

A MLFQ SCHEDULING TECHNIQUE USING M/M/c QUEUES

FOR GRID COMPUTING

DHARAMENDRA CHOUHAN
1
, S. M. DILIP KUMAR

1
 AND JERRY ANTONY AJAY

1

1
Dept. of Computer Science and Engineering

University Visvesvaraya College of Engineering

BANGALORE, INDIA

Abstract

We model the objective function, that the jobs

entering the scheduler have a Poisson’s distribution

and the jobs that are sent out from the multilevel

feedback scheduler are also distributed as a

Poisson’s distribution. We also assume that the

number of CPU’s in a processing element is not

restricted to one, but rather many CPUs integrated

into one PE. Therefore, we assume the M/M/c queue

model for our calculations. In Kendall's notation, we

describes a system where arrivals form a single

queue and are governed by a Poisson process, where

there are c servers and job service times are

exponentially distributed. Gridlets provided by the

users are assigned to processing elements (PEs), and

gridlets whose remaining service time is shifted

between queues of the MLFQ scheduler to be

completed. In MLFQ, the total architecture is

divided into multiple prioritized queues. This

approach provides gridlets which starve in the lower

priority queue for long time to get resources. As a

result, the response time of the starved gridlets

decreases and overall turnaround time of the

scheduling process decreases. This scheduling

policy is simulated using Alea GridSim toolkit to test

the performance. The proposed MLFQ scheduling

algorithm works better in most of the scenarios when

compared to FCFS and PBS_PRO algorithms.

Keywords: Grid Computing, Job Scheduling,

Multilevel Feedback Queue, GridSim.

1 Introduction

Grid computing is a distributed computing which has

emerged for solving a large scale intensive data

through sharing of resources over the network [1]. In

grid computing systems, there are often large

amounts of resources available to be used for

computing jobs. Scheduling in a grid computing

system is not as simple as scheduling on a

multi-processor machine because of several factors.

These factors include the fact that grid resources are

sometimes used by paying customers who have

interest in how their jobs are being scheduled [2].

However, grid computing systems usually operate in

remote locations so scheduling tasks for the clusters

may be occurring over a network [3]. Job scheduling

algorithms are commonly applied to grid resources

to optimally post jobs to grid resources [4, 5].

Usually, grid users submit their jobs to the grid

manager to utilize and fulfill the facilities provided

by grid. The grid manager distributes the submitted

jobs among the grid resources to minimize the total

response time.

In a Grid environment, there are moderately large

number of job scheduling algorithms proposed to

minimize the total completion time of the jobs [6, 7].

These algorithms works on minimizing the overall

completion time of the jobs by analyzing the suitable

resources to be assigned to the jobs. In contrast with

minimizing the overall completion time of the jobs

does not necessarily result in the minimization of

execution time of each individual task. In this paper,

we propose a new scheduling policy for grid

computing which uses multilevel feedback queue

technique concept to avoid the starvation of low

priority jobs for a longer duration to get resources to

complete their requested services. In this technique,

jobs are scheduled according to their remaining

service time and they are shifted down from queue to

queue as they have some remaining service time.

Every queue has unique time quanta that gradually

increase from top level to bottom level queues so that

longer jobs gradually moves from top to bottom

level queues for getting completed. All low priority

jobs will process on intermediate queues and gets

completed with minimal duration, so that all jobs

will get an equal opportunity to utilize grid resources

efficiently. The rest of the paper is organized as

follows. Section 2 presents the related works. In

Section 3, a grid system model for scheduling is

presented. In section 4, the MLFQ scheduling

technique is proposed.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 1, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 357

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

http://en.wikipedia.org/wiki/Kendall%27s_notation
http://en.wikipedia.org/wiki/Poisson_process

The simulation of the MLFQ scheduling algorithm

using Alea GridSim is presented in section 5.

Finally, section 6 concludes the paper.

2 Related Work

There has been significant research continuing to

attempt to devise scheduling algorithms for grid

environments’ problem of efficient job assignment.

Some of the jobs scheduling algorithms in a grid

environment are given below.

X. He et al. [9] have proposed an algorithm based on

the conventional min-min algorithm known as QoS

guided min-min which schedules the jobs requiring

high bandwidth before others. L. Mohammad Khanli

et al. [10, 11] have proposed a QoS based scheduling

algorithm for an architecture called Grid-JQA. In

this method the solution involves applying an

aggregation formula which includes a combination

of different parameters together with weighting

factors to perform operations on QoS. F. Dong et al.

