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Abstract 
A novel binary Quantum-behaved Particle Swarm Optimization 

algorithm with cooperative approach (CBQPSO) is introduced. 

In the proposed algorithm, the updating method of particle’s 

previous best position and swarm’s global best position are 

performed in each dimension of solution vector to avoid loss 

some components that have moved closer to the global optimal 

solution in the vector. Five test functions are used to test the 

performance of CBQPSO. The results of experiments show that 

the proposed technique can increase diversity of population and 

converge more rapidly than other binary algorithms. 

Keywords: Quantum-behaved Particle Swarm Optimization, 

Binary, Cooperative Approach, Test Functions. 

1. Introduction 

Particle Swarm Optimization (PSO) is an evolutionary 

computation technique developed by Dr. Eberhart and Dr. 

Kennedy in 1995
[1]

, inspired by social behavior of bird 

flocking or fish schooling. The optimal solution is obtained 

by exchanging information between individuals. However, 

the algorithm cannot converges to the global minimum 

point with probability one under suitable condition
[2]

. Jun 

Sun et al have proposed a global convergence-guaranteed 

PSO algorithm
[3]

, Quantum-behaved Particle Swarm 

Optimization (QPSO) algorithm, which is inspired by 

quantum mechanics. It has been shown that QPSO 

outperforms PSO on several aspects, such as simple 

evolution equations, more few control parameters, fast 

convergence speed, simple operation and so on
[4,5]

. 

 

In 1997, Kennedy proposed the binary version of PSO 

(BPSO)
[6]

, and Jun Sun et al proposed the binary version 

of QPSO (BQPSO) in 2007
[7]

. This paper will focus on 

developing the binary version of QPSO with cooperative 

method (CBQPSO). In the proposed algorithm, each 

dimension of particle’s new solution vector replaces in turn 

the corresponding dimension of particle’s previous best 

position and swarm’s global best position to calculate the 

fitness value. 

 

The rest structure of this paper is as follows. In section 2, a 

brief introduction of the BPSO is presented. The BQPSO 

is described in section 3. Next, the novel CBQPSO is 

depicted in section 4. Then the experiment results are 

given in section 5. Finally, the conclusion is put forward in 

section 6. 

2. Binary Particle Swarm Optimization 

In PSO, the population with M  individuals, which is 

treated as a particle, is called a swarm X  in the D-

dimensional space. The position vector and velocity vector 

of particle i  at the generation t  represented as 

))(,),(),(()( 21 txtxtxtx iDiii 
 
 and  

))(,),(),(()( 21 tvtvtvtv iDiii  .The particle moves 

according to the equations: 
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Where DdMi ,,2,1;,,2,1   , w  is the inertia weight, 

whose value is typically setup to vary linearly from 0.9 to 

0.4. 1c  and 2c  are called the acceleration coefficients 

which usually are set as 21 cc  . 1r  and 2r  are random 

number uniformly distributed in (0,1) .Vector 

),,,( 21 iDiii pbestpbestpbestpbest   is the best previous 

position of particle i with the name personal best 

position( pbest ), while the global best position( gbest ), 

),,,( 21 Dgbestgbestgbestgbest  , is the best particle 

position among all the particles in the population. 
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In BPSO
[6,8]

, Eq. (3) replaces Eq. (2).  

if ))(()( idVSrand   then 1idX
 
else 0idX                  (3) 

 

Where )(vS  is a sigmoid limiting transformation 

function(
)1(

1
)(

ve
vs


 ), and ()rand  is a random 

number selected from a uniform distribution in (0,1) . 

3. Binary Quantum-behaved Particle Swarm 

Optimization 

3.1 Quantum-behaved Particle Swarm Optimization 

In PSO algorithm, the state of particle is depicted by its 

position vector and velocity vector, which determine the 

trajectory of the particle. The particle moves along a 

determined trajectory in Newtonian mechanics, but this is 

not the case in quantum mechanics. In quantum world, the 

term trajectory is meaningless, because position and 

velocity of a particle cannot be determined simultaneously 

according to uncertainty principle. Therefore, if individual 

particles in a PSO system have quantum behavior, the PSO 

algorithm is bound to work in a different fashion. 

 

In quantum time-space framework, Jun Sun et al. introduce 

QPSO algorithm. The equations are as follows: 
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where   is a random number uniformly distributed in (0,1) . 

mbest  is mean best position of the population. Parameter 

  is called the Contraction-Expansion coefficient, which 

can be tuned to control the convergence speed of the 

algorithm. From the results of stochastic simulation
[9]

, it 

can be concluded that in QPSO, when 782.1 , the 

particles will converge. In the process of iteration,   is 

decided by the random number, when it is bigger than 0.5, 

minus sign (－ ) is proposed, others plus sign (＋ ) is 

proposed. 

