

A Novel Approach to Query Modification Based on User’s
Why-not Question

Jianfeng Zhang1, Weihong Han1, Yan Jia1, Peng Zou2, Hua Fan1

1School of Computer Science, National University of Defense Technology,
Changsha, Hunan, P.R.China, 410073

2Academy of Equipment Command and Technology,

Beijing, P. R. China

Abstract
Top-k query is an efficient way to show the most important
objects to user from massive amounts of data. After huge effort
working on database performance, recently, an explain capability
has attract more attention in recent years. In top-k query, since
people may not specify his/her accurate preference, he may feel
frustrated with the top-k results and propose a question such that
“why my expecting tuple is not appeared in top-k results as long
as tuple p has been appeared in top-k results”. Based on this
motivation, in this paper, we propose a new method to approach
this problem. Given the inputs as the original top-k query, the
expecting tuple and the comparable tuple, our algorithm returns a
new query to the user which makes the smallest change in the
original top-k results. Finally, an extensive performance study
using both synthetic and real data set is reported to verify its
effectiveness and efficiency.
Keywords: Top-k Query; Refined Query; Result Explaining;
Why Not.

1. Introduction

Recently, the support of rank aware query processing has
attracted much more attentions in database research area.
Top-k queries return only a limited of k objects that best
match the user's preference, thus avoiding the huge and
overwhelming result sets.

Although database system researchers have made
tremendous advanced on functionality and performance
related issues in the past decades, research on improving
database usability has not attracted as much as it deserves.
Recent years, the feature of explaining missing objects in
database queries, or the so-called "why-not" questions has
received growing attentions [1]. For example, users often
feel frustrated when they find their expected tuple m is not
in the query results but their unexpected tuple p is in the
query results without any explanation. So they may
propose such a question: “since tuple p is in top-k results,
why not tuple m?” If the database system can give a good
explanation for it, it would be very useful for uses to
understand and modify the query.

Example 1. Take Fig.1 for example. There are five
network security alerts in this Table, and each alert is
composed of three attributes: Asset, Threat and
Occurrence. All these attributes are normalized to a range
from 0 to 1. In order to retrieve the Top-2 risky alert, user
need to use the scoring function to rank all the alerts. Here
we use the simplest but very common scoring function
(1() [] .d

iw if p w p w i p A== ⋅ = ×∑G G G) to aggregate score of
each alerts. Suppose user initiates the query with weight
setting [0.333, 0.333, 0.334], then the Top-2 alerts are {5,
4}. Unfortunately, user may be confused by this Top-2
results. In his instinctive thinking, he may consider alert-1
is more risky than alert-4. Now alert 4 is in top-2 results,
why not alert-1.

Alert ID Asset Threat Occurence

1 0.7 0.3 0.1

2 0.2 0.4 0.7

3 0.5 0.2 0.2

4 0.4 0.8 0.5

5 0.8 0.6 0.8

Q UER Y:

SELEC T * FR O M E A lert
O R D ER BY W [1]*A sset

+W [2]*Threat
+W [3]*O ccu rence

D ESC LIM IT K

Fig.1 A Set of Some Alerts

In this paper, we present methods to answer user’s
questions by modifying the original top-k query. Generally
speaking, a Top-k query depends on two parameters: the
number of objects to be shown in result (i.e. the k value)
and user’s preference on each attribute (i.e. the weight
vector w

G). In order to answer user’s questions, we need to
modify the original query to get a new query. To solve this
problem, we first define an evaluation model to evaluate
the difference between the original query and the new
query. The difference is estimated by the changes of
weight vectors and the top-k results. Next, we find a new
query with the least change of weight vectors as the
temporary optimal new query. Based on this new query,
we use a sample method to get some optimal weight
vectors and evaluate the quality of query under each

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 2, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 318

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

weight vector. Finally, we return the new query with the
least changes of original query as the answer.

Our contributions can be summarized as follows:

1. We formulate our problem in explaining user’s why
not questions on the top-k query. We compactly
represent the problem and formally define it.

2. We propose a greedy approach to find the
approximate solution to answer user’s why not
questions, and present several efficient techniques to
improve the efficiency of our algorithm.

3. We present an implementation and evaluation of the
proposed algorithm in synthetic and real data sets.
Extensive experimental results on synthetic and real
data sets demonstrate the effectiveness and
efficiency of our algorithm

The remainder of this paper is organized as follows. In
Section 2, we review the related works. In Section 3, we
present a formal problem definition. In Section 4 we
propose a greedy algorithm to search the approximate
solution to answer user’s why not questions. An extensive
empirical evaluation using both synthetic data sets and real
data sets is reported in Section 5. Finally, our work of this
paper is summarized in Section 6.