[12] have proposed an algorithm called QoS priority

grouping scheduling which considers completion

time, accept rate of the jobs and the makespan of the

entire system as key factors for job scheduling. E.

Ullah Munir et al. [13] have proposed a new job

scheduling algorithm which makes use of grid

computing environments known as QoS Sufferage.

K. Etminani et al. [14] have proposed an algorithm

which provides a solution on basis of max-min and

min-min algorithms. The algorithm discovers the

situations where to adopt one of these two

algorithms, based on the standard deviation of the

estimated completion times of the jobs on every

computing resources. In [15] a game-theoretic-based

solution is proposed to the grid load-balancing

problem. The developed algorithm combines the

inherent efficiency of the centralized approach and

the fault-tolerant nature of the decentralized

approach. The scheme can be considered semistatic,

as it responds to changes in system states during

runtime. However, it does not use as much

information as traditional dynamic schemes; as such,

it has relatively low overhead.

3 Grid System Model

We consider the computational grid system consists

of a set of gridresources, G, connected via

communication systems. In general, each grid

resource may contain multiple machines having one

or more processing elements.

The processing elements in the machines are

heterogeneous, meaning that they may have different

processing capacity.

The grid resources G1, ... ,Gn in G are fully

interconnected, meaning that there exists a

communication path between any two grids (Gi, Gj)

in G. Inter grid communication is done via message

passing, and the underlying network protocol

guarantees that messages are received by the

intended recipient. Considering the grid computing

scenario, the link is viewed as Internet links and

modeled. Our communication model represents

network performance between a grid Gi to a grid Gj

using two parameters-a transmission delay tj

representing the setup cost and contention delays at

links on the path from Gi to Gj and a data

transmission rate dj representing the bandwidth

available on the path from Gi to Gj. For a message of

size s to be transmitted from site Gi to Gj, the

transmission time is then given by

 Cj = tj + (1)

tj and dj can be calculated from analytical models or

pre-existing information or dynamically forecasted

by facilities such as the Network Weather Service

(NWS) [16].

 Each grid Gi in the grid system can represent one or

a combination of the following:

Gridlet: This generates tasks to be executed by the

processing elements. Each gridlet is assigned to the

to the scheduler to be scheduled for processing.

Scheduler: This receives gridlets and assigns them

to the processing elements in the grid system. Every

time a gridlet is assigned to the scheduler which is

implemented as a multilevel feedback queue, it

selects the gridlets based on certain assumed time

quanta. Ideally, a large number of gridlets exists.

Therefore, the tasks scheduled by the scheduler are a

collective from many gridlets.

Processing Elements: Each processing element

(PE) executes and processes tasks sent to it. Each PE

has a queue that holds tasks to be executed; each task

is then processed on a first-come, first-serve (FCFS)

basis.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 1, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 358

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Figure1 shows the relationship between gridlets,

scheduler, and processing elements. A site that

generate gridlets, can also work as a scheduler, and

also process gridlets parallelly. Thus, the tasks that

are executed locally at a site which was generated by

the site itself will have minimal communication

delay Cij.

3.1 Application Model

The system consists of n gridlets, one multilevel

feedback queue scheduler, and m processing

elements. Each gridlet k is assumed to generate tasks

with average rate φk (tasks per second) according to

a Poisson process and independent of the other

generated gridlets. Gridlets are then sent to the

scheduler that dispatches them to the processing

elements (Figure 1). Depending on the

computational power of the processing elements,

each processing element k executes tasks at an

average rate µj (tasks per second).

 In our model, we assume a Poisson distribution for

task execution time and the task execution time of

the applications running on the system is assumed to

be a Poisson distribution as well. Each grid service

provider can be modeled as a M/M/c queuing system.

We also assume that the task distribution of the

applications, once chosen, is consistent throughout

the system. For stability, we have the

condition/constraint that gridlets must not arrive

faster than the system can process them (otherwise,

the queues will build up to infinity):

 < (2)

where λi is the average arrival rate of tasks (in tasks

per second) at the scheduler and µj is the average

processing rate of tasks at the processing element j.