3.2 Binary Quantum-behaved Particle Swarm 

Optimization 

In this section, a discrete binary version of QPSO (BQPSO) 

is proposed. Because the iteration equations of QPSO are 

far different from those of PSO, the methodology of BPSO 

does not apply to QPSO. In QPSO, there are no velocities 

and trajectories concepts but position and distance. In 

BQPSO, the position of the particle is represented as a 

binary string. The distance is defined as the Hamming 

distance between two binary strings. That is 

),( YXdYX H                                                     (7) 

 

Where X  and Y  are two binary strings and represent two 

positions. The function ()Hd  is to get the Hamming 

distance between X  and Y . The Hamming distance is the 

count of bits different in the two strings. 

 

The jth bit of the mbest  is determined by the states of the 

jth bits of all particles’ pbest  in BQPSO. If more particles 

take on 1 at the jth bit of their own pbest , the jth bits of 

mbest  will be 1; otherwise the bit will be 0. However, if 

half of the particles take on 1 at the jth bit of their pbest , 

the jth bit of mbest  will be set randomly to be 1 or 0, with 

probability 0.5 for either state.  

 

In BQPSO, the point ip  is obtained by crossover 

operation on ipbest  and gbest . Firstly make one-point or 

multi-point crossover operation on ipbest  and gbest  to 

generate two offspring. Then randomly select one of the 

offspring and output it as the point ip . 

 

Consider iterative Eq. (6) and transform it as 
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We can obtain the new string ix  by the transformation in 

which each bit in ip  is mutated with the probability 

computed by 
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Where l  is the length of the dth dimension of particle i . 

In the process of iteration, if dcrand () , the 

corresponding bit in the position of particle i  will be 

reversed, otherwise remains it. 
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With the above definition and modifications of iterative 

equations, the BQPSO algorithm is described as the 

following procedure: 

 

Step 1 Initialize an array of binary bits for all particles, 

particle’s personal best positions pbest  and 

swarm’s global best position gbest ; 

 

Step 2 For each particle, determine the mbest  and get a 

stochastic position ip  by exerting crossover 

operation on ipbest  and gbest ; 

 

Step 3 For each dimension, compute the mutation 

probability dc  and then update the particle’s new 

position ix
 
by dc ; 

 

Step 4 Evaluate the objective function value of the 

particle, and compare it with the objective function 

value of pbest  and gbest . If the current objective 

function value is better than that of pbest  

and gbest , then update pbest  and gbest ; 

 

Step 5 Repeat step 2~4 until the stopping criterion is 

satisfied or reaches the given maximal iteration. 

4. Binary Quantum-behaved Particle Swarm 

Optimization with Cooperative Approach 

As BPSO and BQPSO described, each particle represents a 

complete solution vector for the objective 

function   NXXXfXf ,,,)( 21  . Each update step is 

also performed on a full D-dimensional vector. Then it 

may be appear the possibility that some dimension in the 

solution vector have moved closer to the global optimum, 

while others moved away from the global optimum. 

Whereas the objective function value of the solution vector 

is worse than the former value. BPSO and BQPSO take the 

new solution vector for a complete vector and neglect the 

deteriorated components during the iterations. As long as 

the current objective function value is better than the 

former value, then update pbest  and gbest . Therefore, 

the current solution vector can be give up in next iteration 

and the valuable information of the solution vector is lost 

unknowingly. In order to make full use of the beneficial 

information, the cooperative method
[10,11]

 is introduced to 

BQPSO. In the proposed method, we expect that the 

operation can avoid the undesirable behavior, which is a 

case of taking two steps forward (some dimension 

improved), and one step back (some dimension 

deteriorated). 

4.1 Cooperative Approach 

We expect that once for every time a component in the 

vector has been updated, resulting in much quicker 

feedback. Thus, a cooperative method for doing just this is 

presented. In the new method each dimension of the new 

solution vector replaces in turn the corresponding 

dimension of pbest  and gbest , and then compare the new 

objective function value to decide whether to update 

pbest  and gbest . 

