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Abstract 
Top-k query is an efficient way to show the most important 
objects to user from massive amounts of data.  After huge effort 
working on database performance, recently, an explain capability 
has attract more attention in recent years. In top-k query, since 
people may not specify his/her accurate preference, he may feel 
frustrated with the top-k results and propose a question such that 
“why my expecting tuple is not appeared in top-k results as long 
as tuple p has been appeared in top-k results”. Based on this 
motivation, in this paper, we propose a new method to approach 
this problem. Given the inputs as the original top-k query, the 
expecting tuple and the comparable tuple, our algorithm returns a 
new query to the user which makes the smallest change in the 
original top-k results. Finally, an extensive performance study 
using both synthetic and real data set is reported to verify its 
effectiveness and efficiency. 
Keywords: Top-k Query; Refined Query; Result Explaining; 
Why Not. 

1. Introduction 

Recently, the support of rank aware query processing has 
attracted much more attentions in database research area. 
Top-k queries return only a limited of k objects that best 
match the user's preference, thus avoiding the huge and 
overwhelming result sets. 
 
Although database system researchers have made 
tremendous advanced on functionality and performance 
related issues in the past decades, research on improving 
database usability has not attracted as much as it deserves. 
Recent years, the feature of explaining missing objects in 
database queries, or the so-called "why-not" questions has 
received growing attentions [1]. For example, users often 
feel frustrated when they find their expected tuple m is not 
in the query results but their unexpected tuple p is in the 
query results without any explanation. So they may 
propose such a question: “since tuple p is in top-k results, 
why not tuple m?” If the database system can give a good  
explanation for it, it would be very useful for uses to 
understand and modify the query. 

 
Example 1. Take Fig.1 for example. There are five 
network security alerts in this Table, and each alert is 
composed of three attributes: Asset, Threat and 
Occurrence. All these attributes are normalized to a range 
from 0 to 1. In order to retrieve the Top-2 risky alert, user 
need to use the scoring function to rank all the alerts. Here 
we use the simplest but very common scoring function 
( 1( ) [ ] .d

iw if p w p w i p A== ⋅ = ×∑G G G ) to aggregate score of 
each alerts. Suppose user initiates the query with weight 
setting [0.333, 0.333, 0.334], then the Top-2 alerts are {5, 
4}.  Unfortunately, user may be confused by this Top-2 
results.  In his instinctive thinking, he may consider alert-1 
is more risky than alert-4. Now alert 4 is in top-2 results, 
why not alert-1. 
 

Alert ID Asset Threat Occurence

1 0.7 0.3 0.1

2 0.2 0.4 0.7

3 0.5 0.2 0.2

4 0.4 0.8 0.5

5 0.8 0.6 0.8

Q UER Y:

SELEC T * FR O M E A lert
O R D ER BY W [1]*A sset

+W [2]*Threat
+W [3]*O ccu rence

D ESC LIM IT K

 
Fig.1 A Set of Some Alerts 

 
In this paper, we present methods to answer user’s 
questions by modifying the original top-k query. Generally 
speaking, a Top-k query depends on two parameters: the 
number of objects to be shown in result (i.e. the k value) 
and user’s preference on each attribute (i.e. the weight 
vector w

G ). In order to answer user’s questions, we need to 
modify the original query to get a new query. To solve this 
problem, we first define an evaluation model to evaluate 
the difference between the original query and the new 
query. The difference is estimated by the changes of 
weight vectors and the top-k results. Next, we find a new 
query with the least change of weight vectors as the 
temporary optimal new query. Based on this new query, 
we use a sample method to get some optimal weight 
vectors and evaluate the quality of query under each 
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weight vector. Finally, we return the new query with the 
least changes of original query as the answer.  
 
Our contributions can be summarized as follows: 

1. We formulate our problem in explaining user’s why 
not questions on the top-k query. We compactly 
represent the problem and formally define it.  

2. We propose a greedy approach to find the 
approximate solution to answer user’s why not 
questions, and present several efficient techniques to 
improve the efficiency of our algorithm. 

3. We present an implementation and evaluation of the 
proposed algorithm in synthetic and real data sets. 
Extensive experimental results on synthetic and real 
data sets demonstrate the effectiveness and 
efficiency of our algorithm 

 
The remainder of this paper is organized as follows. In 
Section 2, we review the related works. In Section 3, we 
present a formal problem definition. In Section 4 we 
propose a greedy algorithm to search the approximate 
solution to answer user’s why not questions. An extensive 
empirical evaluation using both synthetic data sets and real 
data sets is reported in Section 5. Finally, our work of this 
paper is summarized in Section 6. 

