another tree more representative, among those

of the same cluster. This clearly explains the differences

between the two approaches particularly regarding the

time variation in the clustering (SM column) in Table 5.

If we compare the column OSM in Table 6, representing

our approach, we see that it is somewhat close to the result

of the ED column in Table 5, in terms of clustering time

and the number of clusters NC. But it is somewhat far

from the result of the ED column in Table 6, particularly

in terms of time clustering.

We conclude that our method is better because it is reliable

in terms of clustering time and the quality of clustering.

4.4.2 Comparison of some of our results with those of

other clustering methods

The second test is to compare some of our results with

those obtained in [3, 6, 13, 31, 38] approaches on a portion

of ACM SIGMOD collection. To this end we used the

sample of XML documents in Table 7.

Table 7: Distribution of ACM Sigmod record subset

Name of the DTD Number of XML documents

IndexTermsPage

OrdinaryIssuePage

ProceedingsPage

SigmodRecord

HomePage

52

30

16

1

1

We chose to compare our method with those developed in

[3, 6, 13, 31, 38] approaches for several raisons. First, as

our approach, these approaches use very close

representation, namely tree structures to structurally

represent XML documents. Second, because they use the

same data set, namely ACM SIGMOD corpus. Third, their

clustering methods are all based on edit distance or

similarity that is different from our measure of similarity.

Recall that these results do not depend only on the

similarity measure, but also and especially, of the model

(original XML tree structure or XML tree structure

summary) used to represent the structures of XML

documents. In Table 8, we can see the results of this

comparison. Note that [3, 6, 13, 31, 38] results were

reported in [3, 38]. These values represent the average

Precision, Recall, and F-measure, in the interval [0, 1].

The results in Table 8 show that our clustering has a

slightly lower precision than those of [6, 13, 38]’

approaches, but it is very close to those of [3,

31]’approaches.

But it nevertheless has a better Recall than the majority of

other approaches, with the exception of that of the [3]’

approach.

Finally, the F-measure obtained by our clustering also

seems to be higher than all others, with the exception of

that of the approach [3]. However, our clustering is better

overall, since it has a better Precision than that of the

approach [3].

Table 8: Comparison of our results with those of other approaches

Approach Precision Recall F-measure

[3] 0.78 0.97 0.86

[6] 0.86 0.57 0.68

[13] 0.86 0.67 0.68

[31] 0.81 0.64 0.72

[38] 0.90 0.61 0.73

Our approach 0.82 0.71 0.76

4.4.3 Time needed to calculate the structural similarity

between two XML documents

Finally, as expected, in this third test, we will conduct

experiments to determine the time required to calculate the

structural similarity between two XML documents.

To conduct these experiments, we generated a set of 10

synthetic XML documents whose the number of nodes

varies respectively from 50 to 500.

We conducted two sets of tests with the group of XML

documents previously generated:

− The first one was conducted by setting the values of

the weights ��, �� and �M to
�M in Eq. (2). As we have

already considered, it is more natural, in the case of

XML documents, to give to S1, S2 and S3 the same

weight, namely w1 =	�M, w2 =
�M, and w3 =

�M. Recall that

S2 and S3 represent respectively ascendant (ancestor)

and descendant contexts. For more details see the

equations for calculating the similarity.

− The second one was conducted by setting the values

of the weights �� � 1 , �� = �M = 0, in the same

equation. In other words, we ignore the hierarchical

contexts (descendant levels and ancestors levels).

Therefore, it is not necessary to calculate S2 and S3. In

this case our similarity measure behaves like the edit

distance. Thus, the time complexity of calculating the

similarity between two trees T1 and T2 is in the worst

case O (N
2
).

What matters in this test is not the quality of clustering,

but the time required for comparison of two XML

documents’ structures. Therefore, it is not necessary to

have summaries of XML trees. For this, we slightly

modified our parser, so as not remove repetitions of sibling

nodes and thus to obtain the original XML tree structures

(the whole structure of document). For more details about

this question, see Subsection 3.1.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 1, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 433

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

We recall that the timing experiments were carried out on

a Lenovo PC Intel (R) Core (TM) 2 Duo CPU, 2.00 GHz

for each Processor, and 2.99 GB of RAM.

Fig. 16 Timing results with weights �� � �� = �M =
�M

Fig. 17 Timing results with weights �� � 1, �� = �M = 0

The graphs in Figs. 16 and 17 express the results of timing

experiments performed on the group of 10 previously

generated XML documents.

In the first case, namely with weights �� � �� = �M =
�M

as shown in Fig. 16, the time required for the similarity

calculation in the case of our approach is between the time

required to calculate the similarities in the approaches [6,

13, 31, 38] and [3]. This time seems much closer to the

time needed in the approaches [6, 13, 31, 38]. Indeed,

according to Fig. 16, we can see that the time required for

calculating the similarity between two trees T1 and T2 of

various sizes grows in quasi linear fashion with tree size

(of each tree).