 

The process is as follows:  

 

Step 1 For each particle i , initialize gbestcgbest  , 

ii pbestcpbest  ; 

 

Step 2 For each dimension of particle i , replace the 

dimension of cpbest  and cgbest  by the 

corresponding dimension of the particle; 

 

Step 3 Evaluate the new objective function value of 

cpbest  and cgbest , and compare them with the 

objective function value of pbest  and gbest . If 

the current objective function value is better than 

that of pbest  and gbest , then update pbest  

and gbest ;  

 

Step 4 Repeat step 2~3 until all the dimension of the 

particle is compared. 

4.2 CBQPSO 

With above modifications, the iteration process of 

CBQPSO is described step-by-step below. 

 

Step 1 Initialize an array of binary bits for all particles, 

particle’s personal best positions pbest  and 

swarm’s global best position gbest ; 

 

Step 2 Update the particle’s new position ix
 
by BQPSO; 

 

Step 3 Evaluate the objective function value of the 

particle, and compare them with the objective 

function value of pbest  and gbest . If the current 

objective function value is better than that of 

pbest  and gbest , then update pbest  and gbest ;  

 

Step 4 Use cooperative strategy to update pbest  and 

gbest ; 

 

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 2, January 2013 
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814 
www.IJCSI.org 114

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



 

Step 5 Repeat step 2~4 until the stopping criterion is 

satisfied or reaches the given maximal iteration. 

 

The proposed algorithm tries to improve convergence 

precision by comparing each dimension of solution vector. 

It must extend the search space and then increase the time 

consumption. Two adaptive control methods are proposed. 

Firstly, the cooperative strategy is adopted in a certain 

interval. In our method, it set to 5. Then the cooperative 

strategy is performed when the bit of the particle is 

different from the corresponding bit of pbest  and gbest . 

5. Experiments 

In this section, the performance of CBQPSO algorithm is 

tested on the following five different standard functions
[7]

 

to be maximized. Then the results are compared with 

BPSO and BQPSO. 
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In the numerical experiments, the algorithms parameters 

settings are described as follow: for BPSO, the 

acceleration coefficients are set to 221  cc  and the 

inertia weight w  is decreasing linearly from 0.9 to 0.4. In 

experiments for BQPSO and CBQPSO, the value of   is 

1.4
[12]

 . All experiments are run 50 independent times 

respectively with a population of 20, 40 and 80 particles 

on an Intel(R) Xeon(R) E5504 @2.00GHz 2.00GHz，
1GB RAM computer with the software environment of 

MATLAB2009a. All the algorithms terminate when the 

number of iterations succeeds 200.  

 

The best fitness value (BFV), maximum value and 

minimum value are recorded after the algorithm terminates 

at each run. The performance of all the algorithms is 

evaluated by average BFV (Avg. BFV) and Standard 

Deviation (St. Dev.). All the measurements are listed on 

Table 1. Fig.1 illustrates the convergence process of 

average BFV of three algorithms over 50 runs with 40 

particles on five test functions. 

 

The optima of function 1f , whose fitness value is 78.6, 

can be find out by BPSO, BQPSO and CBQPSO. As can 

be seen from Table 1, the average BFV and St. Dev. of 

CBQPSO is best. And BQPSO outperforms BPSO. As of 

solution quality, CBQPSO and BQPSO with 20 particles 

make 12 successful searches out of 50 trial runs, whereas 

BPSO find out the optima for 7 times. And the 

corresponding times is 14, 13 and 2 respectively with 40 

particles. When the population number is 80, the optima 

are found out for 29, 20 and 4 times corresponding with 

CBQPSO, BQPSO and BPSO. 

 

On the function 2f , all the algorithms can be found the 

optimum fitness value 3905.93. However CBQPSO 

generates best average BFV and St. Dev.. And BQPSO 

takes second place. As can be seen from Table 1, BQPSO 

has the worst performance than other two algorithms with 

40 particles. Note that the St. Dev. of BQPSO with 40 

particles is better than that of BPSO. 

 

The third function 3f  is a simple integer function with an 

optimum of 55. CBQPSO, BQPSO and BPSO with 80 

particles hit the optima for 50 times out of 50 runs. 

CBQPSO and BQPSO have better quality of solution than 

BPSO with 20 and 40 particles. 

 

In order to measure the average fitness value over the 

entire population, Gaussian noise is introduced into 4f  

function. In this function, the average BFV of BQPSO is 

inferior to CBQPSO but superior to BPSO. However the St. 

Dev. of BQPSO is the best results. 

 

The last function 5f  has an optimum 500. All the 

algorithms can be found out the best value 499.26991. 

CBQPSO with 40 and 80 partilces is able to hit the 

optimum beyond 47 times out of 50 runs. The number of 

successful searches of BPSO is better than BQPSO. 

