

Smart dynamic software components enabling decision support

in Machine-to-machine networks

Alexander Dannies1*, Javier Palafox-Albarrán1, Walter Lang1 and Reiner Jedermann1

 1 Institute for Microsensors, -actuators and -systems, University of Bremen

Bremen, Bremen, Germany

Abstract
The future Internet of Things will be extended by machine-to-

machine communication technologies in order to include sensor

information. The overwhelming amount of data will require

autonomous decision making processes which are directly

executed at the location where data is generated or measured. An

intelligent sensor system needs to be able to adapt to new

parameters in its surrounding unknown at the time of deployment.

In our paper we show that Java enables software updates on

mobile devices and also that it is possible to run algorithms

required for decision making processes on wireless sensor

platforms based on Java.

Keywords: Machine-to-Machine communication, Internet of

Things, autonomous logistics, Java, dynamic updates, OSGi.

1. Introduction

Classical machine-to-machine (M2M) communication

focuses on the supervision of large, expensive machinery,

and on remote monitoring in a centralized point. But in the

future, according to the vision of the internet of things

(IOT), in which smaller physical objects will interact with

each other through the use of the M2M concept,

communication will become more and more ubiquitous.

The advancement of M2M communications from single

machines to supervision of a network of objects will not be

made by simply increasing the number of existing system

and hardware solutions. After defining the requirements for

integration of M2M into the IOT [1], adequate

communication and software structures have to be found

and programmed onto the hardware. In this paper we will

discuss and demonstrate by our prototype implementation

how ubiquitous M2M can be enabled by combining and

reprogramming system components which are available in

the market.

1.1 Combining cellular and infrastructureless

networks

Nowadays, M2M communication is typically implemented

by cellular radio networks (CRN) technologies, such as

GSM and UMTS. The infrastructure of a commercial

network operator consists of fixed base stations to cover

large geographical areas. In order to make M2M

technologies more ubiquitous, devices have to collect

information from a high number of devices distributed in

the environment. For such a detailed supervision CRN are

rather disadvantageous for the following reasons:

 Communication costs have to be kept as low as

possible.

 Network protocols have to be optimized for

transmission of small packets of sensor data

consuming as little energy as possible instead of

enabling global communication.

 In many applications, such as the monitoring

inside large buildings or rural regions, the

supervised area will not be fully covered by the

CRN of an external operator.

If wireless connectivity is required, local infrastructureless

networks are the better solution for spatial monitoring of

an area. Typical Ad-Hoc wireless sensor networks (WSN)

using the Zigbee or the underlying 802.15.4 protocols,

meet the requirements mentioned above. They provide

coverage of even difficult areas by forwarding messages

over multiple hops inside the network.

But on the other hand, pure WSN lack the ability to

connect to global networks. Therefore, we suggest using a

heterogeneous network combining infrastructure and

infrastructureless technologies to enable future M2M

networks which will not only supervise single machines,

but be aware of their environment.

1.2 Local intelligence by Java-based dynamic

software frameworks

The vast amount of data, provided by a distributed M2M

network needs dedicated processing. According to the

concept of cloud computing, the required computation

resources can be provided as service by the network. The

resources can be hosted by a stationary server farm as in

[2] or [3], but in the case of M2M networks a more direct

approach is to move the “cloud” into the network by

processing collected data directly on the sensors. This

approach entails advantages in regard to costs and

robustness:

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 540

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

 The costs for the transmission of large amounts of

unprocessed sensor data cannot be neglected, they

have to be either paid directly to an external

operator, or have to be calculated as service costs,

for the current that the radio draws from the

batteries. The communication volume decreases

dramatically, if an intelligent processing directly

on the sensor transmits only summaries,

conclusions or warning messages about

unexpected situations instead of the full raw data

over the network.

 If the infrastructure or part of the WSN fails,

processing can be continued by the remainder of

the local network.

Immutable software, which is programmed in a static way

and transferred to the sensor before distribution in the

field, is unsuitable. The sensor software has to adapt to

new situations, tasks and application fields, which were

unknown at the time of deployment. This results in a

permanent need for software updates. As a consequence

the network nodes have to be equipped with an adequate

operating system or software framework. In order to

reduce the size of update files, the software should be

structured in a modular way, whereby it is possible to

update only single components of the software.

In [4], over-the-air and differential reprogramming in

WSN is made; however, the applicability of the solution is

limited to some hardware devices.

Java is the most common language that meets this

requirement because dynamic class loading is one of its

intrinsic features. It has penetrated more and more the

realm of embedded systems. Optimized virtual machines

have become available for several embedded controllers

[5], [11].

1.3 Testing Java-enabled wireless sensor nodes and

M2M platforms

Because of the enormous spreading and pervasiveness of

Java, we focused on this language to implement an

intelligent sensor node. Several Java-enabled wireless

sensor nodes and CRN-enabled M2M devices were tested.

Depending of the available resources of the device, two

different software frameworks for handling of code

updates were installed. The wireless devices were tested in

regard to their ability to execute and update complex

software algorithms within their computation and battery

capability.

By measurement of required CPU time we could show that

there are several Java-enabled wireless sensors platforms,

which are capable of running complex algorithms as well

as frameworks for automated software updates.

