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Abstract 
In this paper, a novel continuous-time robust nonlinear control 
scheme, is proposed for nonaffine nonlinear systems with 
unknown uncertainties/disturbance, which is based on 
backstepping methodology and sliding mode control technique. 
Firstly, a novel approximation technique is developed to 
approximate the nonaffine nonlinear dynamic systems. Then, the 
robust backstepping control for nonaffine nonlinear systems is 
proposed via the novel approximation technique. In the 
controller design procedure, the sliding model control method is 
introduced to avoid the possibility of the over parameterization 
problem and deal with the unknown uncertainties/disturbance. 
And, a second-order sliding mode integral filter is employed to 
facilitate the development of the derivation of the virtual control 
input with uncertainty terms included. Finally, the designed 
robust control strategy is applied to three-pole active magnetic 
bearing system, and simulation results are provided to 
demonstrate the effectiveness of the theoretic results obtained.  
Keywords: Nonaffine Nonlinear Systems, Robust Backstepping 
Control, Active Magnetic Bearing System, Simulation. 

1. Introduction 

In the past decade, there has been significant progress in 
the area of control design for nonlinear plants. Isidori [1] 
developed important results related to the geometric 
approach for analysis and control design of nonlinear 
plants. An overview of available nonlinear control 
techniques is given by [2]. Many of these results have 
been extended to the case of nonlinear plants with 
uncertainty [1-2]. Up to now, few research articles related 
to the nonaffine nonlinear systems [3-4], in addition to the 
intelligent control algorithms. However, intelligent control 
algorithms require a lot of expertise or modeling data. For 
some plants, expertise or modeling data is not easy to 
obtain. 
 
The problem of controlling the plants characterized by 
models that are nonaffine in the control input vector is a 
difficult one [5]. An approach widely used in practice is 

that based on linearization of the nonlinear plant model 
around an operating point. In some controls, the nonlinear 
model of dynamics is generally nonaffine in input u  and 
is commonly linearized around a trim point, that is, an 
operating point dependent on the current states.  
 
Based on the aforementioned works, this paper develops a 
novel robust backstepping control (NRBC) methodology 
for nonaffine nonlinear dynamic systems. A novel 
approximation technique is firstly employed to 
approximate the nonaffine nonlinear dynamic system. 
Then, based on backstepping control, NRBC is proposed. 
However, in the NRBC controller design procedure, the 
sliding model control technique is introduced in the 
backstepping procedure so as to develop an easy-
implemented controller, as well as to avoid the possibility 
of the overparameterization problem and deal with the 
unknown uncertainties/disturbance. And, a second order 
sliding mode integral filter is introduced to facilitate the 
development of the derivation of the virtual control input 
with uncertainty terms included. Finally, the proposed 
strategy is also applied to three-pole AMB system 
suffering from unknown uncertainties/disturbance. The 
tracking performances of three-pole AMB system could 
also be well guaranteed. 

2. Problem Formulation 

Consider the nonaffine nonlinear MIMO system which is 
represented by the following set of differential equations: 

21 xx =                                                                     (1) 
dtutxfx += )](),([2                                                 (2) 

where 1
1

nx ℜ∈ and 2
2

nx ℜ∈ are the state vectors, and 
21),()( 21

nnTxxtx +ℜ∈= ， mT
muuutu ℜ∈⋅⋅⋅= ),,,()( 21    

is the input vector of the system, respectively. 
1

21 :,),,,( ℜ→ℜ×ℜ⋅⋅⋅= mn
i

T
n fffff  are known 

smooth nonlinear functions whose first derivatives with 
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respect to )(tx  and )(tu exist. 2nd ℜ∈  denotes the 
function uncertainty  with  ψ≤d , which is due to the 

modeling errors and external disturbances. 
 
