

A Novel Malicious Web Crawler Detector: Performance and
Evaluation

DeXiang Zhang1, DiFan Zhang2 and Xun Liu3

 1 Information and Network Center, Qingdao University
Qingdao, Shandong 266071, China

2 Information and Network Center, Qingdao University

Qingdao, Shandong 266071, China

3 Library, Qingdao University
Qingdao, Shandong 266071, China

Abstract
Internet demands a robust and resilient protected
communication and computing environment to enable
information flows flawlessly with no down time. However, the
Internet is exposed to the general public which will lead to loss
of sensitive information as well as copyright protected content.
To address this issue, in this paper, we proposed two schemes to
fight against unwanted automatic web crawlers, TSSNBS (Too
Simple Sometimes Naive Blocking Schema) and ABS (Adaptive
Blocking Schema). We validated the effectiveness of the two
schemes by implementing an advanced integrated crawler
detection system and applied on a high trafficked site in the real
world, exposed with real attackers.
Keywords: Crawler, Internet, Network, Algorithm.

1. Introduction

Internet demands a robust and resilient protected
communication and computing environment to enable
information flows flawlessly with no down time.
Nevertheless, the openness nature of Internet causes
security risk of information leakage because the
information are accessible to anyone without proper
access control. In recent years, much research has been
devoted to the construction of web technologies; contrarily,
few have investigated the construction of architecture.
Fortunately, several access control schemes were
introduced including WebDAV [1] and The PLAIN
Simple Authentication and Security Layer (SASL)
Mechanism [2].

Information flows in the Internet. To better organize the
world’s information and make it universally available and
accessible, crawlers, or known as web spiders, are
invented to traverse against the Internet to fetch
information [3].

To keep information confidential and prevent automatic
crawling programs not behaving normally, we proposed a
novel method of detecting unwanted automatic crawlers.
However, considering user anonymity and local law
requirements, raw logs was never processed without
stripping out user information.

To future help minimizing the effectiveness of this
technique, we proposed a dynamic blocker to block the
malicious request in real time.

2. System Design

2.1 Overview

Crawlers behave significantly different from normal users
since they are automated programs with pre-defined
routines, thus allowing researchers to use fingerprint
based techniques to classify them. Per analysis of the
behaviors of several commonly seen crawlers and robots,
we concluded several commonly seen patterns. By
detecting those patterns, we can figure out malicious
traffic effectively.

By utilizing known HTTP and TCP features, active and
passive network sensors can be put in the system to
monitor those traffic and with HTTP features as well as
TCP features, those traffic can be got rid of from the
entire system with little computational resource
consumption.

2.2 Crawler Pattern Analysis

Most crawlers are not script awareness and are simply
traversing against all links found in a page with a fixed

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 121

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

interval. For those crawlers, we found the following
patterns and are surprisingly high performing in detection.

(1) Continuous Requests: Many crawlers are programmed
to parse an entry page, extract links in the entry page and
visit each link immediately or after a fixed or random
interval. For robots, in order to fetch the whole site as fast
as possible, the interval is likely to be short. Regardless of
the interval, in the access log, we can observe consequent
and continuous requests. By defining an adequate
threshold of visiting the site, we can figure out possible
crawlers [4,5].

(2) Not Accepting Cookies: Since HTTP is stateless, to
keep state of the user, cookies are used. However, due to
the nature of crawlers which is stateless, it does not keep
cookies sent from the server. Thus, requests from the
same or similar (in the same C class) IP address which
never send cookies information can be very suspicious.

(3) Bogus User Agents: Users cannot access the Internet
directly. Instead, users use User Agents. Most commonly
seen user agent is web browser. All user agents use an
user agent string to identify itself. All browsers will send
out User Agent information. However, many crawlers are
omitting user agents; others are simply identifying
themselves as crawlers or very old browsers including
Internet Explorer 3.0 running on Windows 95 or
Netscape4.78 on Solaris. Since those old browsers are not
capable for the current Internet, we can safely define a
blacklist of user agent or even use machine learning
algorithms to automatically generate a white-list.

(4) Not Loading/Executing Scripts: Opposed to web
browsers which has integrated scripting engine (mostly
ECMAScript interpretation engine, whether fully
functional and complying with standards or not), spiders
are not equipped with scripting engines in most cases for
simpler implementation and faster execution. Thus, by
putting pitfalls and triggers in the source code, we may be
able to implement traps for web spiders and automated
bots. However, considering the instability nature of the
Internet, thresholds should be set and timeouts should be
available [6].

