

Interoperability between .Net framework and Python in
Component way

M. K. Pawar1, Dr. Ravindra Patel2 and Dr. N. S. Chaudhari3

 1 Assistant Professor,
UIT, RGPV, Bhopal

2 Associate Professor,
UIT, RGPV, Bhopal

3 Professor, Deptt. Of CSE

IIT, Indore

Abstract
The objective of this work is to make interoperability of the
distributed object based on CORBA middleware technology and
standards. The distributed objects for the client-server technology
are implemented in C#.Net framework and the Python language.
The interoperability result shows the possibilities of application
in which objects can communicate in different environment and
different languages. It is also analyzing that how to achieve
client-server communication in heterogeneous environment using
the OmniORBpy IDL compiler and IIOP.NET IDLtoCLS
mapping. The results were obtained that demonstrate the
interoperability between .Net Framework and Python language.
This paper also summarizes a set of fairly simple examples using
some reasonably complex software tools.

Keywords: Component Interoperability, Component objects,
cross communication among .NET and Python.
.

1. Introduction and Background

There is an increasing demand of development of
component based technology in software industries [1].
For the reason that in another engineering discipline in
which, components have successfully developed and also
have adapted to build the systems. (For example, Civil
engineering, Mechanical engineering Electronics
engineering etc.). As a result we can also think the same
concept in software engineering. CORBA is continuously
progressing in the research area of Component based
software engineering. Since, CORBA middleware makes
available the common platform [2] for various oops based
language, some of the languages are very powerful in
terms of compatibility of CORBA and some languages are
less supportive the CORBA middleware. In the past few
years, component-based software’s have been well

developed and motivated, for example Enterprise Java
beans EJB of Sun Microsystems, CORBA Component
Model of the OMG (Object Management Group) and
COM (Component object model), DCOM and COM+ of
Microsoft. Still there is a need to lot of development in
CORBA standards and services for language compatibility
in component based technology.

The overviews of well developed components are as
follows:

Microsoft’s COM, DCOM and COM+: Microsoft has
implemented a COM component to develop the desktop
applications [3]. DCOM is being implemented to operate
remote applications, and COM+ is a higher version of
COM. The limitations of the above components are
running under the windows operating system. The
awareness of Microsoft system based tools is required to
implement the above domain specific components.

Java Beans Components: SUN Microsystems are
required the familiarity of enterprise Java beans and
Remote method invocation (RMI) to develop the Java
Beans component [4]. Components of Java beans are
platform independent, which overcome some of the
limitations of Microsoft’s component. RMI is used to
invoke the component of one Java program into another
Java program within the network boundary. The limitation
of RMI is also that, it runs only for Java based
applications.

CORBA of OMG Group: The domain specific
limitations of Microsoft’s and SUN Microsystems, the
OMG has launched common object request broker
architecture (OMG/CORBA). The application developer

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 165

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

has to use CORBA component model [5], which cross the
boundaries of domain specific applications. An ORB
provides different services that enable the one component
to communicate other component in a transparent manner.
The CORBA supports the architecture of various
programming language developed by different vendors.
For the language and environmental interoperability [6],
CORBA provides Interface Definition Language (IDL),
which is used to implement the component in any
programming language.

The ORB services are used for component
communication as shown in figure: 1. The Stubs and
Skeletons are generated for each component by using their
IDL compiler, for example (C++ to IDL ACE+TAO,
omniORB etc, Java to IDL, idlj, python to IDL,
omniORBpy, and .NET to IDL, IDLtoCLS etc). Stubs and
skeletons file play crucial role for client server
communication.

To communicate with the ORB [7], the application uses a
static IDL stub on the client end and static IDL skeleton at
server end, which invokes the implementation of an IDL
file that contains the interface definition.

2. Overview of IDL Compiler Tools

There are many IDL compiler tools were developed by
different vendors and they successfully achieve the
adaptive environment for most of the languages [8]. By
using CORBA we can achieve various object-oriented
languages interoperable in any environment and
successfully build the component-based application [9]
[3]. IDL compilers that support the CORBA [10] standard
such as: IIOP.NET, interoperation between .NET, and
CORBA or J2EE, Jacob wrote in Java IDL-to-Java
Compiler, R2CORBA, a CORBA implementation of the
Ruby Programming Language, VBOrb, CORBA Visual
Basic clients and servers, MICO, IDL to C++ mapping,