2. Related Works 

There has been some different ways to answer why-not 
questions. To the best of our knowledge, the major 
existing approaches to explain why-not questions on top-k 
query can be summarized as follows. 
 
The first approach explains why-not question by 
modifying some objects in the database which will include 
both the original results and the specified missing objects. 
For example, in [2], the author answers user's why-not 
question on Select-Project-Join (SPJ) queries by telling 
him/her which query operators eliminated his/her desired 
objects. 
 
The second approaches explain missing objects by 
identifying the manipulation operations in the query plan 
that is responsible for excluding the missing objects. In [3], 
the missing answers of Select-Project-Join-Union-
Aggregation (SPJUA) queries are explained by telling the 
user how to modify the data. In [4], the author proposes 
novel algorithms to generate good quality refined queries 
that not only similar to the original query but also produce 
precise query results with minimal irrelevant objects, and 
these algorithms can answer the SPJ queries both the 
basically and complex why-not questions with aggregation 
that involve comparison constraints. 
 

The third typical approaches proposed in the literature to 
handle the many answers problem are to utilize scoring 
functions and return only the Top-k ranked results. A 
represented work that is also related to us is reserve Top-k 
query[1], which is defined by a given product p and returns 
the weighting vector   for which p in the top-k set. Two 
versions of reverse top-k queries, namely monochromatic 
and bichromatic, are presented in this paper. Based on the 
geometrical properties of the result set, an algorithm for 
evaluating monochromatic reverse top-k queries is 
proposed. Thereafter, the author presents an efficient 
threshold based algorithm for computing bichromatic 
reverse top-k queries. Another related work is answering 
why-not questions on top-k query [5]. The authors present 
methods to answer why-not questions on Top-k queries 
through modifying both the k value and the set of 
weighting together.  By returning the user a refined query 
with approximate minimal changes to the k value and their 
weightings, the user could get not only his/her desired 
query, but also learn what was/were wrong with her initial 
query. However, it only considers the situation that makes 
the missing objects be appeared in top-k results, and 
ignore the effects on the original top-k results. 

3. Problem Statement 

In this section, we present some basics regarding to top-k 
query, and then we formally define the problem how to 
modify a query based on quality function. Table I 
summarizes some notions frequently used in this paper. 
 

Table I: The summary of frequently used notions 

Notion Meaning 

D A multidimensional data set 
d  The dimensionality of D 

, ,p q m Objects in data set 
≺ A preference relationship 

| |S  The number of objects in S 
w
G  The weight vector for the scoring function 
[ ]w i  The i-th coordinate value of w

G  

3.1 Preliminaries 

We have a data space D  of n  objects. Each object is 
described by d  attributes. We use . ip A  to refer to the 
value of an attribute iA  for an object p . For ease of 
discussion, we assume that all of these numerical attributes 
are normalized to range from 0 to 1. Furthermore, without 
loss of generality, we assume that greater score values are 
more preferable. 
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Top-k queries are defined based on the scoring function 
f  that aggregates the individual scores into an overall 

scoring value, which enables the ranking of the data points 
in data space D . In the simplest but very common case, a 
linear aggregation function is adopted, which is specified 
as a weighted sum of scores. Each dimension id  has an 
associated query-dependent weight [ ]w i  indicating id  's 
relative importance for the query. The result of a top-k 
query is a ranked list of the k  objects with the best 
scoring values, where ( , )score p w p w= ⋅

G G G G . 
 
In the Euclidean space a linear top-k query can be 
represented by a vector w

G . As discussed in [6] the 
magnitude of the query vector does not influence the 
query result, as long as the direction remains the same, i.e. 
representing the relative importance between different 
dimensions. Therefore, we make the assumption 
that 1 [ ] 1d

i w i= =∑ . 

3.2 Problem Definition 

In this section, we formally define the problem how to 
modify a query based on quality function. 
 
Definition 1 (Top-k query): Given a positive integer k  and 
a weight vector w

G , the result of ( , )Q k w
G  is a ranked list of 

objects such that ( , ) , | ( , ) |Q k w D Q k w k∈   =
G G  and 

1 2 1 2, : ( , ), ( , )p p p Q k w p D Q k w∀ ∈ ∈ −
G G  it holds that 

1 2( , ) ( , )score p w score p w>
G G G G . 

 
Definition 2 (The k-th object): Given a positive integer k  
and a weight vector w

G , the result of ( , )Tuple k w
G  is an 

object p  such that ( , ) ( 1, )p Q k w Q k w∈ − −
G G . 