In the second case, however, as shown in Fig. 17, namely

with �� � 1 , �� = �M = 0, our similarity calculation

algorithm behaves like the algorithm of [6, 13, 31, 38], i.e.,

with a time complexity of O (N
2
). The time needed to find

the similarity between pairs of trees of various sizes

increases in linear fashion with tree size (of each tree).

Under all these experiments and according to the results

obtained in all previous tests, we can say that our proposed

similarity measure and our way of representing XML

documents are very relevant particularly since it provides

high-quality clustering.

5. Conclusion

We have proposed an approach for representing XML

documents by their respective structures. We have

particularly shown how to extract the tree structure of each

XML document to be classified. We also proposed an

efficient similarity measure (which is the primary purpose

in this article), and an algorithm for clustering these

structures. The clusters containing XML structures

classified are generated through a conventional

agglomerative hierarchical technique.

Our approach touches on two interesting fundamental

aspects of the Information Retrieval. Indeed, on the one

hand, the clustering allows to reduce the number of treated

documents and finally to increase the number of the

relevant documents returned by the search engine. On the

other hand, the clusters obtained can constitute an interface

allowing users to access XML documents they wish to

query and to reach the specific “information units” that

interest them.

The experiment conducted is a small outline for testing the

feasibility and reliability of our approach. However, to

perform a good experimentation, it is judicious to prepare

tests on larger collections of documents.

References
[1] A. Aïtelhadj, M. Mezghiche, F. Souam, "Classification de

Structures Arborescentes: Cas de Documents XML", In

Proceedings of the 6th French Information Retrieval

Conference, CORIA 2009, Presqu’île de Giens, France, 5–7

May 2009, pp. 301–317.

[2] A. Aïtelhadj, F. Souam, M. Mezghiche, "XML Documents

Clustering Based on Structural Similarity", In Proceedings of

the IADIS international conference on WWW/INTERNET,

Rome, Italy 19–22 November 2009, pp.559–566.

[3] A. Aïtelhadj, M. Boughanem, M. Mezghiche, F. Souam

"Using structural similarity for clustering XML", Knowl Inf

Syst, 32 (1), 2012, pp. 109–139.

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

0 100 200 300 400 500 600

T
im

e
 (

 s
e

co
n

d
s)

Number of nodes in T1

50

100

150

200

250

300

350

400

450

500

Number of
nodes in T

2

0

0,5

1

1,5

2

2,5

0 200 400 600

T
im

e
 (

 s
e

co
n

d
s)

Number of nodes in T1

50

100

150

200

250

300

350

400

450

500

Number of

nodes in T
2

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 1, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 434

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

[4] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sakamoto,

Arikawa S, "Efficient substructure discovery from large

semi-structured data", In Proceedings of the 2nd SIAM

international conference on data mining, Arlington, Virginia,

VA, USA, 11–13 April 2002, pp. 158–174.

[5] E. Bertino, G. Guerrini, M. Mesiti "A matching algorithm for

measuring the structural similarity between an XML

documents and a DTD and its applications", Inf Syst, 2004,

29(1), pp. 23–46.

[6] S. Chawathe, "Comparing hierarchical data in external

memory", In Proceedings of the 25th international conference

on very large data bases, VLDB 1999, Edinburgh, Scotland,

UK, 7–10 September 1999, pp. 90–101.

[7] S. Chawathe, Garcia-Molina H, "Meaningful change

detection in structured data", In Proceedings of the 1997

ACM SIGMOD international conference on management of

data, Tuscon, Arizona, May 1997, pp. 26–37.

[8] S. Chawathe, R. Rajaraman, H. Garcia-Molina, J. Widom,

"Change detection in hierarchically structured information",

In Proceedings of the 1996 ACM SIGMOD international

conference on management of data, Montreal, Quebec, June

1996, pp. 493–504.

[9] G. Cobena, S. Abiteboul, A. Marian, "Detecting changes in

XML documents", In Proceedings of the 18th international

conference on data engineering, ICDE 2002, San Jose,

California, 26 February–1 March 2002, pp. 41–52.

[10] T. Cormen, C. Leiserson, R. Rivest, Introduction to

algorithms, MIT Press, 1990.

[11] G. Costa, R. Manco, R. Ortale, A. Tagarelli, "A tree-based

approach to clustering XML documents by structure", In

Proceedings of the 8th European conference on principles

and practice of knowledge discovery in databases, PKDD

2004 Pisa, Italy, September 2004, pp.137–148.

[12] J. Cui, H. Liu, J. He, P. Li, X. Du, W. Puwei, "TagClus: a

random walk-based method for tag clustering", Knowl Inf

Syst, May 2011, 27(2), pp.193–225.

