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Abstract 
According to the problem that for a structure under random loads, 

the structural fatigue life can’t be directly calculated out by S-N 

curves and linear Miner cumulative damage rule. Owing to the 

uncertainty of loads, and the problem of the inaccuracy of 

calculated structural reliability index for the existence of 

deviation between measured data in projects and real data, the 

research method for structural fatigue reliability based on 

extension of random loads into interval variables is proposed. 

The innovation is that we can accurately calculate out the 

interval of the structural fatigue life and reliability index of a 

structure according to the probability density function of stress 

level of random loads and the coefficient of variation of 

measured loads. By practical calculation example, it is proved 

that this method is more suitable to practical engineering 

comparing to traditional methods. It will provide a perfect 

research approach for reliability analysis of the structure under 

random loads. 

Keywords: Random load, Structural reliability analysis, 

Fatigue life; Interval analysis, Rayleigh distribution 

1. Introduction 

Study of structural fatigue lead by random loads, is an 

important aspect in the study of structural reliability. 

Fatigue failure is one of the main failure modes for a 

structure. According to the statistical data, 80% of 

structural failure belongs to fatigue fracture. For example, 

the shaft, bearings, springs and frames are mostly 

fractured under random loads. To accurately predict the 

fatigue life of a structure according to the random cyclic 

loads that the structure is bearing, is the foundation of 

limited fatigue lifetime design and reliability analysis for a 

structure. However, the current theoretical research mainly 

focuses on fatigue reliability of a structure under constant 

amplitude cyclic loads or multistage constant amplitude 

cyclic loads with ideal state, while fatigue reliability of a 

structure under random cyclic loads is relatively less. In 

fact, in practical engineering the structure under constant 

amplitude cyclic loads or multistage constant amplitude 

cyclic loads with ideal state is rare, and in the vast 

majority of cases, the structural fatigue failure is caused by 

random cyclic loads exerting repeatedly. In current 

theoretical analysis and practical engineering calculation, 

the conservative calculation method is commonly used, 

that is to choose a deterministic load with maximum peak 

value in all cyclic loads to substitute the actual loads, as 

well as to use the mathematical model of fatigue life of a 

structure under deterministic constant amplitude cyclic 

loads to predict the actual structural fatigue life. In fact, 

the results that calculated out are often far different from 

the practical condition of the structure. 

2. Structural Fatigue Life Estimation Based 

on the Miner Rule 

The calculation of the structural fatigue life is based on 

fatigue cumulative damage theory. When a structure is 

bearing constant amplitude cyclic loads with ideal state, 

according to S-N curves of the structural materials and 

structural characteristics, the fatigue life of the structure 

can be calculated out directly. When a structure is bearing 

multistage constant amplitude cyclic loads with ideal state, 

then the fatigue life of the structure can be calculated out 

according to linear Miner cumulative damage rule. 

Suppose that, a structure bears k  stages stresses of fatigue 

loads in its fatigue life: 1 2, ,..., kS S S , with the 

corresponding acting number for each stage of cyclic loads 

are respectively: 1 2, ,..., kn n n . Then by Miner fatigue 

cumulative damage rule, and according to the S-N curves 

and structural characteristics of composing materials, we 

can get the fatigue cumulative damage of the structure 

produced by k  stages of cyclic loads as follow: 

1 2

1 11 2

( ) ...
k k

k i

i

i ik i

n nn n
D D s

N N N N 

          (1) 

During the above formula, in  is the action number of 

cyclic loads of the i th stress level; iN  is the failure cycles 

number under the cyclic loads of the i th stress level. For a 

structure in service, when its fatigue cumulative damage 

produced by all levels of cyclic loads is up to the failure 

threshold (failure threshold is usually taken 1), it will fail. 
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The randomness of the cyclic loads will not only include 

the uncertainty of the stress level of loads, but also include 

the uncertainty of action times that the loads imposed to 

the structure. When taken the action times of cyclic loads 

as the lifetime measurement index, the uncertainty of loads 

mainly manifested as the uncertainty of stress level of 

loads, as shown in figure 1. Then, the uncertainty of stress 

level caused by the action of random cyclic loads can be 

described as the corresponding probability density 

function. 
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n N f s s  

 
Fig. 1 Distribution of random cyclic loads 

Suppose that, the stress levels of cyclic loads are random 

variables which obey probability density function ( )f x . 