 
At the beginning, user gives a top-k query 0 0 0( , )Q k w

G . 
Based on the returned results, she/he may propose a 
question such that: Since object p  is in the top-k results, 
why not miss object m  in the top-k results? To solve this 
problem, we try to define a new query answer ( , )Q k w′ ′ ′G  
which satisfies the conditions as follows. 

 object m  is in the top-k results of ( , )Q k w′ ′ ′G  
 ( , ) ( , )score m w score p w′ ′>

G G G G  
 
Generally, there exist too many new queries which satisfy 
the above conditions. So in order to evaluate the quality of 
the new query, we define an evaluation model as follows. 

( ( , )) w cEval Q k w W Cλ λ′ ′ = Δ + Δ
G                     (1) 

where ,w cλ λ  are the user's  tolerance to the changes of w  
and top-k results on her/his original query, and 

1w cλ λ+ = . 0 2|| ||w w w′Δ = −
G G is used to calculate the 

changes of w , and CΔ is used to measure the changes of 
the initial top-k results, which is calculated by the 
following equation. 

0 0 0 0| ( , ) ( , ) | | ( , ) ( , ) |C Q k w Q k w Q k w Q k w′ ′ ′ ′Δ = ∪ − ∩
G G G G  

 
Since CΔ  is much greater than WΔ , we normalize them 
in Section 4.3. Through this definition, we can see that the 
new query with the smaller evaluated value is better than 
these queries with larger values, because it makes a litter 
change on the original query.  
 

Fig.2 A 3-Dimension example 
 

Example 2. Let us give an example. We use Fig. 2 to 
explain how to answer user’s question that is proposed in 
example 1. First the results of initial query 0(2, )Q w

G  are 
alert-5 and alert-4. In order to satisfy user’s 
preference ( , ) ( , )score m w score p w′ ′>

G G G G , we get some 
weight vectors as candidate, such as 1w

G  and 2w
G . Take 1w

G  
for example, both 1(2, )Q w

G and 1(3, )Q w
G satisfy the 

conditions of a new query answer. However, we think that 
1(3, )Q w
G is a better new query answer than 1(2, )Q w

G , 
because it only adds a new alert-1 into the original top-k 
results ( 1CΔ = ) . In the same way, 2(2, )Q w

G is an better 
new query answer than any other queries 2( ', )Q wk

G when 
' 2k > . Finally, using evaluation model defined in Eq. (1),  

we find that 1(3, )Q w
G is better than 2(2, )Q w

G because they 
have the same CΔ , and 1 2W WΔ < Δ  . 

3.3 Problem Analysis 

As discussed above, we try to define a new query which 
makes m  be ranked before p  (formally described 
as ( , ) ( , )score m w score p w′ ′>

G G G G ). In the data space, we say if 
an object p  domains an object m , and then 

( , ) ( , )score p w score m w′ ′>
G G G G  is always hold, so this 

situation is out of our consideration. Otherwise if an object 
p  is incomparable with m  , then a hyper plane 
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: ( ) 0H m p w− ⋅ =
G G G  partitions weight space into two part 

W>  and W< . The w
G  located in W>  

makes ( , ) ( , )score m w score p w>
G G G G . The w

G  located in W<  
means that ( , ) ( , )score m w score p w<

G G G G . So if we want to get 
a new query that satisfies the condition 

( , ) ( , )score m p score p w>
G G G G , we only need to consider the 

weight spaceW> . Based on each w
G  inW> , we can get a 

new query to satisfy the conditions. Furthermore, based on 
the above quality function, we can evaluate all the new 
queries, and return the best new query to user as the 
refined query. However, there are infinite w

G  in W> , it's 
very hard to enumerate all the possible w

G . Therefore, we 
propose a new optimal algorithm to solve this problem. 

4. Detailed Techniques 

In this section, we present our method to solve the 
problem how to refine a query based on the quality 
function. First we give a basic solution to explain our main 
idea. Then base on this basic solution, we give some 
techniques to improve the performance of our algorithm. 

4.1 Basic Solution 

Let us start the discussion from the basic solution. 
Basically, we solve this problem by four core phases. First, 
we get the weight space that satisfies ( ) 0m p w− ⋅ >

G G G , and 
sample s  weight vectors from this space, which is 
donated by 1 2{ , , }, sS w w w=

G G G" . Second, based on S , we 
use the progressive top-k algorithm [7-9] to get the top-k 
results and the terminal conditions are discussed in Section 
4.2. Third, for each iw S∈

G , we terminate the progressive 
top-k algorithm after executing ik  steps. Then we can 
evaluate the quality of each query ( , )i iQ k w

G  by Eq. (1). 
Finally, we choose the query with the least value as the 
new query which is returned to user as the answer. 
In the following sections we try to improve the efficiency 
of the basic solution.  