Differences in the performance of the tested types of WSN

hardware are evaluated by measurement of execution time

for benchmark tests and example sensor data processing

algorithms.

Our test bed shows how a combined network of

infrastructure CRN and infrastructureless WSN can be

installed. By local pre-processing on wireless nodes the

network can provide a new quality of information to the

end-user. World-wide access to the M2M system from the

internet is provided by a web interface.

Furthermore, we could demonstrate by our prototype

implementation the advantages of such an intelligent

network for a logistic supervision and decision support

tasks.

In section 2 we give an overview of the theory and

background related to our paper. Subsequently, section 3

introduces the platforms for dynamic software updates and

section 4 contains the performance measurements of the

selected wireless sensor platforms. Section 5 describes the

topic of software updates. Finally we summarize in section

6.

2. Background and vision of M2M and IOT

The initial idea behind the creation of the Internet of

Things was to interconnect real-world objects globally. It

emerged under a logistic point of view in which the items

would be tracked over the existing internet. Its

development of the communication technology has been

built on top of it.

IOT means the connection of clearly recognizable physical

objects (Things) with a virtual representation in an

internet-like structure. Participants in the IOT are not only

of human nature but also machines.

When the IOT concept was created, passive RFID (Radio

Frequency Identification) and barcode were already mature

technologies for item identification and tracking; the

identification on the internet was made by manual

inventory. RFID was used however because it does not

require line of sight and requires less human intervention

than barcode. Automated identification with the help of

RFID is often considered as the foundation of the IOT. Its

target is the minimization of the information gap between

real world and virtual world.

Because some applications require communicating without

human intervention, concepts such as

M2M communications came into mind as possible

extensions of the IOT concept. M2M was an already

existing technology which allowed automated exchange of

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 541

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

information among terminal devices like vending

machines, vehicles or containers with a central point.

M2M technology connects information and

communication technology to build the Internet of Things

(IOT).

2.1 Definition of M2M and available technical

solutions

A M2M system consists of three basic components. A data

end point (DEP) which can be a machine extended by a

sender module with the main task of providing data. The

second component is a communication network; this can

be either wireless or wired. The data integration point

(DIP) mainly plays the role of the gateway. It receives

information from the DEPs and redirects it to a central

point. Several commercial technical solutions for M2M

can be found in the fields of industrial automation,

transportation, smart energy and logistics.

M2M can be classified according to the physical

transmission media it uses: The media can be either based

on wired (Ethernet or optical), cellular (for example GSM,

GPRS, UMTS, LTE-M and WiMAX) or “capillary” short-

range technologies (for example Bluetooth, ZigBee, IEEE

802.15.4).

All of them offer advantages and disadvantages: wired

communication offers the best reliability and highest data

rates, but is expensive, complicated to install and not

scalable. To bridge long distances the communication

standards of 2G (GSM) or for higher data rates 3G

(UMTS) can be used, but are expensive in maintenance

and need a fixed infrastructure. Wireless sensor networks

using protocols such as 802.15.4 at 2.4GHz are cheap,

scalable, do not need infrastructure, but have drawbacks

such as low coverage, security and data-rates and energy

constraints.

2.2 The impact of M2M to logistic processes

The supervision of supply chains and logistic tasks is one

of the main application fields of the IOT. The IOT differs

from the idea of autonomous control in logistics [6]. A

fully autonomous object requires basically only

communication with its near-by neighbors and not

necessarily internet-like networked structures.

Communication between RFID tags and a central point as

in conventional M2M allowed complying with a

ubiquitous necessity. Tracking the position of the

identified items globally, seemed to solve it, however one

consideration was missing: In the process of transportation

damages such as spoilage or breakages may appear and it

is required to know not only the position of the item but

also whether its quality is acceptable.

That is the reason why the emergent technology of WSN,

together with RFID, can be seen as the enabling concept of

IOT. In WSN’s the nodes have sensing, communication

and processing capabilities and use M2M to communicate

with each other and with the gateway.

Conventional M2M solutions require four basic steps: Data

collection, transmission, assessment and response. But the

gathering and transmission of all the available data alone

can lead to a flood of information and asks too much of a

human operator and is extremely costly. The entire

decision making should be done autonomously, at best in

the same location where the data is collected.

Our vision of an intelligent sensor network, from M2M to

the IOT, proposes a change of paradigm in which the

assessment (data processing) is performed locally in the

wireless sensor nodes or on the gateway device. The

concept of the intelligent container [7] includes the

introduction of a decision support tool (DST) which can,

as the name suggests, support humans in making decisions

based on the sheer abundance of data occurring every

second. The quality of perishable goods like fresh fruits or

meat has to be monitored to ensure that the food reaches

the end-consumer in the best state possible. On the other

hand the economic aspect of the supplier benefits from the

monitoring because losses due to reduced shelf-life caused

by broken cool chains can be absorbed by intervening in

logistics processes. Moreover, as mentioned in [1] the DST

should provide device control, which includes activating,

deactivating or updating the devices over the air.

Supervision of logistics processes is often limited to data-

logging during the transportation and analyzing this data

afterwards. Reactions to unexpected situations can only be

triggered with long time delay or in the worst case an

intervention is not possible anymore.