2. Related Works

There has been some different ways to answer why-not
questions. To the best of our knowledge, the major
existing approaches to explain why-not questions on top-k
query can be summarized as follows.

The first approach explains why-not question by
modifying some objects in the database which will include
both the original results and the specified missing objects.
For example, in [2], the author answers user's why-not
question on Select-Project-Join (SPJ) queries by telling
him/her which query operators eliminated his/her desired
objects.

The second approaches explain missing objects by
identifying the manipulation operations in the query plan
that is responsible for excluding the missing objects. In [3],
the missing answers of Select-Project-Join-Union-
Aggregation (SPJUA) queries are explained by telling the
user how to modify the data. In [4], the author proposes
novel algorithms to generate good quality refined queries
that not only similar to the original query but also produce
precise query results with minimal irrelevant objects, and
these algorithms can answer the SPJ queries both the
basically and complex why-not questions with aggregation
that involve comparison constraints.

The third typical approaches proposed in the literature to
handle the many answers problem are to utilize scoring
functions and return only the Top-k ranked results. A
represented work that is also related to us is reserve Top-k
query[1], which is defined by a given product p and returns
the weighting vector for which p in the top-k set. Two
versions of reverse top-k queries, namely monochromatic
and bichromatic, are presented in this paper. Based on the
geometrical properties of the result set, an algorithm for
evaluating monochromatic reverse top-k queries is
proposed. Thereafter, the author presents an efficient
threshold based algorithm for computing bichromatic
reverse top-k queries. Another related work is answering
why-not questions on top-k query [5]. The authors present
methods to answer why-not questions on Top-k queries
through modifying both the k value and the set of
weighting together. By returning the user a refined query
with approximate minimal changes to the k value and their
weightings, the user could get not only his/her desired
query, but also learn what was/were wrong with her initial
query. However, it only considers the situation that makes
the missing objects be appeared in top-k results, and
ignore the effects on the original top-k results.

3. Problem Statement

In this section, we present some basics regarding to top-k
query, and then we formally define the problem how to
modify a query based on quality function. Table I
summarizes some notions frequently used in this paper.

Table I: The summary of frequently used notions

Notion Meaning

D A multidimensional data set
d The dimensionality of D

, ,p q m Objects in data set
≺ A preference relationship

| |S The number of objects in S
w
G The weight vector for the scoring function
[]w i The i-th coordinate value of w

G

3.1 Preliminaries

We have a data space D of n objects. Each object is
described by d attributes. We use . ip A to refer to the
value of an attribute iA for an object p . For ease of
discussion, we assume that all of these numerical attributes
are normalized to range from 0 to 1. Furthermore, without
loss of generality, we assume that greater score values are
more preferable.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 2, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 319

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Top-k queries are defined based on the scoring function
f that aggregates the individual scores into an overall

scoring value, which enables the ranking of the data points
in data space D . In the simplest but very common case, a
linear aggregation function is adopted, which is specified
as a weighted sum of scores. Each dimension id has an
associated query-dependent weight []w i indicating id 's
relative importance for the query. The result of a top-k
query is a ranked list of the k objects with the best
scoring values, where (,)score p w p w= ⋅

G G G G .

In the Euclidean space a linear top-k query can be
represented by a vector w

G . As discussed in [6] the
magnitude of the query vector does not influence the
query result, as long as the direction remains the same, i.e.
representing the relative importance between different
dimensions. Therefore, we make the assumption
that 1 [] 1d

i w i= =∑ .

3.2 Problem Definition

In this section, we formally define the problem how to
modify a query based on quality function.

Definition 1 (Top-k query): Given a positive integer k and
a weight vector w

G , the result of (,)Q k w
G is a ranked list of

objects such that (,) , | (,) |Q k w D Q k w k∈ =
G G and

1 2 1 2, : (,), (,)p p p Q k w p D Q k w∀ ∈ ∈ −
G G it holds that

1 2(,) (,)score p w score p w>
G G G G .

Definition 2 (The k-th object): Given a positive integer k
and a weight vector w

G , the result of (,)Tuple k w
G is an

object p such that (,) (1,)p Q k w Q k w∈ − −
G G .

At the beginning, user gives a top-k query 0 0 0(,)Q k w

G .
Based on the returned results, she/he may propose a
question such that: Since object p is in the top-k results,
why not miss object m in the top-k results? To solve this
problem, we try to define a new query answer (,)Q k w′ ′ ′G
which satisfies the conditions as follows.

 object m is in the top-k results of (,)Q k w′ ′ ′G
 (,) (,)score m w score p w′ ′>

G G G G

Generally, there exist too many new queries which satisfy
the above conditions. So in order to evaluate the quality of
the new query, we define an evaluation model as follows.