4.2 The Terminal Conditions of Progressive Top-k 
Results 

In this section, we try to explain how to terminate the 
progressive top-k algorithm. As discussed above, we want 
to get the new query with the least value which is 
calculated by Eq. (1). So for each iw S∈

G , we need to 
minimize the CΔ . However through the definition of 

0 0 0 0| ( , ) ( , ) | | ( , ) ( , ) |i iC Q k w Q k w Q k w Q k w′ ′Δ = ∪ − ∩
G G G G , we 

can see that CΔ  depends on 0 0 0( , )Q k w
G and ( , )iQ k w′ G . 

Since 0k , 0w
G and iw

G  are certain, the terminal conditions of 
the progressive top-k algorithm under iw

G  plays a crucial 
role. 
 
For the sake of brevity, we denote kCΔ  instead of CΔ  
under the new query ( , )iQ k w

G . First, we will give the 
algorithm (as shown in Algorithm 1) on how to calculate 
the terminal condition. Then we will give a detailed 
analysis of this algorithm. 
 
Algorithm 1: GetOptimalK 

Input: Dataset D , Weight vector w
G , User's initialized 

query 0 0 0( , )Q k w
G  

Output: new query ( , )Q k w
G  

1. ( , )mQ k w ←
G  Running progressive top-k algorithm until 

to see m ; 
2. 0 0 0| | ( , ) ( , ) |ma q q Q k w Q k w= ∈ ∩

G G ; 
3. 02( )mUpperBound k k a← + − ; 
4. 0 2min mC k akC =Δ = Δ + − ; 
5. min mk k= ; 
6. 1mk k= + ; 
7. while k UpperBound≤  do 
 7.1 if 0 0 0( , ) ( , )Tuple k w Q k w∈

G G  then 
  1C CΔ = Δ − ; 
 7.2 else 
  1C CΔ = Δ + ; 
 7.3 if  minC CΔ < Δ  then 
  ;min minC C k kΔ = Δ = ; 
 7.4 1k k= + ; 
return ( , )minQ k w

G ; 
 
To prove the correctness of the above algorithm, in the 
following, we need to prove that the optimal answer that 
minimizes Eq. (1) in terms of CΔ  has an upper bound (as 
shown in line 3 Algorithm 1). 
 
Theorem 1: The progressive top-k algorithm could find 
the optimal answer in 02( )mk k a+ −  steps, where mk  is 
the rank of m  under the weight vector w

G  (line 1), a  is 
the number of objects which is both in 0 0 0( , )Q k w

G  and 
( , )mQ k w

G (line 2). 
 
Proof: we proof this theorem by two cases: (i) ( , )mQ k w

G  
may not be the optimal answer. (ii) 'k  in the optimal 
answer ( , )Q k w′ G  has an upper bound 02( )mk k a+ − . In 
case (i), we can construct an example to show that 

( , )mQ k w
G  may not the optimal answer. For example, 
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if 0 0 0( )( 1, ) ,mTuple k w kQ w+ ∈
G G , then CΔ  decreases after 

we increase mk . So this case shows that the missing object 
m  has appeared in top-k results, but we cannot stop 
progressive top-k algorithm because of 

1( ( , )) ( ( )),m mEval Q k w Eval Q k w+ <
G G . In case (ii), we try to 

prove 02( )mk k k a′′∀ > + − , '' mk kC CΔ > Δ . The proven is 
as follows.  

( )
( )

0 0 0 0

0 0

0

0 0

0

0 0

0

| ( , ) ( , ) | | ( , ) ( , ) |
( ) 2

 '' 2

2 2 ''

2
| (

)
,

(

k

m

m

m m

C Q k w Q k w Q k w Q k w

k k a a k k a

k k k a

k k k a a

a k

k k a k

Q k

k a a

′′ ′′ ′′Δ = ∪ − ∩
′′ ′′ ′′ ′′ ′′        = + − − = + −

              > + −

        > + + − −  

′′          

+ − −

  ≤

       ≥ + − =

      =

G G G G

∵

∵

0 0 0) ( , ) | | ( , ) ( , ) |

m

m m

k

w Q k w Q k w Q k w

C

∪ − ∩

      = Δ

G G G G

 

where 0 0 0| | ( , ) ( , ) |a q q Q k w Q k w′′ ′′= ∈ ∩
G G . Through this 

case, we can see that ( ( , )) ( ( '', ))mEval Q k E wval Q kw <
G G  . 