Most of the nonlinear control methods developed in this 
context are applicable to nonlinear plant models that are 
linear in unknown parameters and affine in the control 
input vector u , that is, characterized by appearing linearly 
in the equation. However, for nonaffine nonlinear MIMO 
system, the problem of controlling the plants characterized 
by models that are nonaffine in the control input vector is 
difficult one.  Without any effective methods to solve this 
problem. One nonlinear approach to this problem is that 
based on directly inverting the nonlinear function of on 
domain. Although the existence of an inverse function can 
be guaranteed by the implicit function theorem [2],  it is 
generally difficult to prescribe technique to actually obtain 
such an inverse. However, in the proposed NRBC, such 
time consuming algorithms are totally avoided and thus 
the controller design is greatly simplified. Further 
speaking,for the continuous time nonaffine nonlinear 
systems, robust control research has not been studied.  
 
In order to convenient unfold the following work, short 
assumption is given as following  
Assumption 1: The input vector u of the system must be 
measurable or available.  

3.  Novel NRBC Algorithm Nonaffine 
Nonlinear Dynamic Systems   

A novel NRBC algorithm is proposed here using newly 
developed nonaffine nonlinear approximation for continue 
-time systems, which not only avoids complex control 
development and intensive computation, but also 
overcomes the shortcomings of other existing methods. 
unique and rigorous stability proof will be given and its 
superior performance will be demonstrated in later 
simulations.  

3.1  Novel Nonaffine Nonlinear Approximation  

For the nonaffine nonlinear model (1), the Taylor 
expansion of the nonlinear function )](),([ tutxf  with 
respect to  )(tu around )( τ−tu can result in  

21 xx =                                                                             (3) 
dRtututxftutxfx pd ++Δ−+−= )())(),(())(),((2 ττ    

                                                                                 (4) 
where 
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[ ]Tmζζζζ ,,, 21 ⋅⋅⋅=  with 
jζ  being a point between 

)(tu j and )( τ−tu j . Let ppdd rrf ,0 ≤≤  is finite 

positive number, thus  .
2

)( 2
tur

R p
P

Δ
≤ The parameter 

0>τ is the updating input, It may be chosen as the 
sampling-time in sampled-data control system, or as an 
integer multiple of the sampling-time. A better choice of 
the parameter τ is the sampling because a larger τ may 
lead to an inaccurate approximation when the system 
function [ ])(),( tutxf    varies quickly.  
It is easy that (3)-(4) can be representation as the 
following form.  

21 xx =                                                                           (5) 

ξττ dtututxftutxfx dn +−+−= )())(),(())(),((2       (6) 

Where ,dRd p +=ξ and 

)())(),(())(),(())(),(( tututxftutxftutxf dn τττ −−−=−  
To approximation accuracy, control input must satisfy the 
following assumption.  
Assumption 2: [ ]δ,0)( ∈Δ tu  and ,

)(
0 β≤

∂
∂

<
tu

f δ  and β  

are two finite positive vectors. 

In Assumption 2： β≤
∂
∂

<
)(

0
tu

f  means that the system 

(1) has a well defined relative degree [4].  )(tuΔ  should 

not be too large in order to limit the approximation error 
of the model (5)-(6) for a computed u(t). In many actual 
process control systems and flight control 
systems, [ ]δ,0)( ∈Δ tu  is a physical restriction of many 

practical systems because their states and outputs 
(actuators) cannot change too fast because of 
system ’inertia’. 
 
Remak 1: If there is control input saturation constraints, 

)( τ−tu  must be the actual control input of τ times before, 
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rather than control input command of τ times before. 
 

3.2 Nonlinear Controller and Stability Analysis 

In this subsection, based on above proposed novel non-
affine nonlinear approximation algorithm, the robust back-
stepping procedure and the sliding model control 
techniques are introduced so as to develop a NRBC, 
whose function is to track the reference signal with an 
acceptable accuracy. The following assumptions are used 
in the design and analysis procedure. 
 