The multilevel feedback queue scheduler then sends

a fraction rj of it’s gridlets to each processing

element j, in which

 rj > 0 (3)

 (4)

For stability, the rate of gridlets sent to a

processing element j must not exceed the rate at

which jobs can be executed by the processor j

(otherwise, the queue at processor j will build up

to infinity):

 (5)

3.2 Objective Function

The task completion time includes communication

delays, the waiting time at the queue, and the task

processing time itself. In order to proceed further in

deriving the objective function, we assume that the

jobs entering the scheduler have a Poisson’s

distribution and the jobs that are sent out from the

multilevel feedback scheduler is also distributed as a

Poisson’s distribution. We also assume that the

number of CPU’s in a processing element is not

restricted to one, but rather many CPUs integrated

into one PE. Therefore, we assume the M/M/c queue

model for our calculations.

 In queuing theory, the M/M/c queue is a

multi-server queuing model. In Kendall's notation it

describes a system where arrivals form a single

queue and are governed by a Poisson process, there

are c servers and job service times are exponentially

distributed. It is a generalization of the M/M/1

queue which considers only a single server.

An M/M/c queue is a stochastic process whose state

space is the set {0,1,2,3,...} where the value

corresponds to the number of jobs in the system,

including any currently in service.

Arrivals occur at rate λ according to a Poisson

process and move the process from state i to i + 1.

Service times have an exponential distribution with

parameter μ in the M/M/c queue, as mentioned

above.

The buffer is of infinite size, so there is no limit on

the number of customers it can contain.

The model can be described as a continuous time

Markov chain with generator matrix

 (6)

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 1, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 359

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

http://en.wikipedia.org/wiki/Queueing_theory
http://en.wikipedia.org/wiki/Queueing_model
http://en.wikipedia.org/wiki/Kendall%27s_notation
http://en.wikipedia.org/wiki/Poisson_process
http://en.wikipedia.org/wiki/M/M/1_queue
http://en.wikipedia.org/wiki/State_space
http://en.wikipedia.org/wiki/State_space
http://en.wikipedia.org/wiki/Poisson_process
http://en.wikipedia.org/wiki/Poisson_process
http://en.wikipedia.org/wiki/Exponential_distribution
http://en.wikipedia.org/wiki/Continuous_time_Markov_chain
http://en.wikipedia.org/wiki/Continuous_time_Markov_chain
http://en.wikipedia.org/wiki/Generator_matrix

on the state space {0,1,2,3,...}. The model is a type

of birth–death process.

The queuing model M/G/1 is employed in [15] it

assumes general distributions for its output queue of

the schedulers. Therefore we model a M/M/c

queuing system, the jobs arrivals are exponential and

the output from the scheduler is also considered

exponential distribution . In M/M/c queuing system,

the average processing time of a task including the

waiting time at the queue at a processing element j is

given by

 (7)

where is the mean of the job execution

distribution, µj is the average service rate of tasks (in

tasks per second) at processing element j, s denotes

the number of processing elements, λ is the arrival

rate of gridlets, and finally , for the Poisson queue

system,

 (8)

Further, the multilevel feedback scheduler is

connected to a processing element j via a link with

capacity c in bits/s. Each task is assumed to require

an average of b bits of data to be transferred. Using

equation (1), the expected transfer time of a task

from the scheduler to processing element j is

therefore given by

 Cj = tj + (9)

This value represents the average communication

delay if a task is to be sent from the scheduler to a

processing element j.

The completion of a task involves the execution time

of the task, the waiting time at the queue, and the

communication delays and transfer time of the task

to the processing element. Our objective, as always,

is to minimize the average completion time of tasks.

Using equation (7) and (9), the average completion

time of tasks for the scheduler is given by

 (10)

We introduce a new variable µj shown in (10). µj

defines the computational power of a processing

element j that is available to the tasks coming out

from the scheduler. µj can be estimated for each

processing element j in equation (10). Where k is the

gridlet count, is the arrival rate of gridlets and µ is

the ideal computational power of the scheduler.

 (11)

Using (11), (10) becomes

 (12)

Equation (12) is the objective function that the

multilevel feedback queue scheduler is based upon

subject to the constraints of (3), (4), and (5). Note

that Di is a function of rj. It can be proved that the

expected response time function (see (12)) is

continuous, convex, and increasing.

According to our model, the scheduler is considered

to be a multilevel feedback queue. The fundamental

problem MLFQ tries to address is to optimize

turnaround time. As a common characteristic of a

MLFQ, we implement the following rules:

• Rule 1: If Priority(Job A) > Priority(Job B), A runs

(B doesn’t).

