

A Comprehensive Review for Central Processing Unit

Scheduling Algorithm

Ryan Richard Guadaña1, Maria Rona Perez2 and Larry Rutaquio Jr.3

 1 Computer Studies and System Department, University of the East

Caloocan City, 1400, Philippines

2 Computer Studies and System Department, University of the East

Caloocan City, 1400, Philippines

3 Computer Studies and System Department, University of the East

Caloocan City, 1400, Philippines

Abstract
This paper describe how does CPU facilitates tasks given by a

user through a Scheduling Algorithm. CPU carries out each

instruction of the program in sequence then performs the basic

arithmetical, logical, and input/output operations of the system

while a scheduling algorithm is used by the CPU to handle every

process. The authors also tackled different scheduling disciplines

and examples were provided in each algorithm in order to know

which algorithm is appropriate for various CPU goals.

Keywords: Kernel, Process State, Schedulers, Scheduling

Algorithm, Utilization.

1. Introduction

The central processing unit (CPU) is a component of a

computer system that carries out the instructions of a

computer program, and is the primary element carrying out

the computer's functions. The central processing unit

carries series of program instructions, executes both logical

and arithmetical functions, and handles input/output

operations of the system. The demand of activities to be

performed by the CPU piqued the authors’ interest on how

CPU handles different tasks given by the user?

The question on how does a CPU handles different tasks

given by the user is answered through scheduling.

Scheduling is a key concept in computer multitasking,

multiprocessing operating system and real-time operating

system designs. Scheduling refers to the way processes are

assigned to run on the available CPUs, since there are

typically many more processes running than there are

available CPUs, like shoppers sharing the checkout

operators on their way out of the store. There are different

types of Operating System schedulers that the authors

focused on. First is the Long Term Scheduler also known

as the admission scheduler that decides which jobs or

processes are to be admitted to the ready queue; that is,

when an attempt is made to execute a program, its

admission to the set of currently executing processes is

either authorized or delayed by the long-term scheduler.

Second is the Mid-term Scheduler that temporarily

removes processes from main memory and places them on

secondary memory (such as a disk drive) or vice versa.

Last is the Short Term Scheduler that decides which of the

ready, in-memory processes are to be executed.

2. CPU Utilization

In order for a computer to be able to handle multiple

applications simultaneously there must be an effective way

of using the CPU. Several processes may be running at the

same time, so there has to be some kind of order to allow

each process to get its share of CPU time. One of the most

important components of the operating system is the kernel,

which controls low-level processes which is typically

unknown to the average user. It controls how memory is

read and written, the order in which processes are executed,

how information is received and sent by devices like the

monitor, keyboard and mouse, and decides how to interpret

information received from networks. Kernel is also the

central component of most computer operating systems

that bridges applications and computer peripherals.

2.1 The CPU Process States

When a process is created, its state is set to new. Once the

process is ready to use the CPU its state is set to ready. It is

inserted into the ready queue waiting its turn to be assigned

CPU time so that its instructions can be executed. Once the

CPU is available the process next in line in the ready

queue is set to running. This means that the process’

instructions are being executed.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 2, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 353

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 1 CPU Process States.

Once the process is being executed two things can happen:

1) The process’ instructions are all executed in which case

its state will be set to terminate.

2) While the process is running an I/O interrupt or event

wait is executed which stops the running program.

In the event the first case takes place, the program finishes

executing and then terminates. This means all the

instructions of the process have been executed and it has

no more need for the CPU. However, this can also happen

if there is some kind of error in the program that requires

the process to be terminated prematurely. In the second

case the procedures taken are much more complex. For

example, let us say that there is a process that is currently

occupying the CPU. As the instructions of this process are

being executed the program needs to get input from the

user at the keyboard. This causes the process to stop

executing. In this situation the process will enter the

waiting state. This means that the process will lose control

of the CPU and be inserted into the waiting queue. Once

the input is received from the user at the keyboard the

process must go back to the ready state. The process

cannot take hold of the processor; it must wait in the ready

queue until it is assigned the CPU.