Assumption 3:: The reference signal dx1 , virtual 

input dx2 and their first order derivatives are piecewise 
continuous  and bounded, they are 

1max11 Δ=≤ dd xx  

2max22 Δ=≤ dd xx  

1max11 Δ=≤ dd xx  

2max22 Δ=≤ dd xx  

Moreover, the function uncertainty is assumed to be un-
known. However, the upper boundary of its magnitude is 
known as 

ξξ Ψ≤d  

Before we start, respectively, the state tracking error 
variables 1e  and  2e as follows 

            dxxe 111 −=                                                       (7) 

            dxxe 222 −=                                                       (8) 

where dx1  and dx2  are the desired trajectories of 1x  and 

2x , respectively. Note that dx1  is given by command 

signals and dx2  will be defined  later. From (5) and (7), 
we have 
           dd xxxxe 12111 −=−=                                      (9) 

We further assume that dx2  is the virtual input to (9), and 
the desired virtual control is 
          )( 111

1
2 dd xeCEx −−= −                                     (10) 

where 1C  is a designed positive diagonal matrix, and E  
is a unit matrix. 
As stated previously, with the inclusion of the uncertainty 
or disturbance in the virtual input (10), it is difficult in 
finding, its derivatives because the signal may not be 
practically differentiable due to noises and/or disturbances, 
and the problem of overparameterization will occur with 
the increase of steps as well. 

In view of this, a second-order sliding model integral filter 
is presented in this paper so as to eliminate the analytic 
computation of dx2 , which will be used as reference in 
the backstepping procedure. It is worth stressing that the 
proposed filter works also for the high-order backstepping 
procedures, just using the output of the ( 1−i )th filter as 
the input to the ith filter, .,,2,1 ni ⋅⋅⋅=  The proposed 
integral filters are presented as follows 

121

211

1

21
1 ˆ

)ˆ(ˆˆ
ςλ

λ
ε

λλ
+−

−
−

−
−=

d

dd

x

xQx
                  (11) 

212

122

2

12
2 ˆˆ

)ˆˆ(ˆˆˆ
ςλλ

λλ
ε
λλλ

+−

−
−

−
−=

Q
                    (12) 

where  iε  is the time constant of the filter, iQ and iς  are 
the designed constants, .2,1=i  
Obviously, with iQ  assumed to be zero, the proposed 
filters are reduced to a classical integral filters. It should be 
pointed out that, with the inclusion of the sliding model 
control component, the fast convergence of the estimation 
error produced by the proposed integral filters is 
guaranteed, which will be analytically studied during the 
stability analysis. Similar integral filters associated with 
different control schemes can also be found in varies 
applications [6-7], and the performance demonstrates their 
feasibility within the backstepping procedure. 
Let us take 2x  as the virtual control variable of 1x -

subsystem, and select 22 xx d ≈  as the ideal control input. 
It is noted that, in this step, the task is to stabilize (7) with 
respect to the Lyapunov function. 

)ˆ()ˆ(
2
1

2
1

2121111 d
T

d
T xxeeV −−+= λλ             (13) 

Obviously, the third term in (13) is used to stabilize the 
estimation error of the proposed filters. Consequently, 
evaluating its time derivative along the solutions of the 
system(9), results 

      )ˆ()ˆ( 2121111 d
T

d
T xxeeV −−+= λλ                       (14) 

Substituting (9), (10) and (11) into (14) yields 

     )
)ˆ(

)ˆ(()ˆ( 2
121

211
21

2
111 d

d

dT
d x

x

xQ
xeCV −

+−

−
−−−≤

ςλ
λλ   

                                                                                     (15) 

According to Assumption 3, the parameter 1Q  can be 

designed as ,211 Δ=ϑQ   where 11 >ϑ . Hence, we have 
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x

x
xeCV  

                                                                                       (16) 
Apparently, if 021 ≠− dxλ  and the following relation is 
satisfied, the time derivative of the Lyapunov function will 
be rendered to negative 

                 
11

1
21 −

>−
ϑ
ςλ dx  

With the preceding condition, the system will be bounded 
stable at the origin (i.e., 0,0 21 == ee ), and also, with 
such condition, the actual estimation error of the proposed 
filter can be guaranteed within a compact set determined in 
the form: 

            
11

1
21 −

>−
ϑ
ςλ dx                                              (17) 

Obviously, the estimation error of the filter can be adjusted 
sufficiently small by choosing ς1 appropriately, and with 
the inclusion of the sliding mode control component, (17) 
can be arrived in finite time. 
Next, from (8), we have 

)(())(),((2 txftutxfe dn +−= τ  

 dxdtutu 2)())( −+−− ξτ                        (18) 
The candidate Lyapunov function in this case is defined as   