• Rule 2: If Priority(Job A) = Priority(Job B), either

A or B runs first.

• Rule 3: When a job enters the system, it is placed at

the lowest priority (the topmost queue).

• Rule 4: Once a job uses up its time allotment at a

given level, its priority is increased and shifted

down to the next queue.

• Rule 5: Much of the length has been reduced by

preceding queues therefore the final queue contains a

list of high priority jobs. The final queue works in a

FCFS manner.

In this work, we prove that our implementation of

the multilevel feedback queue scheduler works in an

efficient manner compared to a FCFS scheduler.

The proposed model works under the following

assumptions:

1. Gridlets arriving into the system are independent

of one another.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 1, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 360

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

http://en.wikipedia.org/wiki/Birth%E2%80%93death_process

2. When gridlets are mapped to the machines, based on

their requirement, it checks for the (resource)

availability list.

3. No information is available on the workload of

incoming gridlets.

4. The initial processing speed of each PE is provided

and processing capacity of Grid resources is updated

from time to time based on last gridlet executed and

time taken for task completion.

3.3 Multilevel feedback queue (MLFQ)

Multilevel feedback queue plays a significant role in

multilevel queue scheduling. In MLFQ, jobs are

scheduled according to their remaining CPU burst

and they are shifted down from queue to queue as

they have some remaining CPU burst. Every queue

has unique time slice that gradually increases from

upper level queue to lower level queue. So the CPU

intensive jobs go down from upper queues to lower

queues gradually for getting completed. Thus, lower

priority queues are filled with CPU intensive jobs

and as a result these processes start to starve for

getting CPU attention. The MLFQ scheduling

organizes the queues to minimize the queuing delay

and optimize the queuing environment efficiency

[8].

3.4 State diagram

The system is modeled in a state transition diagram

as shown in Figure 2. As gridlets arrives to the input

queue, each gridlet is selected and it acquires the

requested resources from grid resource list. Once it

acquires the requested resources, it finds the

suitability of the resources and checks for the

required PEs, MIPS, bandwidth and storage. If the

suitability is fulfilled, the scheduler assigns gridlets

to the resources selected from the resource list.

Gridlets are scheduled according to their remaining

service time and they are shifted down from queue to

queue as they have some remaining service time.

Every queue has unique time slice that gradually

increases from upper level queue to lower level

queue. So the PEs intensive gridlets go down from

upper queues to lower level queues gradually for

getting executed. If the gridlet fails to execute at this

stage then it is placed back into input queue during

the course of execution for later resumption.

4 Proposed Solution

In this section, we briefly explain the proposed

solution for scheduling the jobs using MLFQ

technique in Grid environment. The user submits

gridlets along with the requirements to the Alea

GridSim scheduling system. The submission of

gridlets to the resources involves checking the

suitability of the available PEs. If the requirement is

satisfied, the gridlets are assigned to the respective

resources. This technique uses a dynamic priority

mechanism to schedule the gridlets to the system

efficiently and maximize the resource utilization.

The MLFQ scheduling model is depicted in the

Figure 3. The gridlet waiting for the service is placed

in the waiting queue. The gridlets that are scheduled

in the queue are executed. If the gridlets in

submitted for execution do not complete in the given

time quanta of then those gridlets are pushed onto

the next level queue . Then the gridlets pushed on

to are executed along with the gridlets present in

queue . Similarly, if the gridlets in submitted

for execution do not complete in the fixed time

quanta of then those gridlets are pushed onto the

next level queue . However, the gridlets present in

are executed based on FCFS scheduling policy.

The shorter gridlets completes its execution quickly,

without migrating to lower level queues. All gridlets

gets an opportunity to execute and thus reduces

starvation of gridlets by promoting the gridlets in

lower queues to a higher priority.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 1, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 361