So we can see that the progress top-k algorithm could be 
terminated after 02( )mk k a+ −  steps. Combining these two 
cases together, we can guarantee that our algorithm can 
get the optimal answer correctly. 

4.3 Pruning the weight space 

In this section, we will discuss where to get the candidate 
weight vectors. As discussed above, based on the top-k 
results returned by the original query, user may propose a 
question such as p  is in top k results, why not object m . 
In the basic idea, to answer this question, we sample some 
weight vectors from the weight space that constrained by 
some inequalities {( ) 0, [ ] [0,1], [ ] 1}m p w w i w iΓ = − ⋅ > ∈ =∑

G G G . 
Actually, we only need sample a subspace of Γ . First we 
will give main steps about how to get the subspace (As 
shown in Algorithm 2). Then we will try our best to 
explain why we only need this subspace to be sampled. 
 
Algorithm 2: GetSubRegion  

Input: User's initialized query 0 0 0( , )Q k w
G , Parameters 

,w cλ λ , Missing object m , Comparable object p  
Output: Sampling Region regionS  

1. {( ) 0, [ ] [0,1], [ ] 1}m p w w i w iΓ = − ⋅ > ∈ =∑
G G G  

2. 1w   ← 
G Project 0w

G  to Γ . 

3. 1 1( , )Q k w ←
G  GetOptimalK( 1w

G
) 

4. 1 1 0 2|| ||W w wΔ = −
G G  

5. 1 0 0 1 1 0 1 10| ( , ) ( , ) | | ( , ) ( , ) |C Q k w Q k w Q k w Q k wΔ = ∪ − ∩
G G G G  

6. 1 1 /max c wW W Cλ λΔ = Δ + Δ  

7. 0 2{|| || }region maxS w w W= − < Δ ∩ Γ
G G  

return regionS ; 

 
Now we will give a brief walkthrough of Algorithm 2. 
First we project 0w

G  to Γ , and get the projection point 

1w
G [10-13]. Second, base on the 1w

G
, we use Algorithm 1 to 

get the optimal query 1 1( , )Q k w
G . Then we evaluate the 

quality of 1 1( , )Q k w
G , and get the maximal value of WΔ . 

Finally, we can prune the weight space, and only reserve 
the weight space which is described as regionS (Theorem 2). 
 
Theorem 2.  For any rei gionw W S∈ −

G , it holds 

that 1 1( ( , )) ( ( , ))i iEval Q k w Eval Q k w<
G G , which means that 

the quality of any query ( , )i iQ k w
G  whose weight vector 

iw
G  locates out of region regionS  is worse than the quality 

of 1 1( , )Q k w
G . 

Proof:  

1 1

1 1

( ( , ))

( ( , ))

i i w i c i

w max c i

w c c i

c i

Eval Q k w W C

W C

W C C

Eval Q k w C

λ λ
λ λ
λ λ λ

λ

= Δ + Δ
                          > Δ + Δ

                          = Δ + Δ + Δ

                          = + Δ

G

G

 

So when 0 2, || ||i region i i maxw W S W w w W  =∈ − Δ Δ− > 
G G G , 

1 1( ( , )) ( ( , ))i iEval Q k w Eval Q k w<
G G  is always hold. 

 
Based on Theorem 2, we can improve our algorithm from 
three parts. First we try to improve our evaluation model. 
Second, we try to improve the efficiency of sampling. 
Finally, we do our best to stop the progressive top-k 
algorithm as earlier as possible.  
 
1) Normalizing the evaluation model 
 
As we mentioned in Section 3.2, CΔ is much greater 
than WΔ , so we normalize each of them by their maximal 
values. We normalize wΔ using maxWΔ , because for any 

i regionw S∈
G  , 0 2|| ||i maxW w w WΔ = ≤− Δ

G G . In a similar way, 

we normalize CΔ  by 1CΔ  in Algorithm 2. Because for 
any i regionw S∈

G , 1iW WΔ > Δ always holds, if 1iC CΔ > Δ , 

the quality of new query under iw
G  must be worse than the 

query under 1w
G . In this case, we discard this iw

G  . Now we 
have a normalized evaluation model as follows. 