In order to be able to react to these events on time, it is

necessary to monitor the cargo objects in a pervasive way,

which means anywhere anytime. The “Internet of Things”

can solve this problem. By creating a network of pervasive

systems it becomes possible to collect real-time

information with simultaneous consideration of the

decision making process.

The objects or things use M2M communication to access

the real-time data without human intervention. They can

for example send an e-mail or SMS to a human with the

condition information to be acted on at a reasonable price.

Due to the increasing processing power (according to

Moore’s Law) on the one hand and the decreasing costs for

hardware in general on the other hand, the feasibility for an

implementation of omnipresent data processing by an

advanced internet of things rises. The condition of the

cargo, that may be for example signs of degradation, is

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 542

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

calculated by intelligent data processing algorithms in

wireless sensor nodes.

As mentioned in [8], M2M enabled intelligent devices like

the ones visualized in the concept of the IOT will impact

the logistic process mainly in three ways: Self-aware

products, delivery by product characteristics and proactive

tendering.

In self-awareness, the cargo or thing is able to react to self-

related problems as soon as they arise. The problems can

be for example deterioration caused by fluctuations of

environmental parameters such as temperature or humidity,

leading to quality degradations such as decrease in

aesthetic appeal. Algorithms to estimate the quality of the

goods by biological models may be used. The Gompertz

model will be introduced as example in section 4.2.2.

Quality of perishable goods such as fruit and vegetables

are highly dependent of failures in the cold-chain. If the

quality decreases, the delivery of the good has to be re-

planned according to the actual product characteristics.

New routes and alternate suppliers or buyers have to be

found in accordance with the actual price of the cargo and

with the aim of increasing the profitability.

In proactive tendering early information about the quality

of the cargo will lead to take actions to reduce waste or to

replan the supply orders. Prediction algorithms, such as

Feedback-Hammerstein (section 4.2.1) can be applied to

compute a model for temperature changes.

3. Platforms for dynamic software

management of embedded devices

As mentioned before, our vision of an intelligent sensor

network includes device control to react on dynamic

changes in the environment. The sensor nodes must not

only be able to update the software modules over-the-air,

but also to do it dynamically during run-time. WSN is still

an emergent technology; the research focus has been

mainly on energy efficient algorithms. The question arises

whether it is feasible to implement the mentioned solution

in an energy-efficient way on resource-limited devices.

Typically, WSN nodes are programmed once, in native

code such as nesC without taking into consideration

neither modularity, over-the-air (OTA) programming or

dynamic features.

In [9] three execution environments for software update

management in sensor networks are compared: monolithic

(TinyOS), modular and virtual machines (VM). VMs

interpret symbolic or intermediate code instead of directly

transferring and executing machine code. The size of a

program in an intermediate code such as Java class files is

between five and ten times smaller than the same program

in machine code. Han [9] concludes that VM is the best

one regarding the energy costs of network transmission. He

also concludes that if VM is combined with a modular

environment, the energy costs of updating a task are very

low. The only disadvantage of using a VM environment is

the cost of interpretation. As mentioned before, IOT

should combine the best of capillary and cellular data

transmission. Specialized VMs, which are written to run on

sensor nodes, such as Maté [10], only cover the first one

mentioned (short range) and are not suitable for cellular

networks.

Beside these WSN-specificVMs, Java is a mature

technology to run intermediate code on a VM. Java

implements the concept of “write once, run anywhere”. It

is the most common language that meets the requirement

of the ability to extend software with dynamic code

segments through the use dynamic class loaders.

In this section we will discuss the advantages and hardware

requirements of virtual machines and software frames for

enabling dynamic updates.

3.1 Native Code versus virtual machine

On the selection of the software platform for dynamic

updates, a series of figures of merit have to be taken into

account. The software must support updates, be fast and

able to run on diverse hardware platforms. Basically, there

are two types of programming languages: the so called

high-level and the interpreted ones, each one of them with

their advantages and disadvantages.

When speaking about workstations, the high-level or native

languages such as C or C++ have faster execution times

and allow memory management but the code has to be

compiled according to the hardware. On the other hand the

interpreted languages such as Java or C# are platform-

independent but the execution time is in general not

optimal. This disadvantage can be compensated by Just-in-

time compilers, which translate only those parts of the

code to machine instructions that are most critical for the

executions speed.

With the development of WSN as an emergent technology,

it was clear that the solutions were not suitable to be used

on the first sensor nodes available to the market because of

their very constrained resources. Initially, native code such

as nesC was used but they are not able to update software

or run on different platforms.

Different VMs have been implemented for sensor nodes.

One example is the above mentioned Maté [10]. It allows

executing high level instructions by an interpreter. New

application scripts can be sent over the air, requiring only

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 543

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

very small communication volume and user memory on the

microcontroller.

In the recent years there have been lots of efforts to

provide VMs for high level languages such as Java on

sensor nodes [11]. Depending on the memory and CPU

recourses on the sensor node, either the Java Micro or

Standard Edition is supported.