[13] T. Dalamagas, T. Cheng, K.J. Winkel, T.K. Sellis, "A

methodology for clustering XML documents by structure",

Inf Syst, 2006, 31(3), pp. 187–228.

[14] T. Dalamagas, T. Cheng, K.J. Winkel, T.K. Sellis,

"Clustering XML documents using structural summaries", In

EDBT 2004 (Extending Database Technology) international

workshop on clustering information over the web, Heraklion,

Crete, Greece, 14 March 2004, pp. 547–556.

[15] Del Razo Lopez F, Larent A, Poncelet P, Teisseire M

"Recherche de sous-structures fréquentes pour l’intégration

de schémas XML", In Proceedings of the 6th international

French-speaking conference on knowledge discovery and

management, EGC 2006, Lille, France, 17 January 2006,

pp.487–498.

[16] L. Denoyer, "Apprentissage et inférence statistique dans les

bases de documents structurés: Application aux corpus de

documents textuels", Ph.D thesis, Université Paris 6, France,

2004.

[17] H.G. Direen, M.S Jones., "Knowledge management in

bioinformatics", In A. B. Chaudhri, A. Rashid, and R. Zicari,

editors, XML Data Management, 2003, Addison Wesley.

[18] A. Doan, P. Domingos, A. Halevy, "Reconciling Schemas of

Disparate Data Sources: a machine-Learning approach", In

Proceedings of the 2001 ACMSIGMOD international

conference on management data, ACM New York, NY,

USA, June 2001, pp. 509–520.

[19] A. Doucet, M. Lehtonen, "Unsupervised classification of

text-centric XML document collections", In Proceedings of

the 5th International Workshop of the Initiative for the

Evaluation of XML Retrieval, INEX 2006, Dagstuhl Castle,

Germany, 17–20 December 2006, pp. 497–509.

[20] S. Flesca, G. Manco, E. Masciari, L. Pontieri, A. Pugliese,

"Fast detection of XML structural similarity", IEEE Trans

Knowl Data Eng, 17(2), pp. 160 –175.

[21] F.D. Francesca, R. Gordano, R. Ortale, A. Tagarelli

"Distance-based clustering of XML documents", In

Proceedings of the first international workshop on mining

graphs, trees and sequences, MGTS 2003, Cavtat-Dubrovnik,

Croatia, 22–26 September 2003, pp. 75–78.

[22] J.C. Gower, G.J.S. Ross, "Minimum spanning trees and

single linkage cluster analysis", Applied Statistics, 1969,

18(1), pp. 54–64.

[23] Y Guo, D. Chen, J. Le, "Clustering XML documents by

combining content and structure", In Proceedings of the 2008

international symposium on information science and

engineering, ISISE 2008, Shanghai, China, 20–22 December

2008, published by IEEE Computer Society Washington,

DC, USA 2008, pp. 583–587.

[24] M. Hagenbuchner, A. Sperduti, A.C. Tsoi, F. Trentini, F.

Scarselli, M. Gori, "Clustering XML documents using self-

organizing maps for structures", In Proceedings of the 4th

international workshop of the initiative for the evaluation of

XML retrieval, INEX 2005, Dagstuhl Castle, Germany, 28–

30 November 2005, pp. 481–496.

[25] M. KcM, M. Hagenbuchner, A.C. Tsoi, F. Scarselli, M.

Gori, A. Sperduti, "XML document mining using contextual

self-organizing maps for structures", In Proceedings of the

5th international workshop of the initiative for the evaluation

of XML retrieval, INEX 2006, Dagstuhl Castle, Germany,

17–20 December 2006, pp. 510–524.

[26] B. Larsen, C. Aone, "Fast and effective text mining using

linear-time document clustering", In Proceedings of the 5th

ACM SIGKDD international conference on knowledge

discovery and data mining KDD 99, San Diego, California,

CA, USA 15–18 August 1999, publisher: ACM New York,

NY, USA 1999, pp. 16–22.

[27] J. Madhavan, A.P. Bernstein, E. Rahm, "Generic schema

matching with cupid", In Proceedings of the 27th

international conference on very large data bases, VLDB

2001, Roma, Italy, September 2001, pp. 49–58.

[28] L.L Mong, Y. Liang Huai, H. Wynne, Y. Xia, "XClust:

Clustering XML schemas for effective integration", In

Proceedings of the 11th ACM CIKM international

conference on information and knowledge management,

CIKM 2002, Mclean, Virginia, USA, 4–9 November 2002,

pp. 292–299.

 [29] R. Nayak, "Fast and effective clustering of XML data using

structural information", Knowl Inf Syst, 2008, 14(2), pp.