((,)) w cEval Q k w W Cλ λ′ ′ = Δ + Δ
G (1)

where ,w cλ λ are the user's tolerance to the changes of w
and top-k results on her/his original query, and

1w cλ λ+ = . 0 2|| ||w w w′Δ = −
G G is used to calculate the

changes of w , and CΔ is used to measure the changes of
the initial top-k results, which is calculated by the
following equation.

0 0 0 0| (,) (,) | | (,) (,) |C Q k w Q k w Q k w Q k w′ ′ ′ ′Δ = ∪ − ∩
G G G G

Since CΔ is much greater than WΔ , we normalize them
in Section 4.3. Through this definition, we can see that the
new query with the smaller evaluated value is better than
these queries with larger values, because it makes a litter
change on the original query.

Fig.2 A 3-Dimension example

Example 2. Let us give an example. We use Fig. 2 to
explain how to answer user’s question that is proposed in
example 1. First the results of initial query 0(2,)Q w

G are
alert-5 and alert-4. In order to satisfy user’s
preference (,) (,)score m w score p w′ ′>

G G G G , we get some
weight vectors as candidate, such as 1w

G and 2w
G . Take 1w

G
for example, both 1(2,)Q w

G and 1(3,)Q w
G satisfy the

conditions of a new query answer. However, we think that
1(3,)Q w
G is a better new query answer than 1(2,)Q w

G ,
because it only adds a new alert-1 into the original top-k
results (1CΔ =) . In the same way, 2(2,)Q w

G is an better
new query answer than any other queries 2(',)Q wk

G when
' 2k > . Finally, using evaluation model defined in Eq. (1),

we find that 1(3,)Q w
G is better than 2(2,)Q w

G because they
have the same CΔ , and 1 2W WΔ < Δ .

3.3 Problem Analysis

As discussed above, we try to define a new query which
makes m be ranked before p (formally described
as (,) (,)score m w score p w′ ′>

G G G G). In the data space, we say if
an object p domains an object m , and then

(,) (,)score p w score m w′ ′>
G G G G is always hold, so this

situation is out of our consideration. Otherwise if an object
p is incomparable with m , then a hyper plane

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 2, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 320

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

: () 0H m p w− ⋅ =
G G G partitions weight space into two part

W> and W< . The w
G located in W>

makes (,) (,)score m w score p w>
G G G G . The w

G located in W<
means that (,) (,)score m w score p w<

G G G G . So if we want to get
a new query that satisfies the condition

(,) (,)score m p score p w>
G G G G , we only need to consider the

weight spaceW> . Based on each w
G inW> , we can get a

new query to satisfy the conditions. Furthermore, based on
the above quality function, we can evaluate all the new
queries, and return the best new query to user as the
refined query. However, there are infinite w

G in W> , it's
very hard to enumerate all the possible w

G . Therefore, we
propose a new optimal algorithm to solve this problem.

4. Detailed Techniques

In this section, we present our method to solve the
problem how to refine a query based on the quality
function. First we give a basic solution to explain our main
idea. Then base on this basic solution, we give some
techniques to improve the performance of our algorithm.

4.1 Basic Solution

Let us start the discussion from the basic solution.
Basically, we solve this problem by four core phases. First,
we get the weight space that satisfies () 0m p w− ⋅ >

G G G , and
sample s weight vectors from this space, which is
donated by 1 2{ , , }, sS w w w=

G G G" . Second, based on S , we
use the progressive top-k algorithm [7-9] to get the top-k
results and the terminal conditions are discussed in Section
4.2. Third, for each iw S∈

G , we terminate the progressive
top-k algorithm after executing ik steps. Then we can
evaluate the quality of each query (,)i iQ k w

G by Eq. (1).
Finally, we choose the query with the least value as the
new query which is returned to user as the answer.
In the following sections we try to improve the efficiency
of the basic solution.

4.2 The Terminal Conditions of Progressive Top-k
Results

In this section, we try to explain how to terminate the
progressive top-k algorithm. As discussed above, we want
to get the new query with the least value which is
calculated by Eq. (1). So for each iw S∈

G , we need to
minimize the CΔ . However through the definition of

0 0 0 0| (,) (,) | | (,) (,) |i iC Q k w Q k w Q k w Q k w′ ′Δ = ∪ − ∩
G G G G , we

can see that CΔ depends on 0 0 0(,)Q k w
G and (,)iQ k w′ G .

Since 0k , 0w
G and iw

G are certain, the terminal conditions of
the progressive top-k algorithm under iw

G plays a crucial
role.

For the sake of brevity, we denote kCΔ instead of CΔ
under the new query (,)iQ k w

G . First, we will give the
algorithm (as shown in Algorithm 1) on how to calculate
the terminal condition. Then we will give a detailed
analysis of this algorithm.