Once the process is assigned the CPU again, it will

continue executing its instructions. Once again two things

may happen. If there is need for more I/O then the process

will once again enter into the waiting state. If not, then the

process will complete and will become terminated once the

final instructions are executed. As stated earlier a process

may enter several states in its lifetime. However, where is

this information stored? It is stored in the process control

block (PCB). The process control block is a representative

of each process. It contains information about the process,

which it is associated with. The information it contains is

the process state, program counter, CPU registers, CPU-

scheduling information, memory management information,

accounting information, and I/O status information.

CPU scheduling information is information that includes

process priority, pointers to scheduling queues, and any

other scheduling parameters. This is the basis of multi-

programmed operating systems because the CPU is able to

switch from process to process while the operating system

is able to make the running programs seem as if they are

being executed simultaneously. Whenever the CPU has to

wait for I/O operations to occur, there are CPU cycles that

are being wasted. The idea behind CPU scheduling is to be

able to switch from process to process when the CPU

becomes idle. In this way, while a process is waiting for an

I/O request to complete, the CPU does not have to sit idle.

It can begin executing other processes that are in the

waiting state.

There are two scheduling schemes that are available. There

is the non-preemptive scheduling scheme and there is the

preemptive scheduling scheme. Different CPU scheduling

algorithms have different properties and may have one

class of processes over another. Many criteria have been

suggested for comparing CPU scheduling algorithms. The

characteristics used for comparison can make a substantial

difference in the determination of the best algorithm. The

criteria should include the following:

 CPU Utilization: This measures how busy the CPU is.

CPU utilization may range from 0 to 100 percent. In a

real system, it should range from 40% (for a lightly

loaded system) to 90% (for heavily loaded system).

 Throughput: This is a measure of work (number of

processes completed per time unit). For long

processes, this rate may be one process per hour; for

short processes, throughput might be 10 processes per

second.

 Turnaround Time (TT): This measures how long it

takes to execute a process. Turnaround time is the

interval from the time of submission to the time of

completion. It is the sum of the periods spent waiting

to get into memory, waiting in the ready queue,

executing in the CPU, and doing I/O.

 Waiting Time (WT): CPU scheduling algorithm does

not affect the amount of time during which process

executes or does I/O; it affects only the amount of

time a process spends waiting in the ready queue.

Waiting time is the total amount of time a process

spends waiting in the ready queue.

 Response Time: The time from submission of a

request until the system makes the first response. It is

the amount of time takes to start responding but not

the time that it takes to output that response. The

turnaround time is generally limited by the speed of

the output device.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 2, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 354

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

3. Scheduling Algorithm

3.1 Non-preemptive scheduling algorithm

Non-preemptive or also known as the cooperative

scheduling is the first scheme where once a process has

control of the CPU no other processes can preemptively

take the CPU away. The process retains the CPU until

either it terminates or enters the waiting state. There are

two algorithms that can be used for non-preemptive

scheduling. There are different algorithms under non-

preemptive scheduling scheme and these are the following:

3.1.1 First-Come, First-Served (FCFS) scheduling

algorithm

In this scheduling algorithm the first process to request the

CPU is the one that is allocated the CPU first. The First-

Come, First-Served algorithm is very simple to implement.

It can be managed using a First-In, First-Out (FIFO) queue.

When the CPU is free, it is allocated to the first process

waiting in the FIFO queue. Once that process is finished,

the CPU goes back to the queue and selects the first job in

the queue. An analogy for this is students waiting in line to

pay for their lunch. When one student is ready to pay for

their meal, they must go to the back of the line and wait for

their turn. This is the idea behind the First-Come, First-

Served algorithm.

Consider the following set of processes that arrive at time

0, with the length of the CPU burst given in milliseconds:

Table1. Given example of processes for FCFS

Process Burst Time

P1 24

P2 3

P3 3

If the process arrives in the order P1, P2, P3, and are

served in FCFS order, the gets the result shown in the

following Gantt chart:

Fig. 2 Gantt Chart illustration of FCFS.

