

A New Approach for Quality Management in Pervasive

Computing Environments

ALTI Adel1, ROOSE Phillipe2

1 Computer Science Department, Science Faculty

Ferhat Abbas University, Sétif B.P. 19000, Algeria

2 LIUPPA / IUT Bayonne

2 Allée du Parc Montaury 64600 Anglet – France

Abstract
This paper provides an extension of MDA called Context-aware

Quality Model Driven Architecture (CQ-MDA) which can be

used for quality control in pervasive computing environments.

The proposed CQ-MDA approach based on

ContextualArchRQMM (Contextual ARCHitecture Quality

Requirement MetaModel), being an extension to the MDA,

allows for considering quality and resources-awareness while

conducting the design process. The contributions of this paper

are a meta-model for architecture quality control of context-

aware applications and a model driven approach to separate

architecture concerns from context and quality concerns and to

configure reconfigurable software architectures of distributed

systems. To demonstrate the utility of our approach, we use a

videoconference system.

Keywords: MDA, Context, Quality Model, Dynamic

reconfiguration, ADL.

1. Introduction

Model Driven Approach (MDA) [5] has been proposed by

the OMG (Object management Group). The basic models

of MDA are entities able to unify and support the

development of computer systems by providing

interoperability and portability. MDA approach does not

address how to consider non-functional demands, i.e. how

to represent and transform them.

An application for heterogeneous mobile embedded and

limited (low bandwidth, power consumption, etc.) device

has to firstly prevent interaction and mobility limitation.

The heterogeneity of components regarding embedded

sensors, CPU power, communication mechanisms (GPRS,

WIFI, Bluetooth, ZigBee, etc.), speed of transmission as

well as the media variety (sound, video, text and image)

requires taking into account adaptation to an abstract level

in order to avoid the ad hoc solutions which are not

reusable and/or generalized. This is due to the following

points:

 The separation of concerns met in software
architecture is the separation of communications
supported by first class connector from the

business logic supported by components.
However, communication is not the unique non-
functional concern found in software design. Data
adaptation, context-awareness, resource-awareness
and QoS are other non-functional concerns which
cut across component's business logic. Introducing
in software architecture will make design of
complex software an easier task and will yield
clear and lucid specification.

 Few ADLs are able to define new connectors’
types that ensure the non-functional concerns of
the components (security, communication,
conversion, etc.).

 Few ADLs support the elaboration of quality
model explicitly and facilitate the system
architecture quality control with the continuous
evolution of its context.

In this paper, we present an extended Model Driven

Architecture which includes support for software

architecture quality control and resources requirements

changes, in the framework of CQ-MDA (Context-aware

Quality Model Driven Architecture). Some other works

concentrate only on quality system architecture or context-

aware system architecture [8, 9]. Our approach focuses on

separation of two concerns: the architecture and the

implementation contexts. This enables us to support them

with the elaboration of quality model explicitly and to

facilitate the system architecture quality control with the

continuous evolution of its context. To cope with a serious

gap in styles quality control, we have previously

introduced the ArchRQMM (ARCHitecture Requirement

Quality MetaModel) [3]. One of the strengths of

ArchRQMM relies in its ability to separate architecture

concerns from requirement and quality concerns and to

automatically perform formal architecture quality analysis

at architecture stage using OCL [12]. However, our

metamodel does not support the definition of a context-

awareness and a resource-awareness metamodel.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 795

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

We begin this paper by introducing ArchRQMM

metamodel. Section 3 proposes the main element of CQ-

MDA approach, i.e. ContextualArchRQMM metamodel

which it is an ArchRQMM extension used as support for

context model description and quality model definition.

Section 4 describes the CQ-MDA itself. Section 5 shows

an example of applying CQ-MDA for VideoConference

system development [15]. Section 6 summarizes related

works. Section 7 concludes this article and presents some

future works.