3.2 The Java Micro Edition on sensor nodes

Because of the hardware-constrained nature of

microcontrollers, there is not enough space on them to

install a full operating system which can be used as a base

for a virtual machine. In contrast microcontrollers are

using a virtual machine which runs on bare metal. The kilo

VM (kVM) requires only a few 100 kBytes of memory and

runs on ARM processors. One example implementation is

the Squawk VM used by Oracles SunSPOT [11]. It

includes the functionally of the Java Micro Edition

(JavaME) as part of the Connected Limited Device

Configuration (CLDC). New software components can be

uploaded in the form of software suites containing MIDlets

(see section 3.4.3).

A further example for the implementation of a kVM is the

Preon32 sensor node by Virtenio [12]. Its kVM does not

exactly cover the whole CLDC standard but is close to it.

As consequence it is not possible to install MIDlets on

Preon32 nodes.

Floating point and double precision data types are not part

of the original JavaME but were introduced in CLDC 1.1.

Although the Java SE Math Library is not available by

default, manufacturers, such as Oracle and Virtenio, have

implemented their own library for mathematical functions.

3.3 The Java Standard Edition on sensor nodes

There is a variety of VMs supporting the Java Standard

Edition (JavaSE) on the market, both open-source and

commercial ones. We selected JamVM as a representative

of the open-source type and JamaicaVM from AICAS as a

representative of the commercial ones. Both of them are

able to run on workstations or on embedded devices.

JamVM makes use of the GNU Classpath [5]. Their

implementation is more suitable for sensor nodes, is

extremely small but still able to support the full

specification including, class-unloading and native support.

It can be installed on several operating systems like Linux,

Mac or Solaris as well as different hardware architectures

like PowerPC, ARM or AMD64.

JamaicaVM of AICAS [13] provides Hard Realtime

Execution, Realtime Garbage Collection, dynamic loading,

multi-core support, and native support. It can be installed

for diverse operating systems like Linux and Windows,

and several architectures like x86 and ARM. Besides it

offers the possibility of combining all files relevant for the

application (a set of class files) and the Jamaica VM into a

single executable file. The implementation offers a trade-

off between run-time performance and code size.

JavaSE allows replacing the system class loader by user

defined class loaders. This feature, which is not available

in JavaME, is essential to control mutual access between

different dynamic components (see section 3.4.1).

3.4 Java frameworks for dynamic code

Although it is possible to handle the dynamic loading of

new software components by basic features of the Java

VM, it is more efficient to use additional Java features or a

software framework to handle updates:

 JavaME allows installing and executing new

software components during runtime in the form

of so called MIDlets [14]. It is commonly used

for mobile devices such as cell phones, but also

supported by up-to-date WSN hardware such as

the SunSPOT sensor node [15].

 Agent platforms, such as MAPS, JADE [16] or

Agilla [17], provide a framework which enables

migration of software agents between different

local platforms. The migration is in general based

on an internet connection but can be adapted to

the needs of WSN and CRN technologies.

 Whereas software agents have their focus on

artificial intelligence and research, the Open

Services Gateway initiative (OSGi) framework

originates from industrial automation and building

maintenance. New components can be installed as

software bundles without the need to stop or

restart the machine to perform a software update.

Furthermore, OSGi provides methods to exchange

information and services between different

bundles.

Due to the dynamic features, efforts have been made to run

OSGi on resource limited devices; OSGi has been tested in

pervasive environments [18, 19 and 20] but not in sensor

networks context, yet.

There is a major difference in the concepts behind agents

and OSGi. OSGi components can be organized in a

hierarchical structure. It is even possible to update

components which are currently in use by another

component. Software agents, on the other hand, are

organized in a flat structure. They can exchange messages

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 544

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

for communication, but services are only provided by the

framework, without any means to update or modify their

implementation. Because we consider this feature to

update components in a hierarchical structure as crucial for

intelligent objects, we focus on OSGi as second example

framework for dynamic code.

3.4.1 Inter component communication

The major task of a framework for handling dynamic

software components is to install, upload and run different

components in parallel and independently. But it is also

necessary to provide some kind of communication between

different components. The access to the code and memory

of other components has to be restricted in order to avoid

that one malfunctioning component can crash the whole

system. The concepts range from full protection such as in

Android, where apps can only access methods provided by

the operating system, to controlled accesses by one of the

following solutions:

 One solution to provide inter-component

communication is the use of shared memory. As

example we consider a system containing the

three components “decision unit”, “sensor driver”

and “radio driver”. The decision unit has to read

sensor data and to communicate the result over

the radio. Sensor and radio data are written to the

memory by one component and polled by another

component.

 A more efficient solution allows that certain parts

of the code of one component can be invoked by

another component. Only methods that are

explicitly published as service can be accessed

from the outside. If the component is updated, the

framework has to redirect the service request to

the new component. The decision unit calls

services provided by the sensor and radio

component.

 In a third solution, components can exchange

messages or events by registering for a special

service provided by the framework. For example,

the sensor component informs the decision unit by

an event if new measurement data is available.

This third solution is the standard way of agent

communication.

3.4.2 OSGi

OSGi was introduced in the 90’s to manage controller units

for building maintenance remotely. The original idea was

that a human operator can start, stop and update software

components without being on site. But OSGi can also be

used in a M2M way: a central unit or machine can control

a remote unit by calling system functions provided by the

framework. An agent-like migration is also possible: a

component uploads its own code to another platform, starts

it, and stops its own execution on the first platform.