)ˆˆ()ˆˆ(
2
1

2
1

12122212 λλλλ −−++= TT eeVV              (19) 

Then the time derivative of 2V  is given by 

)ˆˆ()ˆˆ( 12122
2

2
1

1

2
2 λλλλ −−+

∂
∂

+
∂
∂

= Te
e

V
e

e

V
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Consequently, the parameter 
2Q  can be designed as 

322 Δ=ϑQ  , where 12 >ϑ . We have 
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                                                                                        (21) 
where .ˆ

3
max

1 Δ=λ  Then, then we can design the global 

NRBC law as 
)ˆ),()(,()( 2122

1 λττ −+++−= −−
− ruxfEeeCuxftu nd   

               (22) 
where 2C  is a designed positive diagonal matrix. r  is a 
robust term designed to cancel the function uncertainty, 
and 

⎪⎩

⎪
⎨
⎧

= 2
2

2

e

e
r ξψ

     
0
0

2

2

=
≠

e

e
                                        (23) 

Hence, in this case 
2

22
2

112 eCeCV −−≤       

)1
ˆˆ

)ˆˆ(()ˆˆ(
212

122
312 −

+−

−
Δ−−

ςλλ

λλϑλλ T                   (24) 

In the same way as (16), in order to render 02 <V , we 
must have 

1
ˆˆ

2

2
12 −
>−
ϑ
ςλλ  

Consequently, with such controller, the estimation error of 
the filter can be guaranteed within the set determined in 
the form 

1
ˆˆ

2

2
12 −
>−
ϑ
ςλλ  

Therefore, the proposed control system is overall asymp-
totically stable in its origin ( 021 == ee ), and the estimated 
errors of the filters are all bounded and converge 
exponentially to a predetermined set. Also, since the 
included designed parameters do not depend on each other, 
the size of the set can be made sufficiently small by 
adjusting the corresponding parameters )2,1( =iiς  
appropriately. 
 
In summary, we have the following results. 
Theorem 1: Under Assumptions (1-3), using the NRBC 
controller (10) and (22) with the robust term (23) for 
nonaffine nonlinear dynamic systems (1). The solutions of 
error system (7-8) are UUB (Uniformly Ultimately 
Bounded) for ∞→t  . 
 
Remark 2: Strictly speaking, when the dimension of 
control inputs is not equal to that of state variables, the 
inverse matrix of df is in the nonexistence. Thus, in this 

study,the generalized matrix inverse of df  can be also 

obtained as 1)( −T
dd

T
d fff . If T

dd ff is well-conditioned, 

the inverse of f T
dd ff  exists. However, T

dd ff  may be 
ill-conditioned. A diagonal matrix is defined as 

),,,( 21 maadiag αα ⋅⋅⋅= with jα  being a given small 

positive number and thus matrix  α+T
dd ff is invertible. 

Based on the approximation model (6), a global NRBC 
law (an approximation solution of (6) can then be 
determined as follows. 

)ˆ()()( 2122
1 λα −++++−= − rfEeeCffftu n

T
dd

T
d    
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                                                                                        (25) 
Remark 3: In order to obtain the smooth signal r, the 
unknown ξd can be approximately estimated by 

             
β

ψξ

+
= 2

2

2

e

e
r                                                       (26) 

β is a given small positive number. 
 
Remark 4: If the nonlinear dynamic characteristics of the 
process plant can be accurately described by the math-
ematical model (1), the robust compensation term (23) is 
not needed. Then, the NRBC can be degraded into a novel 
backstepping control (NBC) for certain nonaffine 
nonlinear dynamic systems. 

4.  Illustrative Example 

In this section the objective to evaluate the performance of 
the NRBC. The evaluation is carried out on the three-pole 
AMB system [8-9]. First, the three-pole AMB 
mathematical model is described. It will be shown that the 
three-pole AMB is a nonaffine nonlinear system. 
With the configuration of Fig.1, a magnetic circuit is given 
in Fig.2, assuming that the reluctance exist only on air 
gaps, the differential equations the three-pole AMB 
system is given by 

 

Fig. 1  Nonlinear control of a 3-pole AMB system. 

gmy

mx

r

r

−Φ−Φ=

ΦΦ=

)(
3
2
3
4

2
2

2
1

21

γ

γ                                     (27) 

where ),( rr yx   is the position of the rotor center, m  is 
the rotor mass and g  is the gravitational acceleration. 