When the stochastic process is a narrow band process, the 

probability density of the peak values can be 

approximately considered as obeying Rayleigh 

distribution, that is: 
2

2 2
( ) exp

2

S S
f S

 

 
  

 
                (2) 

During the above formula,   is the shape parameter of 

state curve of Rayleigh distribution, and is a constant. 

As shown in figure 2, according to the characteristics of 

probability density function, the probability  iP S  of 

stress values corresponding to the effect of per random 

cyclic loads acting, located in interval ,
2 2

i i
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nearby iS  is  
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Fig. 2 Probability density distribution that the peaks of loads located in 

interval ,
2 2

i i

S S
S S
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  

 

 nearby iS  in Rayleigh distribution 

If the action times of random cyclic loads is N , the times 

( )
is

n   that the stresses located in interval 

,
2 2

i i

S S
S S

  
  

 
 nearby iS  are 

2

2 2
( ) ( ) exp

2i

i i

S i

S S
n Nf S S N S

 

 
      

 
  (4) 

According to Miner fatigue cumulative damage rule, the 

structural fatigue cumulative damage ( )i iD S  caused by 

the loads, whose stresses located in interval 

,
2 2

i i

S S
S S

  
  

 
, can be expressed as 
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For the reason of the structure are absorbing the acting of 

fatigue loads with k  stress levels, let’s divide the taking 

value of the whole interval of probability distribution of 

stress level into k  subintervals correspondingly, and 

suppose that the midpoint of the i th subinterval is iS . 

Form the above analysis, we can learn that, when the 

action times of the random cyclic loads is N , the stress 

acting times that located in the i th subinterval is ( )
is

n  , 

and the corresponding structural fatigue cumulative 

damage is ( )i iD S .  

 According to formula (1), we can get the total structural 

fatigue cumulative damage under N  times action of 

random cyclic loads is as follow 

1 1 2 2

1

( ) ( ) ... ( ) ( )
k

k k i i

k

D D S D S D S D S


                                         (6) 

Substitute formula (5) into formula (6), we can get 
2

2 2
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exp
2( )( ) ( )
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i i

k
k

kk i

S S
N S
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Usually, the relationship between the fatigue life N  of 

structural material and stress level S  can be expressed as 

the form of power series, as follow: 
mS N C                            (8) 

During the above formula, m and C  are material constant. 

According to the relationship between fatigue life and 

stress level shown in formula (8), the fatigue life 
iN  

corresponding to stress level 
iS  can be expressed as: 

i m

i

C
N

S
                             (9) 

Substitute formula (9) into formula (7), we can get 
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                                    (10) 

When k  , formula (10) is equivalent to the following 

formula: 
2
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                               (11) 

Furthermore, we can get the structural fatigue life N  

under the action of random cyclic loads as follow: 

1 2

2 2

0

exp
2

m

D
N

S S

ds
C

 






 
 
 



             (12) 

When the fatigue failure of the structure happen, its 

fatigue cumulative damage is equivalent to the failure 

threshold, that is 1D   . Then formula (12) can be 

written as: 

1 2

2 2

0

1

exp
2

m
N

S S

ds
C

 






 
 
 



           (13) 

During formula (12) and formula (13), owing to  , C , 

  and m  are all for constant. We can calculate out the 

structural fatigue life on the basis of the mathematical 

model established above, according to the known 

probability density function of the random cyclic loads 

stress levels and the material parameters of the structure. 
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3. Mathematical Modeling of Structural 

Fatigue Reliability Based on Extension of 

Random Loads into Interval Variables 

 

Suppose that the designed life of the structure is Dn , then 

let’s first establish the structural fatigue state equation ng  

(safety margin), measured by loading action times, that is: 