Algorithm 1: GetOptimalK

Input: Dataset D , Weight vector w
G , User's initialized

query 0 0 0(,)Q k w
G

Output: new query (,)Q k w
G

1. (,)mQ k w ←
G Running progressive top-k algorithm until

to see m ;
2. 0 0 0| | (,) (,) |ma q q Q k w Q k w= ∈ ∩

G G ;
3. 02()mUpperBound k k a← + − ;
4. 0 2min mC k akC =Δ = Δ + − ;
5. min mk k= ;
6. 1mk k= + ;
7. while k UpperBound≤ do
 7.1 if 0 0 0(,) (,)Tuple k w Q k w∈

G G then
 1C CΔ = Δ − ;
 7.2 else
 1C CΔ = Δ + ;
 7.3 if minC CΔ < Δ then
 ;min minC C k kΔ = Δ = ;
 7.4 1k k= + ;
return (,)minQ k w

G ;

To prove the correctness of the above algorithm, in the
following, we need to prove that the optimal answer that
minimizes Eq. (1) in terms of CΔ has an upper bound (as
shown in line 3 Algorithm 1).

Theorem 1: The progressive top-k algorithm could find
the optimal answer in 02()mk k a+ − steps, where mk is
the rank of m under the weight vector w

G (line 1), a is
the number of objects which is both in 0 0 0(,)Q k w

G and
(,)mQ k w

G (line 2).

Proof: we proof this theorem by two cases: (i) (,)mQ k w

G
may not be the optimal answer. (ii) 'k in the optimal
answer (,)Q k w′ G has an upper bound 02()mk k a+ − . In
case (i), we can construct an example to show that

(,)mQ k w
G may not the optimal answer. For example,

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 2, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 321

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

if 0 0 0()(1,) ,mTuple k w kQ w+ ∈
G G , then CΔ decreases after

we increase mk . So this case shows that the missing object
m has appeared in top-k results, but we cannot stop
progressive top-k algorithm because of

1((,)) (()),m mEval Q k w Eval Q k w+ <
G G . In case (ii), we try to

prove 02()mk k k a′′∀ > + − , '' mk kC CΔ > Δ . The proven is
as follows.

()
()

0 0 0 0

0 0

0

0 0

0

0 0

0

| (,) (,) | | (,) (,) |
() 2

 '' 2

2 2 ''

2
| (

)
,

(

k

m

m

m m

C Q k w Q k w Q k w Q k w

k k a a k k a

k k k a

k k k a a

a k

k k a k

Q k

k a a

′′ ′′ ′′Δ = ∪ − ∩
′′ ′′ ′′ ′′ ′′ = + − − = + −

 > + −

 > + + − −

′′

+ − −

 ≤

 ≥ + − =

 =

G G G G

∵

∵

0 0 0) (,) | | (,) (,) |

m

m m

k

w Q k w Q k w Q k w

C

∪ − ∩

 = Δ

G G G G

where 0 0 0| | (,) (,) |a q q Q k w Q k w′′ ′′= ∈ ∩
G G . Through this

case, we can see that ((,)) (('',))mEval Q k E wval Q kw <
G G .

So we can see that the progress top-k algorithm could be
terminated after 02()mk k a+ − steps. Combining these two
cases together, we can guarantee that our algorithm can
get the optimal answer correctly.

4.3 Pruning the weight space

In this section, we will discuss where to get the candidate
weight vectors. As discussed above, based on the top-k
results returned by the original query, user may propose a
question such as p is in top k results, why not object m .
In the basic idea, to answer this question, we sample some
weight vectors from the weight space that constrained by
some inequalities {() 0, [] [0,1], [] 1}m p w w i w iΓ = − ⋅ > ∈ =∑

G G G .
Actually, we only need sample a subspace of Γ . First we
will give main steps about how to get the subspace (As
shown in Algorithm 2). Then we will try our best to
explain why we only need this subspace to be sampled.

Algorithm 2: GetSubRegion

Input: User's initialized query 0 0 0(,)Q k w
G , Parameters

,w cλ λ , Missing object m , Comparable object p
Output: Sampling Region regionS

1. {() 0, [] [0,1], [] 1}m p w w i w iΓ = − ⋅ > ∈ =∑
G G G

2. 1w ←
G Project 0w

G to Γ .

3. 1 1(,)Q k w ←
G GetOptimalK(1w

G
)

4. 1 1 0 2|| ||W w wΔ = −
G G

5. 1 0 0 1 1 0 1 10| (,) (,) | | (,) (,) |C Q k w Q k w Q k w Q k wΔ = ∪ − ∩
G G G G

6. 1 1 /max c wW W Cλ λΔ = Δ + Δ

7. 0 2{|| || }region maxS w w W= − < Δ ∩ Γ
G G

return regionS ;

Now we will give a brief walkthrough of Algorithm 2.
First we project 0w

G to Γ , and get the projection point

1w
G [10-13]. Second, base on the 1w

G
, we use Algorithm 1 to

get the optimal query 1 1(,)Q k w
G . Then we evaluate the

quality of 1 1(,)Q k w
G , and get the maximal value of WΔ .