2. An Overview of ArchRQMM (Architecture

Requirement Quality Metamodel)

ArchRQMM metamodel enables architectural styles quality

evaluation and selection at the architecture design step and

ensures formal verification of the properties’ quality of

architectures on modelling styles. The metamodel was

described in details in [3, 4]. It was developed according to

ISO/IEC 9126 standard [7]. ArchRQMM is based on a set

of meta-classes for the common concepts of architectures

descriptions languages (ADLs) and a set of quality

characteristics based on a standard ISO quality model [10]

which can be investigated and evaluated in the architecture

level (maintenability, reusability, efficiency, etc.) . Fig. 1

presents a MOF metamodel of the ArchRQMM. One of the

strengths of ArchRQMM relies in its ability to separate

architecture concerns from requirement and quality

concerns and to automatically perform formal architecture

quality analysis at architecture stage using OCL [12]. The

focus of rigorous architecture quality analysis is to prevent

the non-required affections before the early phases of

system development. The use of ArchRQMM metamodel

offers number of advantages compared to other related

works using UML profiling mechanisms like MARTE [18]

including: 1) – architectures, requirements and quality

models are explicitly represented, 2) – a formal support to

prove the quality properties of architectural styles at the

architecture level using OCL[12], 3)- support for model

non-functional aspects of software architecture through

architecture properties and measurable standards [7,4] ,

and 4) – automatic evaluation and selection of styles that

best meet architects’ needs using QualiStyle tool [4].

3. ContextualArchRQMM Metamodel

3.1 Objectives and Motivations

The main idea of this proposal is to take into consideration

the non-functional concerns (adaptation service,

communication protocol, security, QoS, etc.) of the

components by connectors at the software architecture

level. In our approach, the two types of preoccupations are

ensured respectively by the components and the

connectors. Thus, the connectors ensure the

communication and the connection of components that

realize the functional part (business logic components).

Their execution within adequate configurations also

requires taking into account of the non-functional aspects.

Fig. 1 A MOF Metamodel of ArchRQMM.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 796

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

3.2 Context-awareness Metamodel

We extend our software architecture metamodel, with a

context metamodel (Fig. 2). The goal is to represent

context information of system architecture at model level.

Context is any information that can be collected from

artefact needs, resources capacities and user preferences

[20]. ContextualArchRQMM uses these informations to

perform a software architecture quality evaluation and

selection in software development process. We have

identified two types of context, i.e., required context (user

preferences, artifacts needs) and provided context that

encompasses the properties of the execution environment

of an application. Context elements are realized through

Context class, are expressed as QoS properties of the

contextual artifacts (Non-Functional-Prop class).

Fig. 2 The context metamodel of ContextualArchRQMM

3.3 Resource-awareness Metamodel

Fig. 3 depicts a resource-awareness metamodel. The

hardware components are mobile devices (Class Device)

like PDAs, PC Portables or smart phone, are constrained in

their resources (memory size, CPU power, bandwith,

battery, etc) and act as execution environment for

architectural artefact (Class Artifact). Network connections

(Class Node) connect hardware components having a

limited bandwith. A resource-awareness about current

usage of processing power, network bandwith, etc. is a

prerequisite to guarantee a minimum quality of service.

3.4 Contextual Architectural Artifacts

For an efficient and clear specification of connection

points, we have introduced more precise port according to

their global roles in a component: the DataPort, the

ContextPort, information available at run-time when the

service is active. The ServiceControlPort is a standard

dedicated port for controlling a service. It allows the

service to be (re)started, updated, relocated, stopped and

uninstalled.

Fig. 3 The resource metamodel of ContextualArchRQMM

The QoSNotificationPort is responsible for sending QoS

information to execution platform in order to decide if a

service reconfiguration is needed. As software architecture

descriptions rely on a connector to express interactions

between components, an equivalent abstraction must be

used to express a contextual and a heterogeneous

interaction (i.e. various interactions paradigms). We extend

an architectural connector with a contextual concern in a

heterogeneous interaction (Fig. 4). Three auto-adaptative

mechanisms are distinguished: communication (i.e. clarify

the connection between various components regarding the

communications paradigms), service adaptation (i.e.

adding, suppression and substitution of adaptation

services), and QoS adaptation (selecting parameters of

service to provide adequate quality to component needs at

runtime). The business logic component is adapted

explicitly and automatically by a contextual connector.