1 2

2 2

0

1

exp
2

n Dm
g n

S S

ds
C

 





 
 
 
 



      (14) 

To taylor series expansion for the state equation ng  on the 

average point g , and according to the linear feature of 

interval variables operation, the mean value and the 

deviation of the structural response are respectively: 

1 2

1

( , ,..., )
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c c c
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g x x x
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
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 




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      


                        (15) 

Substitute formula (14) into formula (15), we can get the 

mean value and deviation of the fatigue state equation of 

the structure under the action of random cyclic loads, 

which are respectively: 
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(16) 

By the properties of Rayleigh distribution, we can 

get
2

S


  ， 24

2
S


 


 . 

Expand the random variables into interval variables, and 

the result is:  
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                    (18) 

For the convenience of calculation, let be 
g g     , 

then substitute formula (17) into formulas (16) and (18), 

and the result is:  
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                                     (20) 

4. Example 

Suppose that the fatigue loads that a structure bears are 

random cyclic loads and the random process is a narrow 

band one, then the probability density of the peak value of 

stress levels for cyclic loads can be approximately deemed 

to obey Rayleigh distribution. Let be 1  , and the mean 

stress level for cyclic loads is
2

S


  , while the 

deviation is 24

2
S


 


 . Given the influence of 

environment and other factors in the actual engineering 

process, there will be some errors between the actual 

situation and the measured mean stress levels of cyclic 

loads and deviation. Let the coefficient of variation be 

0.1
S S    , and the value of the parameter curve  m  

is 3, and C  value is 101 10 . The designed life is 610Dn  . 

Try to analyze and calculate out the reliability of the 

structure system.  

 

Solution: (1) When the coefficient of variation of stress 

levels for cyclic loads during data acquisition is not taken 

into account, the stress levels for cyclic loads will be 

random variables. Substitute the known conditions into 

formula (16), and the result is:  
6

6

1.313742 10

0.495317 10

g

g





 

 
 

And then  

2.652326
g

g





   

(2) When the coefficient of variation of stress levels for 

cyclic loads during data acquisition is taken into account, 

the stress levels for cyclic loads will be interval variables. 

Substitute the known conditions into formulas (17), (19), 

and (20), and the result is:  

6

6

1.445116 10

1.182368 10

g

g
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6

6

0.544849 10

0.445785 10

g

g





 

 
 

And then  

2.170084

3.241733

g

g

g

g











 

 

 

According to the above analysis, conclusions can be 

drawn that due to the existing of coefficient of variation of 

mean value and deviation of stress levels for cyclic loads, 

there will be some deviations between the calculated index 

of the structure reliability and the true value. And if the 

true index of structure reliability is substituted by this 

calculated value, the calculated structure reliability may be 

too conservative or too optimistic, and thus not in line 

with the actual engineering process. However, the use of 

the theory of expanding random variables into interval 

variables can help identify approximately the interval 

range of indexes of structure reliability.  

5. Conclusions 

（1） Due to the indeterminacy of loads, S-N Curves 

and linear Miner cumulative fatigue damage rules are not 

suitable for the study on fatigue life of structures under the 

action of random loads. This article builds a model for 

calculation of fatigue life of structures under the actions of 

random loads, and can obtain the corresponding fatigue 

life of structures relatively more accurate , according to 

the probability density function of stress distribution for 

random cyclic loads. Then the corresponding indexes of 

structure reliability can be determined with the 

relationship between the calculated structure fatigue life 

and designed life.  

（2） As there are inevitable deviations between 
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measured data in the actual engineering process and the 

authentic data, correspondingly, the calculated indexes of 

the structure reliability based on the measured data cannot 

be the exact values. If they are used for deduction of 

structure reliability, it will not be in line with the actual 

engineering process. This article expands the random 

variables of random cyclic loads into interval variables, 

builds a model for indexes of structure reliability with the 

method of interval analysis, and determines the fluctuation 

range for indexes of structure reliability, from which the 

lower limit can be taken in structure design.  
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