ACE ORB (TAO), IDL to C++ mapping, omniORB, ORB
with C++ and Python bindings, ORBit, C and Perl
bindings, idlj - The IDL-to-Java Compiler etc.
In our example we have used the omniORB IDL to python
language mapping and IIOP.NET channel for C#.Net
mapping, to make interoperable using CORBA
middleware. Here we summarize the IDL compiler tools
omniORB and IIOP.net channel:

2.1 OmniORB

The OmniORB [11] [12] is an Object Request
Broker (ORB) that develop the specification of the
Common Object Request Broker Architecture (CORBA).
OmniORB is a robust high performance CORBA ORB
for C++ and Python. It is an open source implementation
and freely accessible under the terms of the GNU Lesser
General Public License (for the libraries), and GNU
General Public License (for the tools). OmniORB has
always been designed to be portable. It runs on many
versions of UNIX, Windows etc, It is designed to be easy
to port to the new environment. The IDL to C++ mapping
for all target platforms is similar. The main features of
OmniORB are Multithreading and Portability. The major
limitations of OmniORB are that it does not have its own
interface repository and standard Portable Interceptor API.

2.2 IIOP Channel

The main requirement to communicate with the
Common Object Request Broker Architecture (CORBA), a
channel [10] for the IIOP protocol was implemented by
Dominic Ullmann and Patrik Reali. The IIOP.NET does
not provide interoperability with python ORB in different
environments. The major importance of the IIOP.NET
project has been to maintain the IIOP protocol between
Java and .NET. However, IIOP.NET can also support the
compatibility with C++ client and server through
ACE+TAO.

3. Problem Definition

The main advantage of CORBA technology to
achieve interoperability of component objects. We have
implemented the two very simple client server model
based on CORBA standards. IIOP.NET allows
interoperation between .NET, CORBA and other
distributed objects. This is done by incorporating
CORBA/IIOP support into .NET, influencing the
Remoting framework [10]. Since, python IOR does not
support by .NET framework due to limitation of standards
and lack of development in this area. We have
implemented the python server that accepts the request of
C#.Net Client. To test the efficiency of interoperable

Fig1: ORB Architecture

ORB Core & (GIOP/IIOP)

ORB
Interface

Client Object Implementation

IDL
Skeletons

DSI Object
Adapter

Dynamic
Invocation

IDL
Stubs

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 166

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

objects based on CORBA an example has implemented
with the aim to calculate the multiplication and division
operation. C#.Net and python seems important in terms of
efficiency of communication between component objects,
to test interoperability of these objects in different
environments. In our approach, First server has
implemented in IIOP C#.NET for multiplication and
second server has implemented in Python and integrated
mixed C#.NET and Python. The proposed model is
demonstrated in figure: 2 as follows:

In the Client-Server model, python server
generates an IOR (Interoperable Object Reference), this
IOR is copied into the client implementation file to invoke
the server object, if the client and server running on the
same machine then it can easily copy from server to client.
If the client and server running on different machines,
then, we need to remotely copy the IOR from server to
client. It is a little difficult for the developer. So, we have
implemented an approach that overcomes to the remotely
copy the IOR, and extend the interoperability between
C#.net and python.

4. Example

In our example, the work carried out on a
network of two different machines. IIOP C#.NET Server
based on Microsoft’s windows 7 Operating System, and
IIOP.NET-1.9.3, IDLToCLS compiler, IDL to C#.NET
mapping. C#.NET server computes the result of the
multiplication operation by using input parameters. Python
Server based on Ubuntu10.10 and omniORBpy-2.7 IDL
compiler, IDL to Python mapping. The python server
computes the result of a division operation by using the
same parameters. GUI based client has implemented in
C#.Net, which passes the input parameters to the
distributed objects and receives the result of multiplication

and division by using the same input parameters The
process diagram of the communication is shown in fig: 3

Procedure:

1. Launch the C#.Net Server and Python Server on
Different Machine by using different port no.

2. Launch the client application that receives the
input parameter and choice for multiplication and
division operation

3. Client side we have two choices to choose the
operation. Choose one for multiplication and
another for division.

4. C#.Net client simply sends the input parameters
to the C#.Net Server and python server.

5. These input parameters are passed into a python
object that computes the result.

6. The Result is sent back to the client.

IDL Interface: straightforwardness of the IDL file is the
proposed action [13][14]; this makes possible testing and
directs to the transparency code. The IDL file content is

