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Abstract 
Ensemble method is a learning paradigm that has been shown to 
improve the performance of classical learning methods which are 
based on single model. However, for an ensemble method to be 
effective, it is essential that the base models are sufficiently 
accurate and error-independent (i.e. diverse) in their predictions. 
Moreover, ensemble integration is one of the most critical steps 
in ensemble learning. In this paper, a dynamic integration 
method is proposed and applied in electronic nose for online 
concentration estimation of some indoor air pollutants namely 
formaldehyde, benzene, toluene, and carbon monoxide. For 
comparison purpose, other integration methods were also 
evaluated. Experimental results show that this method is 
attractive, and with additional improvement it can be a good 
alternative for online air quality monitoring using electronic nose 
systems. 
Keywords: electronic nose, neural network ensembles, dynamic 
integration method, online monitoring 
 
1. Introduction 
 
Ensemble learning is an attractive research field in various 
research communities. In ensemble learning, instead of 
using one model for prediction, several models are 
employed. This learning method has been found to 
improve the performance of single models, provided that 
the base models are sufficiently accurate and diverse in 
their predictions [1,2]. It consists of two main phases: 
ensemble generation and ensemble integration. 
Homogeneous learning (i.e. the base models are trained 
using the same learning algorithm) and heterogeneous 
learning (i.e. the base models are trained using different 
learning algorithms) are the two main ensemble generation 
methods. With regard to the second method, due to high 
computational complexity associated with combining 
models derived from different algorithms, less  
research has been done in this area. As for the ensemble 
integration, one of these two approaches is generally used: 
combination approach where the predictions of the base 
models are combined using some rules to obtain the 
ensemble prediction, and the selection approach where the 

prediction of one or more good model(s) is (are) selected 
based on some criteria to form the final prediction. It is 
worth mentioning that both combination and selection can 
be either static or dynamic. In static approach, the trained 
models do not change, whereas in dynamic approach the 
prediction strategy is adjusted based on some rules for 
each test sample (pattern).  
Although there has been much research work on ensemble 
learning, less research has been carried out on its 
application in E-nose signal processing. In [3,4] Gao. et 
al., and Gao and Wei used ensemble method to predict 
simultaneously both the classes and concentrations of 
several kinds of odors. In the first approach, they used 
specifically MLP networks as base models, whereas in the 
second approach each ensemble (therein referred as panel) 
is a hybridization of four base models namely MLP, 
MVLR, QMVLR, and SVM. In [5] Shi, et al. used 
heterogeneous classifiers including density models, KNN, 
ANN and SVM for odor discrimination. In another study, 
Hirayama et al.[6], demonstrated that it was possible to 
detect liquid petrol gas (LPG) calorific power with high 
recognition rate (up to 99%) using an E-nose and a 
committee of machines, even with the failure of one 
random sensor, or when a sensor loses its sensitivity to the 
target gas. Vergara et al. [7] proposed an ensemble method 
which uses support vector machines as base classifiers to 
cope with the problem of drift in chemical gas sensors. 
Very recently, A. Amini et al. [8] used an ensemble of 
classifiers on data from a single metal oxide gas sensor 
(SP3-AQ2, FIS Inc., Japan) operated at six different 
rectangular heating voltage pulses (temperature 
modulation), to identify three gas analytes viz. methanol, 
ethanol and 1-butanol, at  range of 100-2000 ppm. Among 
these prior studies, only two [3,4] focused on 
concentration estimation (i.e. regression context). 
Moreover, simple averaging combination method, a static 
integration approach, was used. Therefore, investigation of 
dynamic integration approaches is of critical importance. 
In this paper, a new dynamic integration method called 
dynamic weighting of base models DWBM is proposed 
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and compared with two other integration methods: basic 
ensemble method (BEM) and the dynamic selection (DS). 
 