This means that context ports of business logic

components instances, related to the context managed by a

contextual connector, are all connected to that contextual

connector. The data role may be connected to the data

port of a component (provided or required) and the

contextual role may be connected to the contextual port of

a component. The distinction between a data and context

roles (and also between a data and context ports) addresses

the constraint typically imposed by many ADLs about the

clear separation between functional and non-functional

aspects. This ensures a quality of the components assembly

by inserting a contextual connectors, as well as

management of adaptation service quality.

3.5 Metamodel for Dynamic Reconfiguration

Dynamic reconfiguration is defined by transitions between

configuration families (Fig.5.). Our metamodel proposes to

define configuration family to capture a non-predefined

number of configurations having close adaptation services.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 797

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 4 Contextual architectural artifacts in ContextualArchRQMM

For each family, a specific set of adaptation services

defined. For example at image family which includes

connectors offering services of the same nature (i.e. image

adaptation services) but only differs by their adaptability to

the context.

A transition allows switching the system from the source

configuration family to another new target configuration

family. A transition can be triggered by different events,

like changes in the environment, changes in the

applications to be executed, or changes in the system

operational conditions (e.g., a battery operated system

detects a change in the battery status, or a component that

becomes faulty). We can have a transition into the same

configuration family; it is a transition between two

configurations of the same family. For each transition, a

reconfiguration activity presenting a set of reconfiguration

actions is associated. It represents a set of actions

switching from the current configuration to the target one.

In our approach we have a non-predefined number of

configurations, but we have statically predefined families.

To answer to an adaptation task, on a mobile device

system at the run-time, one needs to satisfy a new need

related to a new execution context. The ideal solution is to

install, update or remove an adaptation service at the

connector’s configuration. This contribution of

reconfiguration is similar to other work described in a

paper [11] but our work concentrates on connector

reconfiguration and insisted on the separation of the two

concerns: software architecture model and context model.

Four possible adaptations in ContextualArchRQMM are:

parametric adaptations (i.e. an update parameter value

command is sent along with the name and the new value of

the parameter to the command queue of the connector),

services adaptations (i.e. call to another available service

provider by composing and/or decomposing of services

using the DynamicUse concept), sub-family (re) assembly:

(i.e. attach/detach several subfamilies into a family), move

and re-routing: (i.e. we use the routing service to lookup

another relay to deploy the desired service).

Fig. 5 Autmoaton hirerachy in the adaptation connector

 initConfig AudioAdaption

 VideoAdaption

[cpu_speed>400MIPS]

run_Normal

[cpu_speed≈400MIPS]

run_Audio_Family

 [
cp

u
_
sp

ee
d
≈

3
0
0
M

IP
S

]

ru

n
_

V
id

eo
_

F
am

il
y

 VideoAudioAdaption

 VideoReziser VideoResizeEncoder

[cpu_speed <200 MIPS and bw<=64kbps]

run_Resizer_Encoder

[bw>64kbps]

run_Resize 4:1

[cpu_speed≈300]

 4 :1 Reduction

 Video Encoder Technique

 DCT Motion Quantization VLC

 [

cp
u
>

4
0
0
M

IP
S

]

ru
n
_
N

o
rm

al

[c

p
u
≈

 4
0
0
M

IP
S

]

ru

n
_
A

u
d
io

_
F

am
il

y

 r
u

n
_

V
A

_
F

am
il

y

cp
u
≈

 3
0
0
M

IP
S

]

ru
n
_
A

V
_
F

am
ily

F
am

il
y

 A
u

to
m

at
o

n

 S

u
b

F
am

il
y
 A

u
to

m
at

o
n

A
d

ap
ta

ti
o

n
 S

er
v

ic
es

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 798

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

4. Context-aware Quality – Model Driven

Architecture (CQ-MDA)

The general structure of Context-aware Quality – Model

Driven Architecture (CQ-MDA) is presented in Fig. 6. We

consider the full software development cycle within MDA,

i.e. from formulation of needs up to the code generation.