1
( ( , )) w c

max

W C
Eval Q k w

W C
λ λΔ Δ′ ′ = +

Δ Δ
G                 (2) 

 
2) How to get the weight vector candidate S? 
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Instead of sampling the whole weight space, we sample 
the candidate weight vectors from the regionS . Now another 
problem is how many weight vectors we should sample. In 
a straightforward thinking, the bigger the | |S , the more 
approximate the answer. However, the bigger size of S  
means we need to execute more progressive top-k query 
which increases the running time. To solve this problem, 
we adopt the method which is discussed in Section III.C in 
[5]. We say a new query is the best %T  query if its 
quality is better than (1 )%T−  new queries in the whole 
answer space, and we hope the probability of getting at 
least one such new query is larger than a certain threshold 
Pr  : 

| |1 (1 %) PrST− − ≥                                (3) 
This Equation is general. The sample size is independent 
of the data size and the dimension but controlled by two 
parameters %T  and Pr . 
 
3) Improve the terminal condition in Section 4.2 
 
After getting the candidates 1 2 ,{ }, nS w w w= "G G G  for weight 
vectors, as shown in Section 4.2, we can use Algorithm 1 
to compute the optimal k  for each weight vector w S∈

G . 
We can see that for specific iw

G , we use the progressive 
top-k algorithm to get the top-k objects one by one, and 
the optimal k  under iw

G is calculated until meeting the 
upper bound. In order to decrease the execution time, in 
this section, we try to terminate the progressive top-k 
algorithm before meeting the upper bound of k. The main 
idea is that we terminate the progressive top-k algorithm 
and discard this iw

G  if the quality under this iw
G  will not be 

better than the quality we calculate before (Suppose that 
the optimal answer we have gotten is ( , )opt opt optQ k w

G ).  

ΔC

o ΔW

ΔCopt

ΔWopt ΔWi ΔWub

ΔC'i

ΔCi

ΔCmax

 
Fig.3 Terminal Conditions 

According to Fig. 3, now we will give details about how to 
improve the performance of progressive top-k algorithm. 
First, we have an optimal query ( , )opt opt optQ k w

G (At the 
beginning, this optimal query is set to be the new query 
under 1w

G ). Based on this optimal query, we can evaluate 
the quality of this query through the Eq. (2) . 

1
( ( , )) opt opt

min opt opt w c
max

W C
E Eval Q k w

W C
λ λ

Δ Δ
= +

Δ Δ
=

G  

Given a iw , we consider these two situations.  
 
The first situation is /i min xub ma wW EW W λΔ > Δ Δ= . In 
this situation, we can see that the quality of new query 
under iw

G
 will never be better than the 

query ( , )opt opt optQ k w
G . This property could be proven 

using the same methods in Theorem 2. 
 
The second situation is ubiW WΔ ≤ Δ . First, we get the 
upper bound of maxCΔ . When using progressive top-k 
algorithm to get the top-k results, we can get a lower 
bound of CΔ  (represented by lbCΔ ) at each step.  In case 
(1), if the missing object m  does not appear in top-k 
results when lb maxC CΔ > Δ , we can discard this weight 
vector since it could not get a better new query than 

( , )opt opt optQ k w
G . In case (2), when the missing object 

appears in the top-k results, lb maxC CΔ < Δ is satisfied. As 
mentioned in Theorem 1, we continue to execute 
progressive top-k algorithm to find the optimal k which 
minimizes CΔ . During this procedure, when the terminal 
condition lb maxC CΔ > Δ  or k UpperBound> (As 
discussed in Algorithm 1) is satisfied, we can terminate 
the top-k algorithm under this weight vector. 

4.4 Algorithm 

The pseudo code of our complete idea is presented in 
Algorithm 3. It is self explain and mainly discussed above, 
so we do not give it a walkthrough here. 
 
Algorithm 3: GetOptimalQuery 

Input: Dataset D , User's initialized query 0 0 0( , )Q k w
G , 

Parameters ,w cλ λ ,  Missing object m , Comparable object 
p   

Output: new query ( , )opt opt optQ k w
G  

1. regionS  ←  GetSubRegion 

        //Sample regionS and sort them by WΔ  

2. 2 ,{ , }sw wS ← "G G   

        // 1w
G

 is the projection point of 0w
G

 

3. ( , )opt opt optQ k w  ← 
G

 GetOptimalK( 1w
G

) 

4. For each iw S∈
G   

4.1 0 2|| ||iiW w wΔ = −
G G  

 4.2 ( ( , ))min opt opt optE Eval Q k w=
G  
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 4.3 If /i min max wEW W λΔ > Δ then 
  Continue 