Finally, we can prune the weight space, and only reserve
the weight space which is described as regionS (Theorem 2).

Theorem 2. For any rei gionw W S∈ −

G , it holds

that 1 1((,)) ((,))i iEval Q k w Eval Q k w<
G G , which means that

the quality of any query (,)i iQ k w
G whose weight vector

iw
G locates out of region regionS is worse than the quality

of 1 1(,)Q k w
G .

Proof:

1 1

1 1

((,))

((,))

i i w i c i

w max c i

w c c i

c i

Eval Q k w W C

W C

W C C

Eval Q k w C

λ λ
λ λ
λ λ λ

λ

= Δ + Δ
 > Δ + Δ

 = Δ + Δ + Δ

 = + Δ

G

G

So when 0 2, || ||i region i i maxw W S W w w W =∈ − Δ Δ− >
G G G ,

1 1((,)) ((,))i iEval Q k w Eval Q k w<
G G is always hold.

Based on Theorem 2, we can improve our algorithm from
three parts. First we try to improve our evaluation model.
Second, we try to improve the efficiency of sampling.
Finally, we do our best to stop the progressive top-k
algorithm as earlier as possible.

1) Normalizing the evaluation model

As we mentioned in Section 3.2, CΔ is much greater
than WΔ , so we normalize each of them by their maximal
values. We normalize wΔ using maxWΔ , because for any

i regionw S∈
G , 0 2|| ||i maxW w w WΔ = ≤− Δ

G G . In a similar way,

we normalize CΔ by 1CΔ in Algorithm 2. Because for
any i regionw S∈

G , 1iW WΔ > Δ always holds, if 1iC CΔ > Δ ,

the quality of new query under iw
G must be worse than the

query under 1w
G . In this case, we discard this iw

G . Now we
have a normalized evaluation model as follows.

1
((,)) w c

max

W C
Eval Q k w

W C
λ λΔ Δ′ ′ = +

Δ Δ
G (2)

2) How to get the weight vector candidate S?

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 2, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 322

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Instead of sampling the whole weight space, we sample
the candidate weight vectors from the regionS . Now another
problem is how many weight vectors we should sample. In
a straightforward thinking, the bigger the | |S , the more
approximate the answer. However, the bigger size of S
means we need to execute more progressive top-k query
which increases the running time. To solve this problem,
we adopt the method which is discussed in Section III.C in
[5]. We say a new query is the best %T query if its
quality is better than (1)%T− new queries in the whole
answer space, and we hope the probability of getting at
least one such new query is larger than a certain threshold
Pr :

| |1 (1 %) PrST− − ≥ (3)
This Equation is general. The sample size is independent
of the data size and the dimension but controlled by two
parameters %T and Pr .

3) Improve the terminal condition in Section 4.2

After getting the candidates 1 2 ,{ }, nS w w w= "G G G for weight
vectors, as shown in Section 4.2, we can use Algorithm 1
to compute the optimal k for each weight vector w S∈

G .
We can see that for specific iw

G , we use the progressive
top-k algorithm to get the top-k objects one by one, and
the optimal k under iw

G is calculated until meeting the
upper bound. In order to decrease the execution time, in
this section, we try to terminate the progressive top-k
algorithm before meeting the upper bound of k. The main
idea is that we terminate the progressive top-k algorithm
and discard this iw

G if the quality under this iw
G will not be

better than the quality we calculate before (Suppose that
the optimal answer we have gotten is (,)opt opt optQ k w

G).

ΔC

o ΔW

ΔCopt

ΔWopt ΔWi ΔWub

ΔC'i

ΔCi

ΔCmax

Fig.3 Terminal Conditions

According to Fig. 3, now we will give details about how to
improve the performance of progressive top-k algorithm.
First, we have an optimal query (,)opt opt optQ k w

G (At the
beginning, this optimal query is set to be the new query
under 1w

G). Based on this optimal query, we can evaluate
the quality of this query through the Eq. (2) .

1
((,)) opt opt

min opt opt w c
max

W C
E Eval Q k w

W C
λ λ

Δ Δ
= +

Δ Δ
=

G

Given a iw , we consider these two situations.

The first situation is /i min xub ma wW EW W λΔ > Δ Δ= . In
this situation, we can see that the quality of new query
under iw

G
 will never be better than the

query (,)opt opt optQ k w
G . This property could be proven

using the same methods in Theorem 2.