(5) High Fetch Rates: Another common approach in
implementing web spiders and crawlers is to fetch pages
as fast as possible. However, normal users tend to load
several pages at a time, read the pages and load another
batch of pages after a relatively long period.

2.3 Blockage of Requests

After detecting malicious traffic, traditionally, we
implement firewall rules or system configuration rules to
block the traffic. However, this requires human
involvement and thus is offline. Also, it requires much
human invocation. To address such issues, according to
RFC2616 [7], we first use standard HTTP error responses,
and then use connection based blockages.

(1) HTTP Error Message based Blockage: To prevent
requests being made successfully, we use HTTP error
messages. By returning a 40x error, the client won’t be
able to receive any useful message and the application
server won’t even receive such request, saving much
system resources and traffic. We used a customized HTTP
error message, code 444, as a respond. Such respond
totally ignores the request and returns nothing but the
HTTP header.

(2) Connection based Blockage: For most malicious
requests, HTTP Error Message based blockage should be
enough. However, more some DDoS aimed malicious
requests, even returning HTTP Error Messages help to
take down the server. Hence, we have connection based
blockage. In such blockage mode, we maintain a table of
blocked internet protocol addresses and scan this table
every time accepting a new connection.

2.4 Strategies against Malicious Crawler

We proposed two different strategies in blocking
malicious crawlers, TSSNBS (Too Simple Sometimes
Naive Blocking Schema) and ABS (Adaptive Blocking
Schema) to block malicious crawlers. We use TSSNBS as
the primitive decision making algorithm, and for unclear
crawlers, we use ABS which is powerful yet resources
consuming[8].

(1) TSSNBS (Too Simple Sometimes Naive Blocking
Schema): The TSSNBS algorithm aims to provide a quick
and relatively inaccurate method to detect malicious web
spiders. Thus, we choose to be stricter that ambiguous
requests will be marked as malicious. This will increase
false positive ratio, however, will block almost all real
bots.

For user agents, we have an extended list of known bad
keywords and another list of known-to-be-good client list
which was represented in Regular Expressions to provide
better compatibility and scalability. To provide better
performance, we used JIT technologies and cached byte-
codes generated from PCRE library.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 122

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

(2) ABS (Adaptive Blocking Schema): The adaptive
blocking schema is a combination of machine learning
and advanced metrics mentioned in features of malicious
crawlers above. Specifically, it is stateful. For each
suspicious connection passed from the TSSNBS, it will
create a session and keep record of it for an period of time.
The session will be served a specially designed trap in
JavaScript. Normal user agents will try to execute this
script and respond accordingly.

For clients not accepting cookies and not responding the
traps in JavaScript correctly, we accumulate a counter
which is cleared after a certain period of time. If the
counter reached a carefully designed threshold before it
expires, we identify them as crawlers.

(3) Blocking Strategies: Initially, when a connection is
identified as malicious, we stop it immediately by sending
a HTTP error message, and keep a volatile counter with a
fixed timeout value. When there’s more connecting
coming from the same requester, we increase this counter
by one. When it reaches a certain threshold, we mark such
requester as abuser and pass it to the kernel space driver.
This driver will then drop the packet from such requester
when it reaches the Ethernet buffer. When it’s dropped in
the buffer, the traffic will not be noticed in any user land
applications.

2.5 Implementation

After several weeks of onerous coding, we finally have a
working implementation of our system. The
implementation was delivered as three decoupled parts – a
web server module to dynamically load block list from
shared memory which runs in nginx, a web service
module which analyzes and serves designated requests to
differentiate bots from users, and a backend server to
generate reports and make final decisions.

The implementation has two modes – TSSNBS mode and
dual mode. Under TSSNBS mode, only basic rules are
applied. Under dual mode, TSSNBS are applied first and
for ambiguous traffic, ABS is applied.

The HTTP Error Message based blockage module was
implemented as a web server module, and connection
based blockage was implemented with UNIX shared
memory and net filter. Shared memory was used to
provide a simple interface to communicate from user land
to kernel space in a reasonably fast fashion.

3. Evaluation

Evaluating complex systems is difficult. Only with precise
measurements might we convince the reader that
performance matters. We use two metrics to evaluate the
malicious crawlers, detection ratio Pd and false positive
ratio Pf.