 4.4 1( ) /i
max min w c

max

W
C E C

W
λ λ

Δ
Δ = − Δ

Δ
 

       //running progressive top-k algorithm  
4.5 1k = ; 0lbCΔ =  
4.6 While ( , )iTuple k w m≠

G do 
  if 0 0( , ) ( , )iTuple k w Top k w∉

G G then 
   1lb lbC CΔ = Δ +  

If  lb maxC CΔ > Δ  then 
  continue 

1k k= + ; 
 4.7 0 0 0| | ( , ) ( , ) |ia q q Q k w Q k w= ∈ ∩

G G  
4.8 02( )UpperBound k k a← + − ; 
4.9 0 2minC C k ak=Δ = Δ + − ; 
4.10 mink k= ; 1k k= + ; 
4.11while k UpperBound≤  and lb maxC CΔ  Δ≤ do 

  if 0 0 0( , ) ( , )iTuple k w Q k w∈
G G  then 

   1C CΔ = Δ − ; 
  else    
   1C CΔ = Δ + ; 1lb lbC CΔ Δ= +  
  if  minC CΔ < Δ  then 
   ;min minC C k kΔ = Δ = ; 
  1k k= + ; 

         //evaluate the quality of new query 
4.12 If min ,( ( ))i minwEval Q k E<

G   
  ( ( ), )min min iE Eval Q k w=

G  
  ( , ) ( , )opt opt opt m n iiQ k w Q k w ← 

G G  

return ( , )opt opt optQ k w
G ; 

 
Now we give a brief complexity analysis of our algorithm. 
We use the algorithm in [10] to compute the distance from 
a point to a simplex, the complexity of this algorithm is 

4( )O n , where n  is the number of vertices of a simplex. In 
our case, since the simplex is defined 
by {( ) 0, [ ] [0,1], [ ] 1}m p w w i w iΓ = − ⋅ > ∈ =∑

G G G , which makes 
n be small. Then in the loop to compute the new query 
under each iw

G  , the time cost mainly comes from 
executing the progressive top-k. As discussed in [8], the 
cost of the progressive top-k algorithm is 

| ( ) |k skyline D+  . The complexity of our algorithm is 
| | ( | ( ) |)S k skyline D+ .  

5. Experimental Study 

We conduct a thorough performance evaluation on the 
efficiency and effectiveness of our techniques. Since this 
work is the first work in query modification (as discussed 
in related works), our performance evaluation is 
conducted against our techniques only. Specifically, we 
focus on evaluating our GetOptimalQuery algorithm in 
Section 4.4. As there is no existing work, we compare our 
algorithm under different quality function in Eq. (2) 
(TMW stands for “tolerate modifying w

G ” which 
sets 0.9cλ = and 0.1wλ = . TMR stands for “tolerate 
modifying top-k results” which sets 0.1cλ = and 0.9wλ = . 
NM stands for “Never mind” which sets 0.5cλ = and 

0.5wλ = ). 

5.1 Experiment setup 

All the experiments are implemented by Java and 
compiled by JDK 1.7, and we run all the experiments on 
Ubuntu Linux Operating system with Intel Core-2 Duo 
Processor and 2GB memory. We use both real and 
synthetic data sets in our evaluation process. 
 
Real dataset is extracted from NBA players’ game-by-
game statistics (http://www.nba.com), containing 16916 
game statistics of all NBA players from 1973 to 2009 [14]. 
Each record represents a NBA player by regular season, 
player name, points per game (PTS), rebounds per 
game(REB), assists per game(AST), steals per game(STL), 
blocks per game(BLK), field goal percentage (FGP), field 
throw percentage (FTP), and three points percentage 
(TPP). Based on this real dataset, we give an interesting 
case to show the meaning of our method. 

Table II: Parameters setting 

Parameter Ranges 

Data size 1K, 10K, 50K, 100K, 

Dimension 2, 3, 4, 5 

Original 0k   5, 10, 15, 20 

 
Synthetic datasets are generated using classical method in 
[15] with respect to the following parameters. Table II 
summarizes parameter ranges, and the default values are in 
bold font. Note that the sample size is determined by the 
Eq. (3), here we set the default T  to be 0.2 and Pr  to be 
0.8 (resulting the sample size of 800 weight vectors). In 
the experiments below, these parameters use default 
values unless otherwise specified. Based on these datasets, 
we test the efficiency of our algorithm. 
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5.2 Experiment Results 

The first experiment is done on the NBA data set. In this 
experiment, we use three attributes PTS, FGP and FTP to 
find the top-5 players in NBA history. Therefore, we issue 
an original top-5 query with the preference 0w =