Fig2: Communication between Python Server, IIOP C#.Net Server
and C#.Net Client

PYTHON SERVER

Linux based IDL to Python
Mapping (omniORBpy

Compiler)

IIOP C#.NET SERVER
Window based IDL to C#.Net

Mapping (IDLToCLS Compiler)

C#.Net Client
Window Based GUI

Fig: 3 Client- Server Communication Process

Start C#.Net Server Start Python Server

Start the Client &
Read Input Values

 * for Multiplication
 / for Division

If Choice * If Choice /

Multiplication Division

Input Choice

Display Result

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 167

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

very simple as shown in fig: 4. The IDL contains the
definition of multiplication and division and an interface
containing the method to calculate the operation. After
initialization the C#.net server, python server and C#.net
client, the client receives two input parameters, to compute
the result of multiplication and division operation.

The distributed object recognizes the assignment of
finding an implementation repository for the input
parameters and forwards the calculated result to the client.
Python server code as shown in figure: 5, receives the
input parameter and establish the connection between
C#.net client and python server. This input parameter is
passed to the python object. These input parameters are
used by a python object to evaluate the result of division
operation and the result is given to the C#.net client.

5. Results

There are two cases, in which we have evaluated the
results:

Case1: Communication between C#.Net server and
C#.net client:

Initially we start running the C#.net server and a Python
server on a different machine by using different port no. as
shown in figure: 6 and 8, and then we launch the C#.net
client application. In this case, client-server
communication using CORBA services is excellent due to
the same environment of client and server.

The multiplication result, which is computed by C #.net
server by using the input parameter, is shown in figure: 7

#!/usr/bin/env python
import sys
import socket
from omniORB import CORBA, PortableServer

Import the stubs and skeletons for the Example module

import _GlobalIDL, _GlobalIDL__POA

class division (_GlobalIDL__POA.Division):
 def div(self, a,b):
 return a/b

 # Initialise the ORB
orb = CORBA.ORB_init(sys.argv, CORBA.ORB_ID)
 # Find the root POA
poa = orb.resolve_initial_references("RootPOA")
 # Create an instance of Div
ei = division()
 # Create an object reference, and implicitly activate the object
eo = ei._this()

calling python object using input parameter form C#.Net Client

x=ei.div(data[0],data[1])
print orb.object_to_string(eo)
conn.sendall(str(x))
print "Result of Division send to the client......"

poaManager = poa._get_the_POAManager()
poaManager.activate()
orb.run()

Fig: 5 Python Server code

Fig: 6 Running process of C#.Net Server on port no.2811

Fig: 7 Running process of C#.Net Client on port no.2811

Fig: 4 The IDL Interface for C#.Net and Python

//Division.idl
interface Division
{
double div(in double a, in double b);
};

//Multiplication.idl
using System;
using System.Runtime.Remoting;

namespace CalciClient
{
 public interface Multiply

 {
 double mul(double a, double b);
 }
}

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 168

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Case2: Communication between Python server and
C#.net client:
In case1, client server communication is very strong using
the CORBA standard and services. But, in case2, shown in
figure: 8, for client server communication in different
environment and different language (e.g. .Net framework
and python), python ORB & IOR does not support
directly. As a result, we ultimately employ the python
servant object all the way through communication. In this
case, the copy of IOR is not requisite to the client for
servant object invocation. As an alternative, we use the
python object services on the server side.

The result of a division operation, which is computed by
the Python server by using the same input parameter and
CORBA, is shown in figure: 9

6. Conclusion

In this paper we are presented opportunities of usage
CORBA middleware standard and services for the
component object for different programming languages
.Net framework and python, with challenging importance
on cross communication implementation. We have tested
that how a C#. Net client written in C#, and running on
Windows, can communicate directly with a .NET server,
and python server by using the IIOP protocol and
omniORBpy. Additionally, we have also seen how to write
C#.Net client, using IIOP.NET, which can communicate
with python server, running on Linux.

CORBA is a benchmark which supports the architecture of
various programming languages, which makes it very
reasonable means to implement the component based
application. But, sometimes it may be challenging, As
CORBA is used with various external tools such as
ACE+TAO, omniORB, idlj, IIOP.net, omniORBpy etc.

Some component technology already exists, in which
development of the application is not complicated because
of their domain specific nature, but when we cross the
domain, then there is need to such kind of standard and
technology in which we can develop component based
application. After the execution of implementation, it can
be concluded that server and client in python and .NET
framework is the most effective way for component object
communication.