The proposed structure consists in five levels representing

CIM, PIM, Contextual Platform Independent Model

(CPIM), Contextual Platform Specific Model (CPSM), and

code. Each level is decomposed into three parts: the left

part represents architectural artifacts and context concepts;

the right part represents quality model and measurements

done for these artifacts while the center part represents

requirements.

Fig. 6 Context-aware Quality Driven Model Architecture

4.1 Architecture Quality Control at the Design-Time

Architecture quality should be controlled at each steps of

the design. External requirements of the system are

transformed into internal ones for the architecture and its

components. Internal requirements are needed for

assessing designed architecture models. So, particular

internal models, being instances of ContextualArchRQMM

metamodel, are used to assess particular models of CQ-

MDA. The software architecture quality model is produced

by measurement done for each architectural artefact for a

given factor in the context of associated requirement, for a

given criteria with associated metric. Two ways of using

our meta-model are possible:

 The first one assumes that the software
architecture quality metamodel is used for
evaluating an architecture model. The architecture
model is tested and validated with the semantic
constraints defined by the metamodel. If the
verified architecture model gets bad marks then the
design process can be stopped or it can go back to
the previous stage either to change requirements or
to elaborate a different (better) architectural
model.

 The second one, using software architecture
quality metamodel considers the case when the
metamodel is used for selecting the best
architectural model from different choices. In this
case the values of a metric are used to classify the
models. A metric formula gives a note for the
architecture model. The values of the metric
function are used to classify the models and to
choose the suitable one and we select a first model
if we have the same value. After that, the selected
architectural model is evaluated by the OCL
constraints to remove any quality semantic
violation.

4.2 Architecture Adaptation at the Run-Time

We can say that two configurations provide a close service

if and only if their marks of the architecture quality criteria

(i.e. context-independent) and contextual architectural

quality criteria (which are related to run-time context) are

close. Because context-independent quality criterion

variation is more perceptible by users, platform will begin

its research with the evaluation of the configurations

having the same mark of context-independent quality

criterion as the current configuration. In response to events

notifying about changes in the environment (less bandwith,

less available memory…), or in the running application

(overflow/underflow of the buffer, increased transmission

time…), the Adaptation Manager will be notified by set of

probes which constitute the monitoring framework, update

configurations and annotate the events to these

configurations. Our platform use configurations families

and subfamilies described in XML format from a

preliminary analysis of the application (i.e. at the design

step) in terms of QoS and update it in real time.

For an efficient and better implementation of self-

management process (Fig. 7), we have used “poisson”

simulation and formal methods (OCL) to assess the

degradation of quality attributes due to movement of

devices and employ runtime adaptation to mitigate such

problems.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 799

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 7 Process reconfiguration model of CQ-MDA

Our process started with the evaluation of the

configurations having the same mark of structural

architecture criterion (coupling, cohesion, structural

complexity…,) as the current configuration. That will only

modify the mark of the adaptative criterion (response time,

adaptation effort…). As soon as a reconfiguration event is

received, the Quality-Manager search for a better

configuration model to using successively by analyzing

finite sets of configurations having the same mark of

structural architecture quality metric and differ only by

their adaptability cost to the context. Firstly, the platform

will be able to restrict the scope of the search into the

range of configurations, which differ from the current

configuration only by the adaptation service (or

component) at the origin of the reconfiguration event. But

when this approach does not give any solution, we face the

issue of the deployment of a sub-family or a family. The

Adaptation Manager receives the new selected

configuration model and starts-up the reconfiguration.

5. Case Study: Video Conference System

A case study given below is intended to show applicability

of CQ-MDA both for evaluation, for selection and for

reconfiguration of the best architectural model from some

alternatives.

A case study deals with VideoConference System [15].

VideoConference has the following optional services:

 Audio Encoder: (de-)compressing the audio
stream.