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

4.1 Algorithm

In this section, we present the pseudo code of the

MLFQ scheduling Algorithm

1. Add_new_job()

2. Repeat for i=1 to inputqueue_size

3. Insert jobs into input queue

4. end for

5. SelectJob()

6. Move gridlets from input queue to ready

queue

7. Repeat for i=1 to readyqueue_size

8. Get gridlet gi from readyqueue

9. Repeat for i=1 to resourcelist_size

10. Get resource ri from resourcelist r

11. Check for suitability of gridlet ri with

 resource ri

12. If suitable

13. Assign the gridlet gi to the resource ri

14. Break;

15. End for

16. Submit gridlet gi to Q1 of the scheduler

17. Update the status of gi as InExec

18. If gridlet gi execution does not

 complete in Q1 quanta

19. Then push gridlet gi into Q2

20. Else

21. Terminate the gridlet in gi

22. Endif

23. If gridlet gi execution does not

complete in Q2 quanta

24. Then push gridlet gi into Q3

25. Else

26. Terminate the gridlet gi

27. Endif

28. Process each gridlet in Q3 according

 to FCFS basis

29. Increment the scheduled gridlet

30. Decrement the remaining gridlet

31. End for

5 Simulation

In this section we show the performance of MLFQ

scheduling technique through several experiments

using Alea simulator, an extension of GridSim

simulation toolkit. The experiment involved 5000

jobs that were executed on 14 clusters having 806

CPUs. We run the simulation by providing input data

set and it completes all the jobs submitted to the grid

over a span of time. These graphs shows the

differences among the algorithms. Concerning the

machine usage,as expected, FCFS generates very

poor results[17].

FCFS is not able to utilize available resources when

the first job in the queue requires some specific and

currently unavailable machine(s). At this point, other

more flexible jobs in the queue can be executed

increasing the machine utilization. This is the main

goal of the MLFQ algorithm. As we observe, MLFQ

is able to increase the machine usage by shifting the

jobs among the queues. Still, MLFQ will not allow to

delay the execution of the first job in the queue,

which restricts it from making more fair decisions

that would increase the machine utilization. In case

of the second criteria, similar reasons as in the

previous example caused that PBS_PRO is not able

to schedule jobs fluently, because higher priority

jobs keep occupies resources generating huge peak

of low priority waiting jobs during the time[17]. The

resulting makespan of MLFQ is slightly much higher

(by 50 days) than FCFS and PBS_PRO the average

machine usage per day as depicted in Figure 4.

MLFQ demonstrates the number of waiting and

running jobs on an average against each day is

depicted in Figure 5. MLFQ is capable of a higher

resource utilization and reduction of the number of

waiting jobs. The requested and available CPU

usage per day is shown in Figure 6. Figure 7 presents

the average machine usage per cluster. Simulation

results show that there is a minimization of overall

response time and waiting time for the gridlets.

Figure 4 describes a comparison between FCFS,

PBS_PRO and MLFQ scheduling algorithms.

According to the graph, we observe that the MLFQ

scheduling algorithm combines the best features of

both the FCFS and PBS_PRO. As a case study, let’s

consider the 18
th
 day.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 1, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 362

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Though PBS_PRO works better than FCFS in almost

all instances, on the 18
th
 day, when the load is pretty

high, the PBS_PRO algorithm fails miserably

whereas the FCFS algorithm performs in a much

better way. As a second case study, consider the 15
th

day. Here, we observe that the PBS_PRO works in a

much efficient way compared to FCFS. On the 15
th

day, though there was a large gridlet count, the time

required by each gridlet was significantly low,

hence, PBS_PRO proves itself to be more efficient

than FCFS in this particular instance.

Our MLFQ algorithm combines the best properties

of FCFS and PBS_PRO. From figure 4, we can

observe that on the 18
th
 day, MLFQ works with the

same efficiency as FCFS. On the 15
th
 day, though

MLFQ doesn’t drop to such an extent as that of

FCFS, the efficiency is better than that of FCFS.

Thus, it is proven from the test results that the MLFQ

scheduling algorithm provides an optimum

efficiency combining the feature of FCFS and

PBS_PRO.

Figure 5, figure 6, and figure 7 provide us with a

better understanding of the MLFQ scheduler.

6 Conclusions

The paper describes a new approach to schedule tasks

efficiently in a grid environment.

We proposed a Multilevel Feedback Queue

Scheduling (MLFQ) for Alea, a GridSim based

simulator. The approach is based on processing

capability of individual grid resources. Our policy

provides a solution by implementing MLFQ

scheduler where lower priority gridlets will complete

quickly, without migrating to the lower levels of the

hierarchy, due to which we are able to achieve high

throughput and good response time by considering

waiting and service times.Concerning the machine

usage, as expected, FCFS generates very poor

results. FCFS is not able to utilize available

resources when the first job in the queue requires

some specific and currently unavailable machine(s).