2. Datasets generation  
 
To generate the datasets used in this paper, several 
experiments were carried out using a self-made electronic 
nose. Detailed description of the experimental setup and 
procedure can be found in our previous publications 
[9,10]. However, to make the paper self-contained, we 
reproduce the experimental setup (see Fig. 1).As for the 
experimental procedure it is worth noting that during all 
the experiments, the respective ranges of the temperature 
and humidity were 15-45℃ and 25-80%. Also, a single 
experiment consists of three phases: exposure to clean air 
for 120s to stabilize the sensors, exposure to gas analyte 
for 480s, and another exposure to clean air for 120s to 
allow the sensors recover. Between any two consecutive 
experiments, the chamber is cleaned for about 10mins to 
avoid (minimize) interference from any chemical remnant. 
Last but not least, a flash memory is used for real-time 
data storage. It is worth mentioning that the real 
concentration of benzene was determined by gas 
chromatography method; while that of formaldehyde was 
determined using two different methods: acetylacetone 
spectrophotometric method for concentrations greater than 
0.5ppm, and the 3-methyl-2-benzothiazolinone 
hydrochloride (MBTH) method for concentrations less 
than 0.5ppm. This is the aim of using organic gas sampler. 
For the other gases, standard measurement equipments 
were placed inside the chamber and the displayed 
concentrations were recorded. The sampling rate during 
data acquisition is one point every three seconds. This data 
can be transferred to a personal computer (PC) using 
NiosII IDE and the Joint Test Action Group (JTAG) cable, 
for further processing. The number of measurements for 
formaldehyde, benzene, toluene, and carbon monoxide is 
126, 72, 66, and 58, respectively. Therefore, for each gas 
analyte, an original dataset is obtained, which is referred 
as raw measurements from the sensor array.      
The raw measurements from the sensor array are first 
filtered (to remove measurement noise) prior to feature 
extraction. For gas concentration estimation, Szczurek et 
al. [11] demonstrated that features from the steady-state 
portion of a gas sensor response are more informative. 
Taking this into account, we selected one feature from that 
portion (see Fig. 2). For the auxiliary sensors 
(temperature, humidity) we selected features at the same 
time positions with other sensors. The extracted features 
are normalized to have values in the interval [0, 1]. Having 
an array of eight sensors, an 8 m×  (m is the number of 
measurements or samples) feature data matrix is formed 
for each dataset.  Then we used Kennard and Stone (K-S) 
algorithm [12] to divide each dataset into three sub-

datasets: 40% for training, 40% for validation, and 20% 
for test. 
 

                     Fig.  1 Experimental setup 
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         Fig.  2 Responses of four sensors 

3. Methodology 

3.1 Ensemble generation methods 

The main objective of any ensemble generation method is 
to build sufficiently accurate and diverse base models. 
Ensemble generation methods can be grouped into two 
categories: methods based on the modification of the 
learning dataset, and methods based on the modification of 
the training algorithm. The first category includes re-
sampling methods such as bagging [13], and adaptive 
boosting [14], among others. The second category 
includes negative correlation learning [15], and 
ADDEMUP [16], among others. If the ensemble is based 
on neural network models, a simple yet often effective 
method to generate diverse base models is to train each 
base model with different initial random weights [1], or a 
different topology [17]. In this paper we combine these 
two alternatives. More specifically, five base models were 
trained, each with different initial weights and different 
topology. Classical Levenberg Marquardt back-
propagation algorithm was used during the training 
process of each base model. For detailed discussion on 
neural networks in general and back propagation 
algorithm in particular, we refer the reader to [18]. To 
ascertain that the base models are relatively accurate, 
early-stopping option on validation dataset is used. 
Furthermore, only models with validation errors less than 
or equal to a preset threshold are kept. As for the topology, 
it was changed by varying the number of hidden neurons 
from five to twenty five with an increment of five neurons. 
Fig. 3 shows the topology of one the base models used, 

with eight input nodes (the number of sensors), five 
hidden neurons, and one output neuron.  
 

 

Fig.  3 Topology of one base model 

It is worth mentioning that, in this paper the mean absolute 
relative error (MARE) is used as performance measure, on 
both the validation and test datasets. More formally, for an 
m samples datasets, the MARE is defined as follows: 

1

ˆ1MARE = 100
m

i i

i i

y y
m y=

⎛ ⎞−
× ⎜ ⎟

⎝ ⎠
∑                   (1) 

where m is the number of samples, iy  is the real 

concentration, and ˆiy  is the predicted concentration. 

3.2 Ensemble integration methods 

Basic ensemble method (BEM) and generalized ensemble 
method (GEM) were the first approaches to ensemble 
integration for regression [1]. In BEM the output of the 
ensemble is obtained by averaging the outputs of all the 
base models; whereas in GEM, the output of the ensemble 
is obtained through a weighted sum of the outputs of the 
base models. More formally, given a set of m base models, 
the output of the ensemble on a novel sample x can be 
expressed as:                                                     