OSGi provides two ways of inter-component

communication. Components can call services published

by other components. Or they can send an event to a

blackboard. Other components can register as listeners for

a certain type of event.

OSGi runs on top of a Java VM. The mutual access to

code of different components by services is handled by

user defined class loaders. Unfortunately, this feature is

only available in the Java Standard Edition. As

consequence, it is not possible to run OSGi on the

SunSPOT platform. Furthermore, a typical OSGi

framework needs at least 32 MByte of user memory, which

is also not available on the SunSPOT.

There has been some effort to make OSGi services and

dynamic uploads available for JavaME by a so called

OSGiME framework [21]. This approach keeps the core

features of OSGi like dynamic software updates but being

compliant to Java ME CLDC means that user-defined class

loaders are not available. To be able to fit on resource-

constrained platforms the OSGi technology is simplified

by removing unnecessary and semantically complex

features like dynamic and optional imports.

A further minimal OSGi implementation by ProSyst, which

requires only eight MByte of memory [23], does also not

provide dynamic uploads.

3.4.3 JavaME and MIDlets

Recently JavaME has been integrated into WSN

technology, for example the SunSPOT nodes use a

proprietary Java VM, to offer a sensor node that can be

programmed over-the-air, but only inside the sensor

network. Updates over external global networks are not

supported by the original software package.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 545

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

shows the execution environment to enable MIDlets. On

top of the host operating system sits the configuration

which is extended by a profile and optional packages. As a

configuration the Connected Limited Device Configuration

(CLDC) is used, which contains a very small virtual

machine (KVM). On top the Mobile Information Device

Profile (MIDP) enables the execution of MIDlets. Writing

MIDlets limits the programmer to the functions of JRE 1.3.

After installation the MIDlet can be started, paused and

destroyed by calling an interface function. The transition to

the destroyed-state is irreversible.

Figure 1: Structure of a MIDP environment

The SunSPOTs have modularity limitations inherent from

any JavaME deployment because the MIDlets are unable

to communicate among themselves. However, it is possible

to overcome this disadvantage by using Record

Management Storage (RMS) or programming them within

the same suite. In theory Inter-MIDlet-Communication

(IMC) is possible in MIDP 3.0, but currently a SDK is

missing so that the current status is that MIDP2.0 is still

used.

4. Java performance on WSN platforms

The interpretation of dynamic code by a VM requires some

overhead, compared to precompiled “C” code. In order to

decide whether this overhead hinders the application of

Java VMs on WSN nodes we carried out performance

measurements on different hardware platforms.

4.1 The hardware platforms

All hardware platforms we used are available off-the-shelf.

They can be classified in two categories: telematics units

and wireless sensor nodes. Table 2 shows selected

characteristics for each hardware platform.

The telematics units are equipped with extended

communications possibilities like 3rd generation mobile

telecommunications (GSM / UMTS) and wireless LAN.

Additionally, it is possible to get geodata via the global

positioning system (GPS) and hard disk storage allows

extensive data-logging.

The VTC 6200 from Nexcom is used as a reference

platform. It is equipped with an Atom processor (1.6 GHz)

and 2 GB of main memory.

The DuraNAV serves as an exemplary platform for lower

power consumption. It utilizes an ARM architecture CPU

(400 MHz) and 64 MB of RAM. Both can run different

Java VMs (JamVM, Jamaica) and different OSGi

implementations (Prosyst, Equinox).

Table 1: Telematics platforms

 DuraNAV VTC6100

CPU

(MHz)

PXA255

(400)

N270

(1600)

RAM 64 MB 1 GB

OS Linux Linux

Java

Edition

SE SE

In the category of wireless sensor nodes we chose three

products, which are listed with its properties in Table 2.All

these platforms enable the usage of the high-level

programming language Java.

Table 2: 802.15.4 Wireless sensor platforms

 Imote2 Sun

SPOT

Preon32

CPU

(MHz)

PXA

271

(416)

SAM

9G20

(400)

Cortex-

M3

(72)

RAM 32 MB 1 MB 64 kB

OS Linux None None

JVM any Squawk Custom

Java

Edition

SE ME

CLDC

1.1

ME

almost

CLDC

1.1

4.2 Example algorithms

As example algorithms we utilized two synthetic standard

benchmarks (Dhrystone and LINPACK), the inversion of a

20 by 20 matrix of double values as well as two real-world

application algorithms.

Dhrystone is a synthetic benchmark using integer

operations, whereas LINPACK uses floating point

operations. The latter one calculates the average speed of

floating point operations during solving a n by n system of

linear equations Ax = b. In addition to the abstract

LINPACK benchmark for matrix operations, we also

tested the inversion of a 20 by 20 matrix in double

precision as example for the computation needs of a more

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 546

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

complex sensor evaluation task. For the matrix inversion

the functions of the JAMA library [24] were used.

4.2.1 Temperature prediction

The two real-world application algorithms can be applied

in the field of logistics. The Feedback-Hammerstein-

algorithm is used in the context of the transportation of

bananas in a refrigeration container. Bananas are living

organisms with a metabolism so they emit heat and gases

such as CO2 and C2H4 - a phytohormone which is

responsible for the ripening process. The algorithm

identifies the parameter for a model to predict the

temperature curve during cooling. By taking the generated

heat of the bananas into account the model accuracy is

improved compared with a simple model that is based only

on thermal time constants. The structure of the applied

model is shown in Figure 2.