The second situation is ubiW WΔ ≤ Δ . First, we get the
upper bound of maxCΔ . When using progressive top-k
algorithm to get the top-k results, we can get a lower
bound of CΔ (represented by lbCΔ) at each step. In case
(1), if the missing object m does not appear in top-k
results when lb maxC CΔ > Δ , we can discard this weight
vector since it could not get a better new query than

(,)opt opt optQ k w
G . In case (2), when the missing object

appears in the top-k results, lb maxC CΔ < Δ is satisfied. As
mentioned in Theorem 1, we continue to execute
progressive top-k algorithm to find the optimal k which
minimizes CΔ . During this procedure, when the terminal
condition lb maxC CΔ > Δ or k UpperBound> (As
discussed in Algorithm 1) is satisfied, we can terminate
the top-k algorithm under this weight vector.

4.4 Algorithm

The pseudo code of our complete idea is presented in
Algorithm 3. It is self explain and mainly discussed above,
so we do not give it a walkthrough here.

Algorithm 3: GetOptimalQuery

Input: Dataset D , User's initialized query 0 0 0(,)Q k w
G ,

Parameters ,w cλ λ , Missing object m , Comparable object
p

Output: new query (,)opt opt optQ k w
G

1. regionS ← GetSubRegion

 //Sample regionS and sort them by WΔ

2. 2 ,{ , }sw wS ← "G G

 // 1w
G

 is the projection point of 0w
G

3. (,)opt opt optQ k w ←
G

 GetOptimalK(1w
G

)

4. For each iw S∈
G

4.1 0 2|| ||iiW w wΔ = −
G G

 4.2 ((,))min opt opt optE Eval Q k w=
G

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 2, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 323

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

 4.3 If /i min max wEW W λΔ > Δ then
 Continue

 4.4 1() /i
max min w c

max

W
C E C

W
λ λ

Δ
Δ = − Δ

Δ

 //running progressive top-k algorithm
4.5 1k = ; 0lbCΔ =
4.6 While (,)iTuple k w m≠

G do
 if 0 0(,) (,)iTuple k w Top k w∉

G G then
 1lb lbC CΔ = Δ +

If lb maxC CΔ > Δ then
 continue

1k k= + ;
 4.7 0 0 0| | (,) (,) |ia q q Q k w Q k w= ∈ ∩

G G
4.8 02()UpperBound k k a← + − ;
4.9 0 2minC C k ak=Δ = Δ + − ;
4.10 mink k= ; 1k k= + ;
4.11while k UpperBound≤ and lb maxC CΔ Δ≤ do

 if 0 0 0(,) (,)iTuple k w Q k w∈
G G then

 1C CΔ = Δ − ;
 else
 1C CΔ = Δ + ; 1lb lbC CΔ Δ= +
 if minC CΔ < Δ then
 ;min minC C k kΔ = Δ = ;
 1k k= + ;

 //evaluate the quality of new query
4.12 If min ,(())i minwEval Q k E<

G
 ((),)min min iE Eval Q k w=

G
 (,) (,)opt opt opt m n iiQ k w Q k w ←

G G

return (,)opt opt optQ k w
G ;

Now we give a brief complexity analysis of our algorithm.
We use the algorithm in [10] to compute the distance from
a point to a simplex, the complexity of this algorithm is

4()O n , where n is the number of vertices of a simplex. In
our case, since the simplex is defined
by {() 0, [] [0,1], [] 1}m p w w i w iΓ = − ⋅ > ∈ =∑

G G G , which makes
n be small. Then in the loop to compute the new query
under each iw

G , the time cost mainly comes from
executing the progressive top-k. As discussed in [8], the
cost of the progressive top-k algorithm is

| () |k skyline D+ . The complexity of our algorithm is
| | (| () |)S k skyline D+ .

5. Experimental Study

We conduct a thorough performance evaluation on the
efficiency and effectiveness of our techniques. Since this
work is the first work in query modification (as discussed
in related works), our performance evaluation is
conducted against our techniques only. Specifically, we
focus on evaluating our GetOptimalQuery algorithm in
Section 4.4. As there is no existing work, we compare our
algorithm under different quality function in Eq. (2)
(TMW stands for “tolerate modifying w

G ” which
sets 0.9cλ = and 0.1wλ = . TMR stands for “tolerate
modifying top-k results” which sets 0.1cλ = and 0.9wλ = .
NM stands for “Never mind” which sets 0.5cλ = and

0.5wλ =).

5.1 Experiment setup

All the experiments are implemented by Java and
compiled by JDK 1.7, and we run all the experiments on
Ubuntu Linux Operating system with Intel Core-2 Duo
Processor and 2GB memory. We use both real and
synthetic data sets in our evaluation process.