1
( ) ( )

m

ens i i
i

f x w f x
=

=∑                     (2) 
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where iw is the weight assigned to the ith model. There are 

many ways to find the values of iw . The simplest way is 
to set them to the same value, which is known as simple 
averaging or BEM. Another alternative to find the weights 
is by minimizing the mean square error of the ensemble on 
either the training dataset or a set of validation data [1].   
Another approach to ensemble integration is through 
stacking where a meta-model is trained to learn how to 
combine/select the outputs from the base models [19]. In 
stacking, level zero models (base models) produce meta-
data consisting of the target value and the base models’ 
predictions, obtained using cross-validation on training 
data. A linear or non-linear regression algorithm is then 
used to build the meta-model based on the meta-data. 
Consequently, this method is applicable in situations 
where large size datasets are available, so we did not 
consider it. 
Recently, dynamic integration techniques have shown to 
be promising, especially in the context of classification 
[20]. In dynamic integration methods, local accuracy is 
used to either select one or many base models from a pool 
of base models, or to combine some of or all the base 
models using some weighting rules. More specifically, the 
prediction of a novel sample is obtained based on the 
prediction(s) of similar sample(s) in either the training or 
the validation dataset. The standard method for obtaining 
similar data in the context of ensemble learning is the well 
known k-nearest neighbors (k-NN) algorithm with 
Euclidean distance [21, 22]. In this paper, two distance 
metrics are considered: the Euclidean distance and the 
cosine distance.  
Given an mx-by-n data matrix X, which is treated as mx 
(1-by-n) row vectors 1 2, ,..., mxx x x , and my-by-n data 
matrix Y, which is treated as my(1-by-n) row vectors 

1 2, ,..., myy y y , the Euclidean and cosine distances 

between the vector x s and yt are respectively defined as: 
 

( )( )Tst s t s tEd = − −x y x y                  (3) 

 
where stEd is the Euclidean distance between the vector 

sx  and ty , ( )Ts t−x y  is the transpose of  vector 

( )s t−x y . 

 

 ( )( )
1

T
s t

st T T
s s t t

Cd
⎛ ⎞
⎜ ⎟= −⎜ ⎟⎜ ⎟
⎝ ⎠

x y

x x y y
                 (4) 

where stCd is the cosine distance between the vector x s  

and yt . 
It is worth mentioning that the performance of k-NN 
algorithm is affected not only by the distance metric but 
also by the number of nearest neighbors, k. Therefore, for 
the DS and DWBM methods (note that the k-NN 
algorithm is not used on BEM method) the optimal value 
of k was found empirically using the validation dataset, for 
each air pollutant. Thus, the DS method selects the best 
base model based on its performance on k similar 
sample(s) in the validation dataset; while the new method 
the DWBM method assigns a weight to each base model 
based on its performance on k similar sample(s) in the 
validation dataset.  
Drift is one of the most critical problems associated with 
semiconductor gas sensors which constitute the core part 
of our E-nose system. In order to investigate the 
robustness of these methods against drift, we simulated the 
drift by adding random Gaussian noise to the input 
attributes of the test dataset of each air pollutant. The 
noise standard deviation was set to 0.002, a value capable 
of causing quite sufficient data shift.   
 
3.2.1 Calculation of the weight for each base model 
    
The output of a model is weighted by the inverse of the 
errors of similar points in the validation dataset. More 
specifically the weight used for the ith example and kth 
model is defined as: 

               1

1 1

1
N

k
ij

jk
i M N

m
ij

m j
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w
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=

= =

=
∑

∑ ∑
               (5) 

where M is the number of base models, N is the number of 

nearest neighbors, 
m

ijerv is the error of the mth base model 
on the jth similar sample (nearest neighbor) in the 
validation dataset.  
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4. Empirical results and comparison analysis 

All computations were carried out using MATLAB 
R2010a (MathWorks Inc.) software on a desktop 
computer with the Intel(R) Core(TM) i3 T2450 2.93 GHz 
CPU, 2 GB RAM and Windows XP professional operating 
system.  
To avoid biased comparison, for every dataset five 
ensembles were generated using the procedure described 
in section 3.1. The performance of each method is 
evaluated on these five ensembles, and the MARE average 
values were computed. Furthermore, for the DS and 
DWBM methods, the average values of the optimal 
number of nearest neighbors (k) were also computed. 
Table 1 and Table 2 show the MARE average values of 
three methods when evaluated on original test dataset, 
using cosine distance and Euclidean distance, respectively. 
The average values of the optimal number of nearest 
neighbors (k) are also shown for the DS and DWBM 
methods. Table 3 and Table 4 show the MARE average 
values of three methods when evaluated on noisy test 
dataset, using cosine distance and Euclidean distance, 
respectively. The average values of the optimal number of 
nearest neighbors (k) are also shown for the DS and 
DWBM methods. 
 