Figure 2: Feedback-Hammerstein Model

4.2.2 Gompertz-model

The Gompertz-model’s application lies also in the carriage

of fresh produce in the cold chain – transport of meat. A

statement about the quality of meat can be done by using

the bacteria count in a meat sample. The speed of bacteria

growth is in general calculated as a function of temperature

according to the law of Arrhenius for reaction kinetics. The

bacteria count over time functions shows a lag phase

during which the bacteria growth is delayed for a certain

period of time. A combined model includes the Gompertz

model to describe the lag phase and the Arrhenius model to

describe to temperature dependency. By using several

fixed values which are specific for a certain type of meat

the number of bacteria can be estimated, which is

correlated to the quality and the shelf-life [25]. The update

of the model state for each measurement interval requires

the calculation of three exponential and two logarithmic

functions. If the temperature is the same as in the previous

interval, the calculation of the logarithmic functions can be

skipped.

4.3 Test results (execution speed and feasibility of

algorithm)

The following Table 3 contains the results of the different

benchmarks for the chosen reference platform (gateway

device, Telematics unit VTC).

Table 3: Results of the chosen benchmarks on the

reference platform (VTC)

Benchmark Result

Dhrystone 523 ms

Linpack 45,778 Mflops/s

Feedback-Hammerstein 7 ms

Matrix inversion 20 by 20 1 ms

Gompertz model (single interval) 0,7 ms

Gompertz model (3450 intervals) 9.1 ms

In what follows all diagrams displaying the results of the

measurements are relative values in comparison with the

reference platform. Figure 3 shows the results of the

Dhrystone-benchmark: A correlation between the

processing power of the platforms and its available CPU

and RAM is obvious. Even though Imote2 and SunSPOT

have the same clock-rate of the CPU, the execution time

seems to be linked to the available RAM of the systems.

Consequently the order of the performances from slower to

faster is the same as the amount of memory in ascending

order.

Figure 3: Results of the Dhrystone 2.1 benchmark

Unlike the first benchmark, Figure 4 shows a different

correlation for floating point operations. In this case the

influence of the amount of RAM at hand on the

performance is less significant. The performance of the

SunSPOT is better than that of the Imote2 for the

LINPACK benchmark and for the matrix inversion. An

explanation for this result could be the newer CPU

architecture of SunSPOT, which seems to have improved

floating-point processing power. The highest difference is

observed for the inversion of a large 20 by 20 matrix. In

this case the SunSPOT is eight times faster than the iMote

at the same clock speed.

Figure 4: Benchmarks for LINPACK and matrix inversion

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 547

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

The results of the first tested exemplary real-world

algorithm is shown in Figure 5. The Feedback-

Hammerstein algorithm was executed with different orders.

Similar to the previous benchmark the SunSPOT is three to

four times faster than the Imote2 because of the newer

CPU architecture.

Figure 5: Results of the Feedback-Hammerstein algorithm

The results of the execution time of the second exemplary

real-world-application algorithm are depicted in Figure 6.

The Imote2 takes about five times more time for the

execution than the SunSPOT.

Figure 6: Results of the Gompertz-algorithm

In all five benchmarks the performance of the Preon32 was

by far the lowest. But this result is no wonder because of

the very resource-constrained platform. The CPU runs at

only 72 MHz and only 64 kByte of RAM are available. In

comparison to that the SunSPOT has a clock-rate of 400

MHz and 1 MB of RAM.

Even though the results in comparison with the other

platforms at first appearance seem to be not that good, it is

feasible to run these algorithms on the platforms: For

example, the time required to execute 72 iterations of FH-

algorithm required for three days of hourly samples is

about two seconds. The Gompertz-algorithm takes about

three to twelve seconds depending on the amount of

temperature changes, which is also fast enough taking into

account that a change in temperature is measured only

once a minute.

4.4 Comparison of framework performance

In the previous section we have shown that all tested

hardware platforms are capable of executing typical

algorithms for sensor data evaluation. But it still has to be

questioned, how much overhead is created by using a

framework to manage software updates. To answer this

question, the execution time for different algorithms was

compared for a) direct execution as a Java class file and b)

running them as software bundle inside the Equinox OSGi

framework.

The only platforms able to perform these tests are the

gateway devices and one of the sensor nodes – the iMote2.

Because of the similar processing power we compared it

with the DuraNAV system.

Figure 7 compares the execution time on Imote2 and

DuraNAV of the benchmarks as a class-file or an OSGi-

bundle.

Figure 7: Difference in execution time in % between OSGi and class

The result of our test is that the execution time of the

synthetic benchmarks was of the order of eight percent

slower when the algorithm was run in the OSGi-

environment instead of a direct execution of a class file. A

completely different result is generated when comparing

the real-world-example-algorithm of Feedback-

Hammerstein. In this case the execution time of the OSGi-

bundle was approximately seven to ten percent faster than

running the algorithm directly from a class file.

From these results one can infer that the use of a

framework can make sense. Not only the ability for

dynamic software updates becomes possible but also the

execution time is not increased in a way that the advantage

is negated – even an improvement of execution speed is

possible, depending on the type of algorithm.