G  (0.333, 
0.333, 0.334). The result of this query is {Michael Jordan 
(1986), Michael Jordan (1987), Michael Jordan (1989), 
Michael Jordan (1988), George Gervin (1979)}. Then we 
may be confused with these top-5 results and propose such 
a question: “since George Gervin is in top-5 results, why 
not Kobe Bryant”. In order to answer this question we use 
our proposed algorithm with the parameters 0 0(5, )wQ

G , 
missing player Kobe Bryant and the comparable player 
George Gervin. Using TMW mode, in 3422ms, we get a 
new query with k=6 and 0.379,  0.272,  0.( 4 )3 9w =

G . The 
new query indicates us to put more weights on PTS ability 
if we wish to see that Kobe Bryant is ranked before 
George Gervin. The corresponding result of (6, )Q w

G  is 
{Michael Jordan (1986), Kobe Bryant (2005), Michael 
Jordan (1987), Bob Mcadoo (1974), Michael Jordan (1989) 
George_Gervin (1979)}. From this case, we can see that 
we answer the user’s why-not questions through little 
change of the original top-k query results, only add two 
new players and remove a player. 
 
Statement. In the following experiments, we test the 
performance of our algorithm on the synthetic data sets. 
Given an original query 0 0 0( , )Q k w

G , we set the object 
which is ranked at last of 0Q  to be the comparable object 
p  . Then the missing object m  is random selected 

from 0D Q− . As discussed above, there are two case 
relationships between m and p . If p  dominates m  ( m  
will never dominates p ), we drop this m , and do not run 
our method under this situation. Otherwise we get the 
running time of our algorithm and computer the average 
time cost.  
 
The second experiment tests the running time of our 
algorithm under different data size. As depicted in Fig. 4, 
this experiment is conducted against the 4 data size and 
the 3 tolerant models.  It shows that our algorithm scales 
linearly with the data size. The time cost under TMR 
(tolerate modifying top-k results is) model is the best 
because ubWΔ  in Fig. 3 is closer to optWΔ than the other 

models. Therefore, many weight vectors are discarded at 
the beginning of Algorithm 4 because they cannot get a 
better new query answer than the existing optimal answer. 
 

(a) Uniform Data (b) Anti-correlated Data 
Fig.4 Varying Data Size 

 
The third experiment, conducted against Uniform and 
Anti-correlated datasets with dimension range from 2 to 5, 
evaluates effects of dimension. The results are reported in 
Fig.5. It demonstrates that the time cost scales linearly 
with the dimension. We also notice that the running times 
do not increase under the Uniform Data, but at a faster rate 
on Anti-correlated Data. Generally speaking, executing a 
progressive top-k algorithm in high dimension  on anti-
correlated data set needs more time because of the more 
attribute and more top-k candidate. 
 

(a) Uniform Data (b) Anti-correlated Data 
Fig.5 Varying Dimensionality 

 
The fourth experiment is to test running time under 
different original 0k  and missing object m . We find that 
there is almost no relationship between the running time 
and 0k  or m . So we only show results on anti-correlated 
data set. In Fig. 6(a), we vary 0k (This is the same means 
as we vary the object p ), and we select the missing object  
which is ranked at 0 10k + in original query (If m is 
dominated by p , we use 0 11k + instead). In Fig. 6(b), 
distance=10 means there at least exists 10 objects between 
p and m in the original query.  

 

(a) Varying k (b) Varying missing object 
Fig.6 Varying Original Query 

The final experiment is to evaluate the effects of sample 
size. We try to analyze the effects which sample size 
makes on the quality of the new query. Since the sample 
size is controlled by T  and Pr , we do not show the 
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results of varying  T  or Pr separately. Fig. 7 shows the 
quality of optimal new query under different sample sizes. 
We can see that the quality of the optimal new query 
under larger sample size is better than the one under 
smaller sample size. Note that in Fig. 7(b), the quality of 
NM model is keep the same under different sample size 
because the quality of new query under the sample weight 
is worse than the quality of new query under 1w

G  . 
 

 
(a) Uniform Data (b) Anti-correlated Data 

Fig.7 Varying Sample Size 

6. Conclusions 

In this paper, we have introduced a new model for solving 
the problem how to modify the query to answer user’s 
question. At the beginning, we explain the motivation of 
our problem. Then we have presented this problem and 
outlined the challenges. Based on the formally definition, 
we give our solutions for practically realizing such an 
algorithm. Our experimental evaluation of an 
implementation of this algorithm in real and synthetic data 
sets demonstrates the efficiency of our approach.  
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