%100
)(

)det(


crawlersCount
ectedcrawlersCountPd (1)

%100
)det(

)(


ectedcrawlersCount
crawlerspositivefalseCountPf (2)

3.1 Testing Environment

To evaluate the algorithm, we run the evaluation program
on a testing platform. The testing platform is a famous
technology media focused on mobile applications and in-
depth analysis of relevant news. The site has two servers
with a load balancing configuration and is running nginx
[9], an open source light weight web server as front-end
server.

The testing environment runs Debian Linux 6.0.6 with
up-to-date patches, Nginx 1.2.4 and Redis 2.0. Redis was
chosen as memory-cached temporary storage engine. The
version of kernel is Linux 2.6.32-5-amd64 #1 SMP Sun
May 6 04:00:17 UTC 2012 x86_64 GNU/Linux. The test
was conducted on December, 2012.

3.2 Experiment Steps

(1) Deploy Crawler Blocking Plugin: To deploy the
implementation, we chose clang compiler clang version
4.0 (tags/clang-421.0.60) (based on LLVM 3.1svn), llvm-
gcc gcc version 4.2.1 (LLVM build 2336.11.00) and gcc
gcc version 4.2.1 20070831 patched. Standard UNIX
tools including sed,awk, autotools and m4 are also used in
the deployment.

(2) Deploying the Blockage Plugin: We deploy the
blockage plugin in two places – HTTP Error Message
based blockage plugin on the web server, and connection
based blockage in the kernel as a kernel extension. The
kernel extension was compiled with Sun Studio compiler
to provide the best performance.

(3) Running the Plugin: To minimize the impact of the
experiment to the site availability, we used DNS rotation,
and send about 20% traffic to the testing environment.
We run the experiment for about 48 hours, collecting
gigabytes of HTTP access log.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 123

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

3.3 Data Metrics and Procession

We use several metrics to measure the performance and
effectiveness of our system.

(1) False Positive: We define false positives as known-to-
be-good clients identified as malicious traffic. Those
traffic will be blocked once it reaches a certain threshold.
Lower false positive ratio indicates better accuracy.

(2) Missed Crawlers: Those are malicious traffic labeled
as good by our filter. They are considered harmful.

(3) Load Average: Load average is the metric to measure
system utilization. We measure the load average against
traffic volume and compare load average for different
configurations. Lower load average indicates better
performance. In our particular system, load average is
calculated by counting context switching count:

T

NL switchcontext


(3)
We take T = 15 seconds to provide better accuracy and
prevent bias resulting from accidental incidents such as
garbage collection or memory reclaim.

(4) Data Visualization: We collect raw HTTP logs with
several customized fields. However, raw data are never
meant to be processed. Hence, we first normalize data and
associate it with results from the detector. We use
GNUPlot to visualize the data into EPS format. We use
GNU GhostScript To distill the visualized results.

4. Discussion

Our evaluation strategy represents a valuable research
contribution in and of itself and evaluation strives to make
these points clear.

Fig.1 TSSNB Performance – Detection Ratio

4.1 Detection Algorithms

Fig.2 TSSNB Performance – False Positive Ratio

Fig.3 ABS Performance – Detection Ratio

Fig.4 ABS Performance – False Positive Ratio

From Fig.1, we can see clearly that after about 60 seconds,
the detection ratio is stabled at about 86%. While a
detection ratio of 86% will be sufficient for most
applications, for mission critical applications, it is not
acceptable. Also, we may lost up to 15% legitimate traffic
according to Fig.2.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 124

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

However, from Fig.3 and Fig.4, we see a great
performance improvement which is almost 97% detection
ratio and 3% false positive ratio, which means after more
optimization and white-listing functionality; it could be
applied in production systems.

4.2 Blockage Algorithms

Fig.5 Load Average Comparison

Fig.6 Blocking Algorithm Load Average Comparison

Fig.5 was plotted with data specially collected from
known malicious bots. The load average is almost linear
to QPS value. Since TSSNB consumes less computational
resources, it provides better performance compared with
ABS algorithm. However, both of them consumes
considerable CPU time and will affect performance of the
entire system significantly. However, with the blockage
module deployed, the overhead is about 0:2 in load
average, which does not affect the performance at all.
Also, on peak hours, it will reduce the load average
efficiently.