References

[1] F Bronsard, D Bryan, W Kozaczynski; Toward software
plug-and-play SSR’97 Proceedings of the 1997 symposium on
Software reusability Pages 19 – 29, ACM New York, NY, USA
©1997.

[2] Hall, L.; Hung, C.; Hwang, C.; Oyake, A.; Yin, J.; , "COTS-
based OO-component approach for software interoperability and
reuse (software systems engineering methodology)," Aerospace
Conference, 2001, IEEE Proceedings. , Vol. 6, no., pp. 2871-
2878 Vol. 6, 2001.

[3] Onderka Z., Cichy M.; The Comparison of the
Communication Eciency for the CORBA and DCOM Standards
in the Client Server Systems, Computer Networks, 2011. Will be
published in Studia Informatica.

[4] Deitel & Deitel, 2001, Java How to write a program. USA,
Prentice Hall.

[5] Z Onderka, The efficiency analysis of the object oriented
realization of the client server systems based on the CORBA
standard publication published online January 23, 2012. DOI
10.4467/20838476SI.11.010.0296.

[6] Hill, J.H.; "Towards Heterogeneous Composition of
Distributed Real-Time and Embedded (DRE) Systems Using the
CORBA Component Model," Software Engineering and
Advanced Applications (SEAA), 2011 37th EUROMICRO
Conference on , vol., no., pp. 73-80, Aug. 30 2011-Sept. 2 2011.

[7] A Yahiaoui, J Hensen, L Soethout; Developing CORBA-
Based Distributed control and building performance
environments by run-time coupling , International Conference on
Computing in Civil and Building Engineering , ICCCBE , 10 ,
2004.06.02-04 , Weimar.

[8] Object Management Group; Object Management Architecture
Guide, OMG Document Number 92.11.1, Revision 2.0, 1992.

[9] Object Management Group; The Common Object Request
Broker: Architecture and Speciation, OMG Document, Version
2.0., 1995.

Fig:8 Running process of Python Server

Fig: 9 Running process of C#.Net Client on port no.2809

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 169

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

[10] IIOP. NET-Documentation URL at http://iiop-
net.sourceforge.net/documentation.html

[11] The omniORB version 4.1, User’s Guide Duncan Grisby,
Apasphere Ltd., Sai-Lai Lo, David Riddoch, AT&T
Laboratories Cambridge, July 2009.

[12] Object Management Group (OMG), Object management
architecture guide: revision 2.0

[13] Corba 3 fundamentals and programming, John Wiley &
Sons, 2000 - Computers.

[14] M. K. Pawar, Dr. Ravindra Patel, Dr. N. S. Chaudhari;
"Way to Component-based Vending Machine," CIIT International
Journal of software engineering, 2012 , Vol.4, no.10. , pp. 447-
451, Nov. 2012.

M. K. Pawar, Assistant Professor, Department of
Information Technology at Rajiv Gandhi Proudyogiki
Vishwavidyalaya (State Technological University of
Madhya Pradesh), Bhopal, India. He has M. Tech. Degree
in Information Technology. He posses more than 12 years
of experience in the industry as well as teaching of
graduate and postgraduate classes. He has published 02
papers in international journals and conference
proceedings. He is a member IEEE.

Dr. Ravindra Patel, Associate Professor and Head,
Department of Computer Applications at Rajiv Gandhi
Proudyogiki Vishwavidyalaya (State Technological
University of Madhya Pradesh), Bhopal, India. He has
been awarded Ph.D. degree in Computer Science. He
posses more than 12 years of experience in teaching
postgraduate classes. He has published more than 15
papers in international journals and conference
proceedings. He is a member of the International
Association of Computer Science and Information
Technology (IACSIT) & IEEE.

Dr. Narendra S. Chaudhari Professor, Department of
Computer Science, Indian Institute of Technology (IIT)
Indore, MP and Member - Advisory Board, ITM
University, Gwalior (M.P.). He has been referee and
reviewer for a number of premier conferences and journals
including IEEE Transactions, Neurocomputing, etc. Dr.
Chaudhari is Fellow of the Institution of Engineers, India
(IE- India), as well as Fellow of the Institution of
Electronics and Telecommunication Engineers (IETE)
(India), senior member of Computer Society of India,
Senior Member of IEEE, USA, Member of Indian
Mathematical Society (IMS), Member of Cryptology
Research Society of India (CRSI), and many other
professional societies.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 170

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