However the average BFV and St. Dev. of BPSO is 

inferior to BQPSO. 

 

As is illustrated in Fig.1, we can see that the effectiveness 

of the proposed CBQPSO. CBQPSO can converge to the 

optimum more rapidly than BQPSO and BPSO on three 

functions except 2f  and 5f  . On 2f , BPSO converges 

more quickly but generates worse solution than CBQPSO. 

On 5f , BPSO converges rapidly than other two 
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algorithms at the early stage of running, but CBQPSO 

exceeds BPSO soon and generates a slightly better solution.  

Compared with BPSO and BQPSO, experimental results 

show the effectiveness of the proposed CBQPSO. 

Table 1: Results of BPSO, BQPSO and CBQPSO on five testing functions 

Function Particles 

BPSO BQPSO CBQPSO 

Mean 

(St.Dev.) 

MAX 

(MIN) 

Mean 

(St.Dev.) 

MAX 

(MIN) 

Mean 

(St.Dev.) 

MAX 

(MIN) 

1f  

20 
78.59986 

0.000086 

78.6 

78.5997 

78.59987 

0.000099 

78.6 

78.5997 

78.59988 

0.000087 

78.6 

78.5997 

40 
78.59985 

0.000076 

78.6 

78.5997 

78.59989 

0.000086 

78.6 

78.5997 

78.59991 

0.000070 

78.6 

78.5998 

80 
78.59984 

0.000086 

78.6 

78.5997 

78.59992 

0.000082 

78.6 

78.5997 

78.59995 

0.000058 

78.6 

78.5998 

2f  

20 
3905.9002 

0.110331 

3905.93 

3905.1536 

3905.9102 

0.037457 

3905.93 

3905.7815 

3905.9144 

0.038555 

3905.93 

3905.6873 

40 
3905.9242 

0.016954 

3905.93 

3905.8418 

3905.9235 

0.016072 

3905.93 

3905.8312 

3905.9252 

0.013599 

3905.93 

3905.8728 

80 
3905.9292 

0.001747 

3905.93 

3905.9188 

3905.9292 

0.001608 

3905.93 

3905.9214 

3905.9296 

0.000863 

3905.93 

3905.9246 

3f  

20 
54.86 

0.350510 

55 

54 

54.96 

0.197949 

55 

54 

55 

0.141421 

55 

54 

40 
54.98 

0.141421 

55 

54 

55 

0 

55 

55 

55 

0 

55 

55 

80 
55 

0 

55 

55 

55 

0 

55 

55 

55 

0 

55 

55 

4f  

20 
1250.7889 

3.918132 

1258.2255 

1240.5389 

1253.5857 

3.305561 

1261.7592 

1247.7543 

1259.3092 

3.602731 

1266.8519 

1252.1388 

40 
1251.7949 

4.256897 

1263.1885 

1241.2841 

1252.9749 

3.470581 

1262.1260 

1245.6837 

1260.2212 

4.843062 

1274.1392 

1250.1568 

80 
1251.8510 

3.902359 

1264.5341 

1243.9959 

1254.2206 

3.011134 

1260.8333 

1245.5395 

1262.8852 

4.664300 

1270.5571 

1252.4547 

5f  

20 
498.71163 

0.498272 

499.2699 

497.76306 

498.75278 

0.483852 

499.2699 

497.81977 

499.25442 

0.038667 

499.2699 

499.15955 

40 
498.95986 

0.366094 

499.2699 

498.10809 

498.97292 

0.422411 

499.2699 

497.62203 

499.2699 

0.000038 

499.2699 

499.26975 

80 
499.03857 

0.352775 

499.2699 

498.10906 

499.13661 

0.203900 

499.2699 

498.51791 

499.2699 

0.000022 

499.2699 

499.26975 
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Fig. 1 The convergence process of three algorithms with 40 particles.

6. Conclusions 

In BQPSO, an improvement in two components will 

overrule a potentially good value for a single component. 

In this paper, a discrete binary version of Quantum-

behaved Particle Swarm Optimization algorithm with 

cooperative method (CBQPSO) is introduced to improve 

the undesirable behavior by decomposing the solution 

vector. In the proposed algorithm, each dimension update 

of particle can feed back to personal best positions and 

swarm best position. The results of experiment have 

showed that the CBQPSO algorithm performs better than 

other algorithm on global convergence and has stronger 

ability to escape from the local optimal solution during the 

search process. However it can be extend the search space 

with the increasing complexity of the problem, time 

consumption is the main deficiency of CBQPSO. 
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