Therefore, the waiting time for each process is:

WT for P1 = 0 – 0 = 0

WT for P2 = 24 – 0 = 24

WT for P3 = 27 – 0 = 27

Average WT = (0 + 24 + 27) / 3

 = 17 ms

The turnaround time for each process would be:

TT for P1 = 24 – 0 = 24

TT for P2 = 27 – 0 = 27

TT for P3 = 30 – 0 = 30

Average TT = (24 + 27 + 30) / 3

= 27 ms

3.1.2 Shortest Job First (SJF) scheduling algorithm

In this scheduling scheme the process with the shortest

next CPU burst will get the CPU first. The movement of all

the short jobs ahead of the longer jobs will decrease the

average waiting time. If two processes have the same

length of CPU burst, FCFS scheduling is used to break the

tie by considering which job arrived first.

Consider the following set of processes that arrive at time

0, with the length of the CPU burst given in milliseconds:

Table2. Given example of processes for SJF

Process Burst Time

P1 6

P2 8

P3 7

P4 3

Using SJF, the system would schedule these processes

according to the following Gantt chart:

Fig. 3 Gantt Chart illustration of SJF.

Therefore, the waiting time for each process is:

WT for P1 = 3 – 0 = 3

WT for P2 = 16 – 0 = 16

WT for P3 = 9 – 0 = 9

WT for P4 = 0 – 0 = 0

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 2, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 355

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Average WT = (3 + 16 + 9 + 0) / 4

= 7 ms

The turnaround time for each process would be:

TT for P1 = 9 – 0 = 9

TT for P2 = 24 – 0 = 24

TT for P3 = 16 – 0 = 16

TT for P4 = 0 – 0 = 0

Average TT = (9 + 24 + 16 + 0) / 4

 = 12.25 ms

3.1.3 Priority (Prio) scheduling algorithm

A priority is associated with each process, and the CPU is

allocated to the process with the highest priority. Equal

priority processes are scheduled in FCFS order. An SJF is

simply a priority algorithm where the priority (p) is the

inverse of the next CPU burst (ז). The larger the CPU burst,

the lower the priority, and vice versa.

Consider the following set of processes that arrive at time

0, with the length of the CPU burst given in milliseconds:

Table3. Given example of processes for Prio

Process Priority Burst Time

P1 3 10

P2 1 1

P3 4 2

P4 5 1

P5 2 5

Using priority algorithm, the schedule will follow the Gantt

chart below:

Fig. 4 Gantt Chart illustration of Prio.

Therefore, the waiting time for each process is:

WT for P1 = 6 – 0 = 6

WT for P2 = 0 – 0 = 0

WT for P3 = 16 – 0 = 16

WT for P4 = 18 – 0 = 18

WT for P5 = 1 – 0 = 1

Average WT = (6 + 0 + 16 + 18 + 1)/5

 = 8.2 ms

The turnaround time for each process would be:

TT for P1 = 16 – 0 = 16

TT for P2 = 1 – 0 = 1

TT for P3 = 18 – 0 = 18

TT for P4 = 19 – 0 = 19

TT for P5 = 6 – 0 = 6

Average TT = (16 + 1 + 18 + 19 + 6)/5

 = 12.25 ms

3.2 Preemptive scheduling algorithm

Preemptive scheduling is the second scheduling scheme. In

preemptive scheduling there is no guarantee that the

process using the CPU will continually run until it is

finished. This is because the running task may be

interrupted and rescheduled by the arrival of a higher

priority process.

3.2.1 Shortest Remaining Time First (SRTF) scheduling

algorithm

The SJF has a preemptive adaptation commonly referred to

as shortest remaining time first; the process that is running

is compared to the processes in the ready queue. If a

process in the ready queue is shorter than the process

running, then the running task is preempted and the CPU is

given to the shorter process until it is finished.

Consider the following set of processes with the length of

the CPU burst given in milliseconds:

Table4. Given example of processes for SRTF

Process Arrival Time Burst Time

P1 0 8

P2 1 4

P3 2 1

P4 3 5

If the processes arrive at the ready queue at the times

shown and need the indicated burst times, then the

resulting preemptive SJF schedule is as depicted in the

following Gantt chart:

Fig. 5 Gantt Chart illustration of SRTF.