 Video Encoder: (de-)compressing the video
stream.

 Audio Filter: components for changing the frame
size.

 Video Filter: reducing the video frame rate.

The following user preferences are considered:

 Recording, reviewing user’ video and creating
respective reports.

 Video should be delivered in quality and in period
no longer than one minute from their request.

According to ContextualArchRQMM, all these

requirements should be associated with a respective

architecture quality model with selected quality factors. In

our example, for illustration, only non-functional

requirements are taken into account. It is proposed to use

the efficiency factor with time-behavior sub-factor [4]. On

the CIM level some internal requirements may be specified

additionally to external ones. We propose “an easy

maintenance of software architecture model: internal

requirement” as we consider it to be important factor from

architect point of view. This additional requirement can be

expressed more precisely as “low complexity, high

cohesion and low coupling these requirements are the main

facts to take into account for achieving easy

maintainability architecture (subfactors of the

maintainability factor [4]).” The time behaviour sub-factor

for software architecture model artefact cannot be

evaluated at CIM level (as the software architecture is not

defined yet) and should be forwarded to the next level i.e.

PIM level. Therefore the CQ-MDA approach will be

shown in details using the transformation of the PIM

model with respective internal quality model into CPIM

model with its internal quality model and the CPIM model

with respective internal quality model into CPSM model

with its internal quality model.

5.1 PIM Level – Quality Control at the Design-Time

PIM model is the starting point for the considered

transformation. Several architectural models can be used to

design a given system. For the VideoConference system,

the model is designed with PipesAndFilters style as shown

in Figure 8. At PIM level we have also formally defined

set of architectural artifacts that are traced from CIM

model.

Automatic architecture quality model elaboration

[C
on

te
xt

 B
ad

 m
ar

ks
]

C
on

te
xt

 U
pd

at
e

(o
th

er
 C

P
IM

)

 [

A
da

pt
at

io
n

B
ad

 m
ar

ks
]

 A
da

pt
at

io
n

U
pd

at
e

Architecture Model Simulation & Evaluation

Formal Analysis & diagnosis

 Reconfiguration

Self-management Architecture

PIM selected

Determination of configuration models with the

same mark of architecture quality metric

 Elaborate Automaton hierarchy

[A
rc

hi
te

ct
ur

e
B

ad
 m

ar
ks

]
Se

le
ct

 a
 d

if
fe

re
nt

 a
rc

hi
te

ct
ur

e
m

od
el

 Context-aware Policies (NFR)

Determination of architecture models with

better mark architecture quality metric

 PIM transformed on CPIM

PIMs models

Choice of one configuration model

 [Worst adaptation Mark]

[Best Adaptation mark]

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 800

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 8 PIM software architecture model

Internal quality model on this level is traced from the

upper quality level model. So, we have to consider the

factors from CIM level, i.e. efficiency factor with time-

behaviour sub-factor and maintainability factor with

modularity, analyzability sub-factors. The first factor is

efficiency with sub-factor Time-behavior cannot be

evaluated at this level as we have not found accepted

metrics for evaluation of the PIM model. This factor must

be still forwarded for evaluation to the next modeling

level. The second factor is maintainability with modularity

and analyzability sub-factors [4]. The first sub-factor,

modularity, depends on the configuration, component and

connector modularity. If the system has been divided

correctly to suitable modular, the software system can be

analyzed more easily. At the architecture level, this factor

can be measured with criteria, named coupling and

cohesion. In [4] these two metrics are proposed for

measuring architecture modularity. We used these metrics

in our model. We have evaluated each kind of models with

similar measurements of the whole architecture of the basic

metrics (i.e. coupling, cohesion and complexity).