Real dataset is extracted from NBA players’ game-by-
game statistics (http://www.nba.com), containing 16916
game statistics of all NBA players from 1973 to 2009 [14].
Each record represents a NBA player by regular season,
player name, points per game (PTS), rebounds per
game(REB), assists per game(AST), steals per game(STL),
blocks per game(BLK), field goal percentage (FGP), field
throw percentage (FTP), and three points percentage
(TPP). Based on this real dataset, we give an interesting
case to show the meaning of our method.

Table II: Parameters setting

Parameter Ranges

Data size 1K, 10K, 50K, 100K,

Dimension 2, 3, 4, 5

Original 0k 5, 10, 15, 20

Synthetic datasets are generated using classical method in
[15] with respect to the following parameters. Table II
summarizes parameter ranges, and the default values are in
bold font. Note that the sample size is determined by the
Eq. (3), here we set the default T to be 0.2 and Pr to be
0.8 (resulting the sample size of 800 weight vectors). In
the experiments below, these parameters use default
values unless otherwise specified. Based on these datasets,
we test the efficiency of our algorithm.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 2, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 324

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

5.2 Experiment Results

The first experiment is done on the NBA data set. In this
experiment, we use three attributes PTS, FGP and FTP to
find the top-5 players in NBA history. Therefore, we issue
an original top-5 query with the preference 0w =

G (0.333,
0.333, 0.334). The result of this query is {Michael Jordan
(1986), Michael Jordan (1987), Michael Jordan (1989),
Michael Jordan (1988), George Gervin (1979)}. Then we
may be confused with these top-5 results and propose such
a question: “since George Gervin is in top-5 results, why
not Kobe Bryant”. In order to answer this question we use
our proposed algorithm with the parameters 0 0(5,)wQ

G ,
missing player Kobe Bryant and the comparable player
George Gervin. Using TMW mode, in 3422ms, we get a
new query with k=6 and 0.379, 0.272, 0.(4)3 9w =

G . The
new query indicates us to put more weights on PTS ability
if we wish to see that Kobe Bryant is ranked before
George Gervin. The corresponding result of (6,)Q w

G is
{Michael Jordan (1986), Kobe Bryant (2005), Michael
Jordan (1987), Bob Mcadoo (1974), Michael Jordan (1989)
George_Gervin (1979)}. From this case, we can see that
we answer the user’s why-not questions through little
change of the original top-k query results, only add two
new players and remove a player.

Statement. In the following experiments, we test the
performance of our algorithm on the synthetic data sets.
Given an original query 0 0 0(,)Q k w

G , we set the object
which is ranked at last of 0Q to be the comparable object
p . Then the missing object m is random selected

from 0D Q− . As discussed above, there are two case
relationships between m and p . If p dominates m (m
will never dominates p), we drop this m , and do not run
our method under this situation. Otherwise we get the
running time of our algorithm and computer the average
time cost.

The second experiment tests the running time of our
algorithm under different data size. As depicted in Fig. 4,
this experiment is conducted against the 4 data size and
the 3 tolerant models. It shows that our algorithm scales
linearly with the data size. The time cost under TMR
(tolerate modifying top-k results is) model is the best
because ubWΔ in Fig. 3 is closer to optWΔ than the other

models. Therefore, many weight vectors are discarded at
the beginning of Algorithm 4 because they cannot get a
better new query answer than the existing optimal answer.

(a) Uniform Data (b) Anti-correlated Data
Fig.4 Varying Data Size

The third experiment, conducted against Uniform and
Anti-correlated datasets with dimension range from 2 to 5,
evaluates effects of dimension. The results are reported in
Fig.5. It demonstrates that the time cost scales linearly
with the dimension. We also notice that the running times
do not increase under the Uniform Data, but at a faster rate
on Anti-correlated Data. Generally speaking, executing a
progressive top-k algorithm in high dimension on anti-
correlated data set needs more time because of the more
attribute and more top-k candidate.

(a) Uniform Data (b) Anti-correlated Data
Fig.5 Varying Dimensionality

The fourth experiment is to test running time under
different original 0k and missing object m . We find that
there is almost no relationship between the running time
and 0k or m . So we only show results on anti-correlated
data set. In Fig. 6(a), we vary 0k (This is the same means
as we vary the object p), and we select the missing object
which is ranked at 0 10k + in original query (If m is
dominated by p , we use 0 11k + instead). In Fig. 6(b),
distance=10 means there at least exists 10 objects between
p and m in the original query.

(a) Varying k (b) Varying missing object
Fig.6 Varying Original Query

The final experiment is to evaluate the effects of sample
size. We try to analyze the effects which sample size
makes on the quality of the new query. Since the sample
size is controlled by T and Pr , we do not show the

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 2, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 325

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

results of varying T or Pr separately. Fig. 7 shows the
quality of optimal new query under different sample sizes.
We can see that the quality of the optimal new query
under larger sample size is better than the one under
smaller sample size. Note that in Fig. 7(b), the quality of
NM model is keep the same under different sample size
because the quality of new query under the sample weight
is worse than the quality of new query under 1w

G .