Therefore, the waiting time for each process is:

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 2, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 356

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

WT for P1 = 11 – 0– (1) = 10

WT for P2 = 3 – 1– (1) = 1

WT for P3 = 2 – 2 = 0

WT for P4 = 6 – 3 = 3

Average WT = (10 + 1 + 0 + 3) / 4

 = 3.5 ms

The turnaround time for each process would be:

TT for P1 = 18 – 0 = 18

TT for P2 = 6 – 1 = 5

TT for P3 = 8 – 2 = 6

TT for P4 = 13 – 3 = 10

Average TT = (18 + 5 + 6 + 10) / 4

= 9.75 ms

3.2.2 Preemptive Priority (P-Prio) scheduling

algorithm

Priority scheduling can either be preemptive or non-

preemptive. When a process arrives at the ready queue, its

priority is compared with the priority of the process, which

is currently executing at the CPU. A preemptive priority

scheduling algorithm will preempt the CPU if the priority

of the newly arrive process is higher than the currently

running process. A major problem with the priority

scheduling algorithms, whether preemptive or non-

preemptive is indefinite blocking or starvation. In a heavily

loaded computer system, a steady stream of higher-priority

processes can prevent a low-priority process from ever

getting the CPU. A solution to the problem of indefinite

blocking is aging. Aging is the technique of gradually

increasing the priority of process that wait in the system for

a long time.

Consider the following set of processes that arrive at time

0, with the length of the CPU burst given in milliseconds:

Table5. Given example of processes for P-Prio

Process Arrival Time Burst Time Priority

P1 1 5 5

P2 2 10 4

P3 3 18 3

P4 4 7 2

P5 5 3 1

Using preemptive priority algorithm, the schedule will

result to the Gantt chart as follows:

Fig. 6 Gantt Chart illustration of P-Prio

Therefore, the waiting time for each process is:

WT for P1 = 40 – 0– (1) = 38

WT for P2 = 31 –2– (1) = 28

WT for P3 = 14 – 3– (1) = 10

WT for P4 = 8 – 4– (1) = 3

WT for P5 = 5 – 5 = 0

Average WT = (38 + 28 + 10 + 3 + 0)/5

 = 15.8 ms

The turnaround time for each process would be:

TT for P1 = 44 – 1 = 43

TT for P2 = 40 – 2 = 38

TT for P3 = 31 – 3 = 28

TT for P4 = 14 – 4 = 10

TT for P5 = 8 – 5 = 3

Average TT = (43 + 38 + 28 + 10 + 3)/5

 = 24.4 ms

3.2.2 Round – Robin (RR) scheduling algorithm

This algorithm is specifically for time – sharing systems. A

small unit of time, called a time quantum or time slice, is

defined. The ready queue is treated as a circular queue.

The CPU scheduler goes around the ready queue,

allocating the CPU to each process for a time interval of up

to 1 time quantum. The RR algorithm is therefore

preemptive.

Consider the following set of processes that arrive at time

0, with the length of the CPU burst given in milliseconds:

Table6. Given example of processes for RR

Process Burst Time

P1 24

P2 3

P3 3

If the system uses a time quantum of 4ms, then the

resulting RR Gantt chart is:

Fig. 7 Gantt Chart illustration of RR

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 2, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 357

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Therefore, the waiting time for each process is:

WT for P1 = 26 – 0– (20) = 6

WT for P2 = 4 – 0 = 4

WT for P3 = 7 – 0 = 7

Average WT = (6 + 4 + 7) / 3

 = 5.67 ms

4. Analysis

The authors looked into a number of different scheduling

algorithms and the two different scheduling schemes that

was discussed in this paper, the preemptive and non-

preemptive scheduling scheme. In order to know which

algorithm to use for which CPU scheduling goal, different

examples were given in each algorithm. Therefore, based

on performance, the shortest job first (SJF) algorithm is

recommended for the CPU scheduling problems of

minimizing either the average waiting time or average

turnaround time but the addition of preemption to the SJF

algorithm gives supplementary increase in waiting and

turnaround time, without affecting the response time. Long

jobs have an even higher tendency to cause delay at the

back of the queue since they can be interrupted by short

jobs so even when long jobs get a chance to execute, they

can be interrupted.