Of course it remains to be seen if and how a framework

can be introduced to resource-constrained wireless sensor

nodes in the future and if the behaviour of this

implementation will be similar.

5. Software updates over multi modal

networks

Oracle offers for its sensor node SunSPOT a graphical user

interface (Solarium) and also a command line tool based

on ANT to deploy software connected to the computer via

USB or over the air. The term over the air (OTA)

programming means the distribution of new software

updates to wireless devices without the need of a cable

connection. By using one sensor as a base station it

becomes possible to communicate with other sensors of the

WSN in range of this platform.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 548

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

The disadvantage of this approach is that in order to be

able to use this software the user needs to install it on his

machine. In contrast to that, our approach is of a web-

based nature. As a result anybody can use it from a remote

location via the internet.

5.1 Our test and demonstration system

The concept we used in our demonstration system is

depicted in Figure 8.

Figure 8: Concept of the demonstration system

From a remote internet connection the user opens a web

browser and accesses a web interface, which is provided

by the gateway device. This becomes possible by running

an OSGi-Framework on the gateway device which hosts a

bundle that publishes a web interface. The connection

between the end-user and the gateway becomes possible

due to the use of a virtual private network (VPN)

connection which connects gateway device and end user in

one space. The gateway device is connected to a sensor

node (SunSPOT) that acts as a base station. In this way a

connection through multimodal networks from the end-

user (internet) to a sensor node (802.15.4 network) is

possible.

The user can get information from any sensor in the

network as well as update software on a specific sensor

node remotely without being on site.

6. Summary

The Internet of Things is a concept in which objects use

the infrastructure of the internet to communicate with each

other in a global way. An essential part of the IOT concept

is to enable objects to exchange data between each other

autonomously, i.e. without human intervention.

Autonomous communication between the objects requires

sensing, evaluating and communicating. Environmental

parameters are sensed, intelligent algorithms run on the

sensor node using this acquired data and the result is

transmitted wirelessly to a gateway. This leads to the

ability to create autonomous decision making or supporting

functionality to disburden human operators who otherwise

would have to battle their way through a flood of raw data.

The gateway which is the connection point to the outer

world should have M2M communication capabilities with

the sensors and with the internet infrastructure to allow

pervasiveness. The impact of the use of all these

technologies in the logistic process is mainly in three ways:

Self-aware products, delivery by product characteristics

and proactive tendering. However, the available

technological solutions that make the IOT concept possible

have their Achilles' heel in the sensor end-point. Over-the-

air dynamic data programming is possible with off-the-

shelf components. On the one hand the wireless sensor

node SunSPOT from Oracle can be used as base station as

well as part of the WSN. On the other hand commercial

telemetric units such as DuraNAV and VTC, with Linux as

operating system, can serve as a gateway device. In

combination with OSGi as software framework a user can

remotely update software in the WSN from any location

using a web interface. Java on the sensor nodes is useful,

because the communication volume for updating software

bundles is lower than in the case of monolithic software.

However, JavaME running on sensor nodes does not yet

allow communication between MIDlets therefore the

modularity is limited due to missing communication

between different modules.

Acknowledgments

The research project “The Intelligent Container” is

supported by the Federal Ministry of Education and

Research, Germany, under reference number 01IA10001.

The current study is also supported

by International Graduate School in Dynamics in logistics

at Bremen University.

References
[1] S. Tompros(Ed.),Internet-of-Things Architecture IOT-A

Project Deliverable D3.1 - Initial M2M API Analysis

[2] Integrating K. Ahmed, M. Gregory, Integrating Wireless

Sensor Networks with Cloud Computing, Seventh International

Conference on Mobile Ad-hoc and Sensor Networks,2011, pp.

364-366.

[3] W. Kurschl, W. Beer, Combining cloud computing and

wireless sensor networks. In Proceedings of the 11th

International Conference on Information Integration and Web-

based Applications & Services (iiWAS '09). ACM, New York,

NY, USA,2009, pp.512-518.

[4] N.F. Shafi, Efficient Over-the-air Remote Reprogramming of

Wireless Sensor Networks,Master thesis,Queen's University

Kingston, Ontario, Canada,2011.

[5] R. Lougher, 2010, JamVM [Online]. Available:

http://jamvm.sourceforge.net/ [Accessed 20.07.2012].

[6] K. Windt, M. Hülsmann, Changing Paradigms in Logistics -

Understanding the Shift from Conventional Control to

Autonomous Cooperation and Control. In: Understanding

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 549

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Autonomous Cooperation and Control - The Impact of

Autonomy on Management, Information, Communication, and

Material Flow, (M. Hülsmann, K. Windt, eds.) pp. 4-16,

Springer, Berlin, 2007

[7] W. Lang, R. Jedermann, D. Mrugala, A. Jabbari, B. Krieg-

Brückner, K. Schill, The Intelligent Container - A Cognitive

Sensor Network for Transport Management. In: IEEE Sensors

Journal Special Issue on Cognitive Sensor Networks, 11(2011)3,

688-698

[8] H.Sundmaeker, M. Würthele, S.Scholze, Challenges for

Usage of Networked Devices Enabled Intelligence, Vision and

Challenges for Realising the Internet of Things,CERP-IoT –

Cluster of European Research Projects on the Internet of

Things,2010, pp. 93-103. Available from

http://docbox.etsi.org/tispan/open/IoT/CERP-

IOT_Clusterbook_2009.pdf

 [9] S. Han, R. Rengaswamy, R. S. Shea, M. B. Srivastava,

Sensor Network Software Update Management: A Survey,

Internation Journal of Network Management . 15 (2005) 283-294

[10] P. Levis, D. Culler, Maté: a tiny virtual machine for sensor

networks. In Proceedings of the 10th international conference on

Architectural support for programming languages and operating

systems (ASPLOS-X). ACM, New York, NY, USA, 2002.