197–215.

[30] R. Nayak, Xu S, "XML documents clustering by structures",

In Proceedings of the 4th international workshop of the

initiative for the evaluation of XML retrieval, INEX 2005,

Dagstuhl Castle, Germany, 28–30 November 2005, pp. 432–

442.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 1, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 435

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

[31] A. Nierman, H.V. Jagadish, "Evaluating structural similarity

in XML documents", In Proceedings of the fifth international

workshop on the web and databases Web DB 2002, Madison,

Wisconsin, USA, 6–7 June 2002, Publisher: Citeseer, pp. 61–

66.

[32] D. Patnaik, S. Laxman, N. Ramakrishnan, "Discovering

excitatory relationships using dynamic Bayesian networks",

Knowl Inf Syst, 2011, 29(2), pp. 273-303.

[33] R.C. Prim, "Shortest connection networks and some

generalizations", Bell System Technical Journal, 1957, 36,

pp. 1389–1401.

[34] D. Sankoff, J. Kruskal, "Time Warps, String Edits and

Macromolecules: The Theory and Practice of Sequence

Comparison", CSLI Publications, 1999, D. Sankoff and J.

Kruskal, eds., pp. 11−44.

[35] S.M. Selkow, "The tree-to-tree editing problem", Inf Process

Lett, February 1977, 6(6), pp. 184–186.

[36] H. Su, S. Padmanabhan, "Identification of syntactically

similar DTD elements in schema matching across DTDs", In

Proceedings of the 2th international conference on web-age

information management, WAIM 2001, Xi’an, China, 9–11

July 2001, LNCS Springer 2118, 2001, pp. 145–159.

[37] K.C. Tai, "The tree-to-tree correction problem", J ACM

(JACM), 1979, 26(3), pp. 422–433.

[38] J. Tekli, R. Chbeir, K. Yetongnon, "Efficient XML

Structural similarity detection using sub-tree commonalities",

In Proceedings of the 22nd Brazilian symposium on

databases, SBBD 2007, Joao Pessoa, Paraiba, Brasil, 15–19

October 2007, pp. 116–130.

[39] A. Termier, M.C. Rousset, M. Sebag, "Tree finder: a first

step towards XML data mining", In Proceedings of the 2002

IEEE international conference on data mining, ICDM 2002,

9–12 December 2002, Maebashi City, Japan, published by

IEEE Computer Society, 2002, pp. 450–457.

[40] Tran T, Nayak R, "Evaluating the performance of XML

document clustering by structure only", In Proceedings of the

5th international workshop of the initiative for the evaluation

of XML retrieval, INEX 2006, Dagstuhl Castle, Germany,

17–20 December 2006, pp. 473–484.

[41] A.M. Vercoustre, M. Fegas, S. Gul, Y. Lechevallier, "A

flexible structured-based representation for XML document

mining", In Proceedings of the 4th international workshop of

the initiative for the evaluation of XML retrieval, INEX

2005, Dagstuhl Castle, Germany, 28–30 November 2005, pp.

443–457.

[42] Wang J, Zhang K, Jeong K, Shasha D, "A system for

approximate tree matching", IEEE Trans Knowl Data Eng,

1994, 6(4), pp. 559–571.

[43] G. Wisniewsky, L. Denoyer, P. Gallinari, "Classification

automatique de documents structurés: Application au corpus

d’arbres étiquetés de type XML", In Proceedings of the 2nd

French information retrieval conference, CORIA 2005,

Grenoble, France, 9–11 march 2005, pp. 167–184.

[44] S.L. Yong, M. Hagenbuchner, A.C. Tsoi, F. Scarselli, M.

Gori, "XML document mining using graph neural network",

In Proceedings of the 5th international workshop of the

initiative for the evaluation of XML retrieval, INEX 2006,

Dagstuhl Castle, Germany, 17–20 December 2006, pp. 458–

472.

[45] M.J. Zaki, "Efficient mining frequent trees in a forest", In

Proceedings of the 8th ACM SIGKDD international

conference on Knowledge discovery and data mining, KDD

2002, ACM New York, NY, USA 2002, pp. 71–80.

Dr. Ali Aïtelhadj received his Magister degree in Computer
Science from Tizi-Ouzou University, Algeria in 2006 and Ph.D
degree from Boumerdes University, Algeria in 2011. Currently, he
is working as Assistant Professor (Maître de conférences) in the
Department of Computer Science, Faculty of Electrical
Engineering and Computer Science at the University of Tizi-
Ouzou. He is the author and co-author in several international
conferences and journals. His main research topics are focused on
Classification, IR models and XML information retrieval. His other
research areas include Advanced Data Structures and Algorithms,
Evolutionary computing, and Data Mining.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 1, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 436

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