From Fig.6, we can draw two conclusions: 1) both
algorithm has an excellent job in controlling load average,

2) HTTP Error Code based blockage still consumes much
more computational resources.

Since the HTTP Error Code based blockage requires more
memory to run by nature, and since the web server must
be invoked to process, it’s not surprising that HTTP based
algorithm has bad performance. However, as the kernel
module requires proprietary software to compile and has
to be upgraded on every kernel upgrade, also considering
the preliminary implementation lacks security audit, it’s
possible that buffer overflow may occur, corrupting the
whole kernel space and causing downtime. Hence, on not
quite heavily loaded sites, HTTP Error Code based
blockage should be sufficient.

5.Conclusion

In this paper, we discussed about several approaches of
implementing a situation aware anti bot system. After
combining several different techniques and algorithms,
we reached a good performance.

Even with the most simple algorithm described in this
paper, we are able to get fairly acceptable performance.
However, with the highly hand crafted and optimized
algorithm and implementation, we are able to reduce
server load significantly.

To further improve the detection ratio and reduce the false
positive rate, we can use a white-list feature to exclude
several known suspicious-thus-legitimate clients. Also, we
may use SVM and machine learning algorithms to future
detect unknown crawlers. In this way, we can archive
better performance and will be production ready. We plan
to explore more issues related to these issues in future
work.

For large scale systems, we may consider implementing
the algorithm in FPGA chipsets and deploy it as hardware
to have even better performance and easier deployment.
Also, we may consider utilizing watermarking techniques
to trace the root of the attacks and cooperate with Internet
Service Providers and local law enforcements to take
down those servers.

Acknowledgments

The testing system was deployed on a famous Chinese IT
media, ifanr.com.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 125

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

References
[1] G. Clemm, J. Reschke, E. Sedlar, and J. Whitehead, “Web

distributed authoring and versioning (webdav) access
control protocol,” 2004.

[2] K. Zeilenga, “The plain simple authentication and security
layer (sasl) mechanism,” 2006.

[3] Kyle Zeeuwen,Matei Ripeanu and Konstantin
Beznosov,"Improving malicious URL re-evaluation
scheduling through an empirical study of malware download
centers",Proceeding of the 2011 Joint WICOW/AIRWEB
Workshop on Web Quality,pages 42-49.

[4] Pang-Ning Tan and Vipin Kumar,"Discovery of Web Robot
Sessions Based on their Navigational Patterns",Data Mining
and Knowledge Discovery,vol.6,No.1,january 2012,pages 9-
35.

[5] Shinil Kwon,Young-Gab Kim and Sungdeok Cha,"Web
robot detection based on pattern-matching
technique",Journal of Information Science,vol.38,No.2,April
2012,pages 118-126.

[6] Jingyu Zhou and Yu Ding,"An Analysis of URLs Generated
from JavaScript Code",Proceedings of the 2012 IEEE/ACIS
11th International Conference on Computer and Information
Science,page 688-693.

[7] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P.
Leach, and T. Berners-Lee, “Rfc 2616, hypertext transfer
protocol – http/1.1,” 1999. [Online]. Available:
http://www.rfc.net/rfc2616.html

[8] Ashif S.Harji,Peter A.Buhr and Tim Brecht,"Comparing
high-performance multi-core web-server
architectures",Proceeding of the 5th Annual International
Systems and Storage Conference.

[9] I. Sysoev. [Online]. Available: http://www.nginx.org.
[10] Basma Zahra, Anis Sakly and Mohamed Benrejeb. Stability

Study of Fuzzy Control Processes Application to a Nonlinear
Second Order System, International Journal of Computer
Science Issues, Vol. 9, No.2-2,(2012) pp. 97-106.

Dexiang Zhang woks in the Information and Network Center of
Qingdao University since 2000.He graduated from Qingdao University
with bachelor’s degree at 2000 and with a master’s degree at
2006.His current research interest includes internet security and
information security. He published six papers and involved in the
preparation of one book.

Difan Zhang is a researcher on Internet Security at Information and
Network Center, Qingdao University. Graduated from Towson
University with a Master of Science in Information Technology, his
current research interest includes Distributed Intrustion Detection
Systems and Mobile Device Security.

Xun Liu is a researcher on Internet Security at library of Qingdao
University. He graduated from Qingdao University with a master of
MPM.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 126

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