(a) Uniform Data (b) Anti-correlated Data

Fig.7 Varying Sample Size

6. Conclusions

In this paper, we have introduced a new model for solving
the problem how to modify the query to answer user’s
question. At the beginning, we explain the motivation of
our problem. Then we have presented this problem and
outlined the challenges. Based on the formally definition,
we give our solutions for practically realizing such an
algorithm. Our experimental evaluation of an
implementation of this algorithm in real and synthetic data
sets demonstrates the efficiency of our approach.

Acknowledgments

This work is supported by the National 863 Program of
China (2010AA012505, 2011AA010702, 2012AA01A401
and 2012AA01A402), National Natural Science
Foundation of China (60933005), National Science
Technology Support Program of China (2012BAH38B04)
and National 242 Information Security Program of China
(2011A010). The authors would like to thank the
reviewers for their detailed comments which significantly
improved this paper.

References
[1] A. Vlachou, C. Doulkeridis, Y. Kotidis et al., "Reverse top-k

queries," ICDE, 2010, pp. 365-376.
[2] A. Chapman, and H. V. Jagadish, "Why not?," SIGMOD

Conference, 2009, pp. 523-534.
[3] D. Nanongkai, A. D. Sarma, A. Lall et al., “Regret-

Minimizing Representative Databases,” PVLDB, vol. 3, no.
1, pp. 1114-1124, 2010.

[4] Q. T. Tran, C.-Y. Chan, and C.-Y. Chan, "How to ConQueR
why-not questions.," SIGMOD Conference, 2010, pp. 15-26.

[5] Z. He, and E. Lo, "Answering Why-not Questions on Top-k
Queries.," ICDE, IEEE Computer Society, 2012, pp. 750-761.

[6] P. Tsaparas, T. Palpanas, Y. Kotidis et al., "Ranked Join
Indices," ICDE, 2003, pp. 277-288.

[7] Y.-C. Chang, L. D. Bergman, V. Castelli et al., "The Onion
Technique: Indexing for Linear Optimization Queries,"
Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data, May 16-18, 2000,
Dallas, Texas, USA, ACM, 2000, pp. 391-402.

[8] L. C. Lei Zou, "Dominant Graph: An Efficient Index
Structure to Answer Top-K Queries," ICDE, 2008, pp. 536-
545.

[9] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation
algorithms for middleware,” in Proceedings of the twentieth
ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, Santa Barbara, California, United States,
2001, pp. 102-113.

[10] V. M. Oleg Golubitsky, and S. M. Watt, “An
Algorithm to Compute the Distance from a Point to a
Simplex,” East Coast Computer Algebra Day, 2012.

[11] R. A. Waltz, J. L. Morales, J. Nocedal et al., An
interior algorithm for nonlinear optimization that combines
line search and trust region steps, Mathematical
Programming 107, 2006.

[12] P. Vincent, and Y. Bengio, "K-Local Hyperplane and
Convex Distance Nearest Neighbor Algorithms," Advances
in Neural Information Processing Systems, The MIT Press,
2001, pp. 985-992.

[13] C. Michelot, “A finite algorithm for finding the
projection of a point onto the canonical simplex of R^n,”
Journal of Optimization Theory and Applications, vol. 50, pp.
195-200, 1986.

[14] "Databasebasketball_2009_v1.zip,"
http://www.databasebasketball.com/stats_download.htm.

[15] S. Börzsönyi, D. Kossmann, and K. Stocker, "The
Skyline Operator," ICDE, 2001, pp. 421-430.

Jianfeng Zhang is a Ph.D student in School of Computer Science,
National University of Defense Technology. He received the B.S.
and M.S. degrees in Computer Science from National University of
Defense Technology in 2006 and 2009 respectively. His current
research is in network security, database system and data mining.

Weihong Han received the PhD degree from National University
of Defense Technology. Currently she is an associate professor,
and her research interests include network & information security,
database and data mining.

Yan Jia received the PhD degree from National University of
Defense Technology in 2001. She is a doctoral tutor at National
University of Defense Technology. Her research interests include
massive database system, information security and data mining.

Peng Zou is a professor and Ph.D. supervisor at National
University of Defense Technology. His research interests include
network & information security, distributed computing.

Hua Fan is currently a Ph.D student at National University of
Defense Technology. He received the B.S. and M.S. degrees in
Computer Science from National University of Defense Technology
in 2006 and 2009, respectively. He His research interests include
stream data management and Sensor network.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 2, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 326

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