[11] D.Simon,, C. Cifuentes, D. Cleal, J.Daniels, D.White,

Java(TM) on the bare metal of wireless sensor devices: the

squawk Java virtual machine. In: Proceedings of the 2nd

international conference on Virtual execution environments,

Ottawa, Ontario, Canada, ACM, 2006. (doi:

10.1145/1134760.1134773)

[12] VIRTENIO. 2012. Available:

http://www.virtenio.com/de/produkte/hardware/preon32.html

[Accessed 20.07.2012].

[13] F.Siebert, Hard Realtime Garbage Collection. aicas GmbH,

Karlsruhe, 2002.

[14] U. Breymann, M. Heiko, JAVAME

Anwendungsentwicklung für Handys, PDA und Co. 2008

[15] Sun SPOT World. 2012 Available from

http://www.sunspotworld.com/

[16] F. Bellifemine, G. Caire, A. Poggi, ,G. Rimassa, Jade - A

White Paper. In: "EXP in search of innovation - Special Issue on

JADE" TILAB Journal,3, (2003).

[17] F. Aiello, A. Carbone, G. Fortino, S. Galzarano, Java-

based Mobile Agent Platforms for Wireless Sensor Networks,

Proceedings of the 2010 International Multiconference on

Computer Science and Information Technology (IMCSIT),2010

,pp.165-172

[18] A.Ibrahim, L. Zhao, Supporting the OSGi Service Platform

with Mobility and Service Distribution in Ubiquitous Home

Environments. Comput. J. 52, 2 (2009) 210-239

DOI=10.1093/comjnl/bxn032

http://dx.doi.org/10.1093/comjnl/bxn032

 [19] M. Desertot, S. Do, D. Donsez, M. Bui,Mobile Agents

Platforms over OSGi,Proc. of 4th International Conference on

Computer Sciences, Research Innovation and Vision for the

Futur, RIVF'06, 2006.

[20] S. K. Lee, J. H. Lee, OSGi based service mobility

management for pervasive computing environments. In

Proceedings of the 24th IASTED international conference on

Internet and multimedia systems and applications (IMSA'06),

2006, pp.159-164.

[21] A. Bottaro, F. Rivard, OSGi ME An OSGi Profile for

Embedded Devices. OSGi Community Event 2010.

[22] PROSYST. 2010. The World’s smallest OSGi Solution

[Online].

Available:http://www.prosyst.com/index.php/de/html/news/detail

s/18/smallest-OSGi/ [Accessed 20.07.2012].

[23] National Institute of Standards and Technology (NIST)

2005, JAMA : A Java Matrix Package. Availabe at

http://math.nist.gov/javanumerics/jama/

[24] Determination of the shelf life of sliced cooked ham based

on the growth of lactic acid bacteria in different steps of the

chain J. Kreyenschmidt, A. Hubner, E. Beierle, L. Chonsch, A.

Scherer and B.Petersen Faculty of Agriculture, Institute of

Animal Science, University of Bonn, Bonn, Germany

Alexander Dannies received his Diploma in Electrical

Engineering and Information Technology with specialisation in

microelectronics / micro system technology from the University

of Bremen in 2010. Since February 2011 he is a research

associate of the Institute for Microsensors, -actors and –systems

at the University of Bremen. There he is currently involved in the

project “Intelligent container” and is researching the topic “Data

interpretation in sensor networks”.

Javier Palafox-Albarran has a Master of Science degree in

information and automation engineering from the University of

Bremen. Previously he has earned several years of industry

experience working in industrial Automation. Currently he is

pursuing a PhD in the Institute for Microsensors, -actuators and –

systems (IMSAS). His research topic is on the analysis and

prediction of sensor and quality data in food transportation

supervision. He is also a member of the International Graduate

School for Dynamics in Logistics.

Walter Lang studied physics at Munich University and received

his Diploma in 1982 on Raman spectroscopy of crystals with low

symmetry. His Ph.D. in engineering at Munich Technical

University was on flame-induced vibrations. Science 2003 he is

the head of the Institute for Microsensors, -actors and –systems

at the University of Bremen. His research focus includes the

manufacturing of miniaturized sensor components and the

automated processing of sensor data.

Reiner Jedermann finished his Diploma in Electrical Engi-

neering 1990 at the University of Bremen. After two

employments on embedded processing of speech and audio

signals, he became in 2004 a research associate in the

Department of Electrical Engineering at the University of

Bremen. He finished his Ph.D. thesis on automated systems for

freight supervision end of 2009. His current research focus is the

analyses of spatial temperature profiles and the implementation

of automated decision tools for container supervision.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 550

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