Also, the first come first serve (FCFS) algorithm is

recommended for the CPU scheduling problems of

minimizing either the average CPU utilization or average

throughput but the discrepancy about FCFS is it promotes

starvation
1
.

The performance of the RR algorithm depends heavily on

the size of the time quantum. It is concluded that if the

quantum is too large, the RR policy degenerates into the

FCFS policy. If the time quantum is too small, on the other

hand, then the effect of the context – switch time becomes

a significant overhead. As general rule, 80 percent of the

CPU burst should be shorter than the time quantum.

In general, task given by the user to OS will use Priority

based, Round Robin and preemptive while Real Time OS

will use Priority and non preemption scheme.

Acknowledgments

The authors wish to thank their chairman, Prof. Amelia

Damian, for sharing her knowledge on how to write a

1 Starvation means that a job with low priority would never get a chance

to enter the processor if there is steady stream of jobs or processes.

thesis onto journal format and her encouragement to finish

this article. A special gratitude is also extended to their

fellow faculty and colleagues.

References

[1] Gisela May A. Albano, and Angelito G. Pastrana,

Fundamentals of Operating System, A & C Printers, 2009.

[2] Silberschatz ,Galvin and Gagne, Operating systems concepts,

8th edition, Wiley, 2009.

[3] Silberschatz, Abraham, Peter B. Galvin, and Greg Gagne,

Operating System Principles, 6th Edition, John Wiley and Sons

Inc., 2006.

[4] Flynn, Ida M., and Ann Mclver McHoes, Understanding

Operating Systems, 4th Edition, Thomson Learning Inc.,

2007.

[5] Mehdi Neshat, Mehdi Sargolzaei, and Adel Najaran, "The

New Method of Adaptive CPU Scheduling Using Fonseca

and Fleming’s Genetic Algorithm", Journal of Theoretical

and Applied Information Technology, Vol. 37, No. 1, 2012,

pp. 1-16.

[6] Huda Salih, and Yousra Fadil, "CPU Scheduling

Simulation", Diyala Journal of Engineering, Vol. 02, No. 7,

2009, pp.39-52

[7] Abbas Noon, Ali Kalakech, and Seifedine Kadry, "A New

Round Robin Based Scheduling Algorithm for Operating

Systems: Dynamic Quantum Using the Mean Average",

IJCSI International Journal of Computer Science Issues, Vol.

8, No. 1, 2011, pp. 224-229.

Ryan Richard H. Guadaña is a University of Caloocan City BS
Computer Science graduate (2004) presently writing his thesis in
Polytechnic University of the Philippines for his Masters of
Science in Information Technology degree. He is at this time
(2012) a full time faculty of University of the East Philippines. He
has gained experience in Informatics International College as an
OIC-Academic Head from 2008-2010 and as OIC-Office of
Students Affairs from 2007-2009. Currently, he is interested and
engaged in researches about computer aided training especially
for Non-IT training such as disaster response. Now, he is a
member of PSITE Philippines and ProICT Philippines.

Maria Rona Perez is a full time faculty of the Department of
Computer Studies and Systems, College of Engineering,
University of the East, Philippines while pursuing her Thesis
Writing towards M.S. in Information Technology from Polytechnic
University of the Philippines. She obtained B.S Information
Technology "Cum Laude" from AMA Computer College - Manila
Campus. Her research interest includes social studies, security
and ethical issues and information system. She is a member of
PSITE Philippines.

Larry T. Rutaquio Jr. is currently finishing his Graduate Study at
Polytechnic University of the Philippines with the degree of Master
of Science in Information Technology with specialization in
Management Information System. Presently, he is working as a
full-time faculty at the University of the East – Caloocan campus.
He is also a member of Philippine Society of Information
Technology Educators (PSITE) and ProICT Philippines. His area
of interest are cloud computing and network security.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 2, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 358

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