At this point, other more flexible jobs in the queue

can be executed increasing the machine utilization.

This is the main goal of the MLFQ algorithm. As we

observe, MLFQ is able to increase the machine

usage by shifting the jobs among the queues. MLFQ

will not allow to delay the execution of the first job

in the queue, which restricts it from making more

fair decisions that would increase the machine

utilization. In case of the second criteria, similar

reasons as in the previous example caused that

PBS_PRO is not able to schedule jobs fluently,

because higher priority jobs keep occupies resources

generating huge peak of low priority waiting jobs

during the time. The resulting

makespan of MLFQ yields better results. The

transportation cost and overall communication delay

and prices charged by the resource owners are

obtained based on a pricing model is considered for

future work .

7 References

[1]. I Foster, C Kesselman (2004) The Grid 2: Blueprint

for a New Computing Infrastructure II Ed. Elsevier

and Morgan Kaufmann Press.

[2]. W Hoschek et al (2000) Data Management in an

International Data Grid Project. Proc. 1
st

International Workshop on Grid Computing (GRID

Bangalore.

[3]. Buyya R, Steve Chapin S, DiNucci D (2000)

Architectural Models for Resource Management in

the Grid. IEEE/ACM International Workshop on

Grid Computing.

[4]. L Mohammad Khanli, M Analoui (2008) Resource

Scheduling in Desktop Grid by Grid-JQA The IEEE

3
rd

 International Conference on Grid and Pervasive

Computing.

[5]. L Mohammad Khanli, M Analoui (2007)

Grid_JQA: A QoS Guided Scheduling Algorithm

for Grid Computing The 6
th
 IEEE International

Symp on Parallel and Distributed Computing.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 1, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 363

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

[6]. F. Dong et al (2006) A Grid Task Scheduling

Algorithm Based on QoS Priority Grouping Proc. of

the 5
th
 IEEE International Conf on Grid and

Cooperative Computing.

[7]. K. Etminani, M Naghibzadeh (2007) A Min-min

Max-min Selective Algorithm for Grid Task

Scheduling The 3
rd

 IEEE/IFIP International Conf on

Internet, Uzbekistan.

[8]. Hoganson, Kenneth (2009) Reducing MLFQ

Scheduling Starvation with Feedback and

Exponential Averaging Consortium for Computing

Sciences in Colleges, Southeastern Conference,

Georgia.

[9]. X. He, X-He Sun, G V Laszewski (2003) QoS

Guided Min-min Heuristic for Grid Task Scheduling

J Computer Science and Technology 18:442-451.

[10]. L Mohammad Khanli, and M Analoui (2008)

Resource Scheduling in Desktop Grid by Grid-JQA

The 3
rd

 IEEE International Conf on Grid and

Pervasive Computing.

[11]. L Mohammad Khanli, M Analoui (2007)

Grid_JQA: A QoS Guided Scheduling Algorithm for

Grid Computing The 6
th
 IEEE International Symp on

Parallel and Distributed Computing.

[12]. F Dong, J Luo, et al (2006) A Grid Task

Scheduling Algorithm Based on QoS Priority

Grouping Proc of 5
th
 IEEE International Conf on

Grid and Cooperative Computing.

[13]. E Ullah Munir, J Li, Sh Shi (2007) QoS Sufferage

Heuristic for Independent Task Scheduling in Grid J

Information Technology 6 (8):1166-1170.

[14]. K Etminani, and M Naghibzadeh(2007) A

Min-min Max-min Selective Algorithm for Grid

Task Scheduling 3
rd

 IEEE/IFIP International Conf

on Internet, Uzbekistan.

[15]. Riky Subrata, Albert Y. Zomaya, and Bjorn

Landfeldt, “Game-Theoretic Approach for Load

Balancing in Computational Grids” IEEE

Transactions on parallel and Distributed Systems

Vol.19.no.1 2008.

[16]. R. Wolski, N.T. Spring, and J. Hayes, “The

Network Weather Service: A Distributed Resource

Performance Forecasting Service for

Metacomputing, ” J. Future Generation Computer

Systems, vol. 15,pp. 757-768, 1998.

[17]. Dalibor Klusáˇcek, Hana Rudová “Alea 2 – Job

Scheduling Simulator ” SIMUTools 2010 March

15–19, Torremolinos, Malaga, Spain.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 1, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 364

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