2ANμγ = ,  μ is the magnetic permeability of the air, A is 
the pole face area and N  is the coil turns. The relationship 
 

 

Fig. 2.  Magnetic circuit for the 3-pole AMB system. 

between ),( 21 ΦΦ  and ),( 21 ii  can be expressed in a 
matrix form by 

⎥
⎦
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⎢
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L
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where )(4 222
0 rr yxlL +−= is always positive due to 

physical constrain 2
0

22 lyx rr ≤+ . The determinant of the 
matrix in  (28) is L3− ,  which is always non-zero. 
Therefore, there is a one-to-one correspondence between 

),( 21 ii  and ),( 21 ΦΦ . 
Define the states of three-pole AMB system (27) are 

),,,( rrrr yxyxx = , and control input are ),( 21 iiu = . The 
nominal values of the three-pole AMB system parameters 
are defined in Table 1. 
 
        Table 1  Nominal values of 3-pole AMB model parameters 
Description Value 
rotor mass, m̂  kg/635.0  

nominal air gap, 0̂l  m/1045.9 4−×  
Magnetic permeability of the air, µ mH /104 7−×π  
pole face area, A  24 /104 m−×  
coil turns, N  300 

 
Suppose that there is uncertainty caused by two 
parameters: the nominal air gap 0l  and the lumped 

parameter 0c . Let  
lυ and cυ denote the percentage of the 

variations in 0l  and 0c respectively, i.e., )1(0̂0 lll υ+=  and 

)1(ˆ00 ccc υ+= .Two levels of parameter variations are 
considered: )0;0( == cl υυ and %),2.1%;2.1( −== cl υυ The 
uncertainty case use the same initial 
states )02.0,015.0,102,102( 44 −− ××=x . In order to verify 
the proposed control algorithm robustness. NRBC and 
NBC are designed and implemented for nonaffine 
nonlinear systems. 
(1) The desired tracking commands are [ ] mx T

d /,0.01 = . 
The other parameters are selected as 

5
21 10,40 −=== αCC .According to Assumption 2, 

)(tuΔ should not be too large in order to limit the 
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approximation error of the model (5)-(6) for a computed 
)(tu , the parameters of robust compensation term (23) 

are selected as 001.0=ξψ  and 710−=β . 
 (2) Compared to NRBC law, NBC has a similar design 
process NRBC apart from robust term (23). So the 
controller parameters are also selected as 

5
21 10,40 −=== αCC . With the above controller 

parameters, the control currents 1i  and 2i  of the above 
controller are all within the range )2,2( AA− . 
Fig.3-5 show the rotor trajectories in the case of 
uncertainty. As can be seen from Fig.3-5, NRBC and NBC 
all can stabilize the system. Although both NBC and 
NRBC can stabilize the system in this uncertain case, the 
latter achieves better performance. Fig. 6 shows the 
control currents using NRBC law in the case of 
uncertainty, and Fig.7 shows the control currents using 
NBC law. 

 

Fig. 3. Rotor trajectory with NRBC and NBC controller. 

 

Fig.4.Rotor rx displacement with NRBC and NBC controller. 

5. Conclusion 

A continuous-time nonaffine nonlinear controller design 
scheme for a class of nonlinear systems is presented in this 
paper. The strategy combines sliding mode and 
backstepping technique based on a novel approximation 
technique. The NRBC controller is designed to track the 
state commands against unknown uncertainties/ 
disturbance. It is shown that, if the controller is applied, 
the tracking errors exponentially converge to a compact 
set and the size of the set can be made arbitrarily small by 
tuning the design parameters, and its stability is analyzed 
using Lyapunov theory. The proposed approach is then 
applied to three-pole AMB system, and simulation results 
demonstrate and illustrate the effectiveness and 
capabilities of our scheme. 

 

Fig.5. Rotor rY displacement with NRBC and NBC controller. 

 

 

Fig. 6. Input coil current with NRBC controller. 
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 Fig. 7. Input coil current with NRBC controller. 
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