The evaluation results are given in Tab. 1 using a

prototype implemented written in Java called QualiStyle

[4]. The architecture model should be tested and validated

with the semantic constraints defined by the meta-model. If

the verified architecture model gets bad marks then the

design process can be stopped or it returned to the

previous stage (i.e. CIM) either to change requirements or

to elaborate a different (better) architectural model. High

cohesion, low coupling and low complexity are the main

facts to take into account for making a design

understandable, maintainable, and of higher quality. All

these basic metrics are in [0, 1]. The higher cohesion’s

value (resp. lower complexity’s value) is the better for

architecture quality. As for the architecture model from

Table 1 the values of coupling is equal 0.482 and a

threshold of coupling is equal 0.66, the value of cohesion

is equal 0.341 and a threshold of coupling is equal 0.5 and

the value of complexity is equal 0.362 and a threshold of

complexity is equal 1, the architectural model provides an

acceptable maintainability (a high level of cohesion, a low

level of coupling, a low level of complexity). This

architectural model is accepted for further transformation.

This result is practically significant as well related to

maintainability effort, e.g. low level of coupling,

dependencies among all architectural artifacts are loss,

high number of reused artifacts (i.e. number of Pipe

connector instances, m = 4).

Table 1: PIM evaluation results.

PIM Coupling Cohesion Complexity

Pipe-Filter 0.482 0.341 0.362

5.2 CPIM Level–Quality Control at the Design-Time

PIM software architecture model may be transformed,

manually or automatically, into different CPIM models.

The software architecture model from Fig. 8 is transformed

into five CPIMs models (Fig. 9) and the total resource

requirements are given in Table 2. Fig. 10 depicts our

automaton for the video adaptation family.

At this level analyzability, time-behavior sub-factors taken

from upper level are evaluated (it is worth to mention –

different metrics can be used for this purpose). The

evaluation results should be helpful in choosing the best

CPIM model for further transformation.

Table 2: resources requirements

Component
User

preferences
CPU speed Bandwith

RateAudioT - ≈ 100 MIPS 4:1 Reduction
ResizeVideoT - ≈ 400 MIPS 2:1 Reduction

AudioEncoderT
High Quality

Medium Quality
Low Quality

≈ 300 MIPS
64 kbps
32 kbps
8 kbps

VideoEncoderT
High Quality

Medium Quality
Low Quality

≈200 MIPS 10:1 Reduction
20:1 Reduction
30:1 Reduction

 PIM1:PipeFilter_Style

 :AcquisT

 video_out

InputVideo

 :MuliplexT
 audio_out

video_out

 :VideoT

audio_in
 :AudioT

audio_out

OutputVideo

video_in

: Communication Service

video_in

 : Sender

 PipeFilter_Style

O
u

tp
u

t_
v

id
eo

 MuliplexT

 audio_in

 video_in

v
id

eo
_

o
u

t

 VideoT

v
id

eo
_

in

 FilterT IN OUT

 video_out

 AcquisT

 audio_out

AudioT

au
d

io
_

o
u

t

au
d

io
_

in

InputVideo

OutputVideo

 AcceptedData: Media

audio_out

audio_in

AudioEncoderT

PipeT

Source Target

VideoEncoderT

video_out

video_in

Sender

In
p

u
t_

V
id

eo

O
u

tp
u

t_
v

id
eo

 Receiver

In
p

u
t_

V
id

eo

audio_in

 : Receiver

Instance of

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 801

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 9 Alternatives versions of CPIM models

Fig.10 Video adaptation automaton

For time-behavior, three metrics proposed in [7], one of

them is selected and adapted in our case. The estimated

Time Behavior Metric (TBM) for a set A of artifacts of a

given configuration performed with a given time in a

certain context calculated as the weighted sum of TBa

metric counted for every artefact instance “a”:

Aa

aaNetworkCPUMemory TBwconfigTBM
Benefit

bwspeedsize
*)(,,

 (1)

Apart from the evaluation of time behavior sub-factor we

evaluate the analyzability sub-factor to select the best

CPIM model. In [16] two metrics were proposed for the

dynamic adaptivity at the architectural level, but only one,

MaAC (Minimum architectural Adaptive Cost) was used

and validated for analysability assessment in our example.