Table 1: MARE average values of five ensembles evaluated on original 
dataset, using cosine distance 

 
Datasets 

Methods 
DS BEM DWBMa

Formaldehyde 47.87(12) 42.71 43.47(1) 
Benzene 12.25(4) 10.60 10.50(1) 
Toluene 13.8(17) 10.43 11.40(1) 
CO 17.75(4) 19.24 18.57(1) 

a our method, the numbers in parentheses represent the average value of  k  

 

Table 2: MARE average values of five ensembles evaluated on original 
dataset, using Euclidean distance 

 
Datasets 

Methods 
DS BEM DWBMa

Formaldehyde 49.38(19) 42.71 44.10(1) 
Benzene  11.74(6) 10.60 10.70(1) 
Toluene  14.05(10) 10.43 11.62(1) 
CO 17.75(3) 19.24 18.15(1) 

a our method, the numbers in parentheses represent the average value of  k 

 

 

 

 

Table 3: MARE average values of five ensembles evaluated on noisy 
dataset, using cosine distance 

 
Datasets 

Methods 
DS BEM DWBMa

Formaldehyde 51.44(6) 43.47 48.65(1) 
Benzene  14.33(9) 12.14 12.07(1) 
Toluene  15.82(5) 11.24 12.52(1) 
CO 16.67(4) 18.21 17.66(1) 

a our method, the numbers in parentheses represent the average value of  k 

 

Table 4: MARE average values of five ensembles evaluated on noisy 
dataset, using Euclidean distance 

 
Datasets 

Methods 
DS BEM DWBMa

Formaldehyde 53.16(19) 43.47 48.02(1) 
Benzene   12.97(7) 12.14 11.67(1) 
Toluene   15.82(4) 11.24 12.79(1) 
CO  16.67(3) 18.26 16.69(1) 

a our method, the numbers in parentheses represent the average value of  k 
 
 
From results depicted in Tables 1-to-4 we can see that, 
regardless of the distance metric or the dataset (test), DS 
method requires more nearest neighbors than DWBM 
method which requires only one nearest neighbor. This 
implies that the new method has less computational 
complexity than the dynamic selection method. It is worth 
mentioning that BEM method, which does not require 
finding nearest neighbors, is the simplest yet effective 
method. Both the DWBM and BEM methods perform 
almost comparably over all datasets. Moreover, these two 
methods outperform the dynamic selection (DS) method 
on most of the datasets, except on carbon monoxide 
dataset. A sound reason for this is the ensemble built using 
this dataset is composed of many redundant base models, 
which could have adversely affected the performance of 
the averaging and the dynamic weighting method (new 
method). Indeed, both the averaging and the dynamic 
weighting methods are more sensitive inaccurate and/or 
redundant base models than the dynamic selection method. 
Furthermore, in [17], it was pointed out that base models 
(nets) trained on different training sets are more likely to 
possess high levels of diversity than those created through 
variations in their initial conditions (weights), or their 
topology. This finding is in line with the results obtained 
in this paper. To support our hypothesis, we decided to 
plot the predictions from all base models in each ensemble 
for CO validation data, as shown in Fig. 4. It can be seen 
that, within each ensemble, there is strong similarity 
among the base models. As for the distance metrics, we 
can see that there is no metric that is globally better. The 
effect of these metrics on the performance of either the 
dynamic selection method or the dynamic weighting 
method is data-dependent. 
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As can be seen from Tables 3 & 4, the performance of 
these methods degraded when evaluated on noisy data. 
However, the degradation was not very serious (a 
maximum increment of 5% on only formaldehyde dataset). 
Indeed, the robustness of these methods can be enhanced 
by generating ensembles composed of significantly 
accurate and diverse base models.  
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Fig.  4 Predictions from all base models in ensemble for CO validation 
data 

 
5. Conclusion  

Ensemble learning is a promising alternative for online 
prediction in general, and for online air quality monitoring 
using electronic nose systems in particular. However, if 
ensemble learning is to be effective, the generation and 
integration of bases models should be optimally done. In 
this paper, a new dynamic integration method is proposed, 
the performance of which was compared with that of other 
integration methods. Experimental results show that the 
new method is not only effective but also appealing. 
Moreover, owing that the evaluation was done on 

ensemble composed of relatively accurate and diverse base 
models, and dynamic weighting methods are sensitive to 
inaccurate and/or redundant base models, we believe that 
this method would have performed better if the ensemble 
generation method was done using more efficient 
techniques. This will be considered in our future work, 
along with evaluation on large-scale datasets and 
comparison with many methods.   
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