According to the choice made of the sub-factors of quality

and their measurement, we define the Quality function

which measures the quality of a given configuration:

)(

)(
)(

,,

,,

configMaAC

configTBM
configQuality

Cost

bwspeedsize

Benefit

bwspeedsize

NetworkCPUMemory

NetworkCPUMemory
 (2)

Table 3 shows the evaluation results, meaning that CPIM5

turns out to be the best. Differences can be seen in the

adaptation cost of this CPIM and other CPIMs, which is

due to the low adaptation effort compared to other CPIMs.

This result is practically significant as well related to

adaptation effort e.g. number of artifacts which should be

added to make a system adaptive are very loss as

consequence of self- management for environment

evolution (i.e. CPU usage, bandwith) guided by the

adaptation policies.

Table 3: CPIMs evaluation results

Adaptable and optional services
TBM (ms) MaAC

(artifact nb)

Video Resize, High Quality Video
Encoder/Decoder

200 ~ 400 0 ~ 16

Video Resize, Medium Quality Video
Encoder/Decoder

200 ~ 330 0 ~ 16

Video Resize, Low Quality Video
Encoder/Decoder

350 ~ 500 0 ~ 8

Video Resize, Audio
Encoder/Decoder

470 ~ 800 0 ~ 8

All Adaptable Services 420 ~ 930 0

5.3 Architecture Adaptation at the Run-Time

Participants to the video conference are interested for

service quality in the face of device heterogeneity. We

distinguish two Participants’ families: speaker and auditor.

The service quality requirement can be satisfied by using

our context quality management strategy. The goal for a

given mobile device is to achieve qualities and allocate

resources to result in the best configuration such that the

system quality is maximized subject to device resource

constraints, user preferences constraints. The platform is

capable of adding/removing/updating/moving services at

the execution time. The important task of our platform is to

perform the dynamic changes at the run-time and, more

precisely, with minimum length of time and decision

making. It is necessary to have a mechanism for media

flow measurement which will detect when the application

must be reconfigured for reasons of lower available

bandwith. In addition, it is necessary to know when the

bandwidth is sufficient to switch to another configuration.

So, we propose to use our context quality management. We

can see the different adaptations in the following scenarios:

Scenario # 1. The application is first of all deployed in a

favorable context, where neither the stations nor the

network are saturated. Initially, the context is sufficient to

provide both video and audio. If we receive a video stream

: VideoFilter

: AudioFilter

: VideoEncoderT

 : QualityMng

: AudioEncoderT

 : MuliplexT

 Glu Part

 Adaptation Services

Part

 : AdaptationMng

 : ContextMng

 : AdaptationPolicyMng

 : AcquisT

Bandwith

Bandwith Bandwith

Bandwith Quality

Service Information Control Interface

InputVideo

InputVideo

OutputVideo

OutputVideo

audio_in

audio_in

audio_in

audio_out video_out

video_in

video_out

video_out

video_in Frame_rate

quality quality

Frame_rate

QoS_Notif QoS_Notif

new_qlty_video

new_rate_video

new_quality_audio

Bandwith

New_Frame_rate_audio

New_Frame_rate_video
New_Video_Quality

current_video_quality

current_audio_quality

 : Communication Service

 ImageFilterEncoder
[Bandwith >1/10 bandwith]

run ColoredFilter ImageFilter

[Bandwith <=1/10 bandwith]

run_Image_Filter_Encoder

 [cpu_speed ≈ 400]

run ColoredFilter

[8kbps<bandwith<=32kbps]

run BlackWhiteFilter

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 802

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

packaged with RealVideo in a 120 x120 window at 10

frames / second with phone audio quality, rate of 56Kbits

is sufficient.

Scenario # 2. The supervisor has noticed a problem of

bandwith, and thinks that the bandwith will not hold until

the end of the video. To detect a decrease in media

throughput, the Adaptation Manager receives two events

of the buffering connector corresponding to

overflow/underflow of the buffer size (i.e. 20% - 80% of

the buffer size) from the supervisor. When an event of

underflow is received, it indicates a problem of the video

transmission (loss of information transmission, increased

transmission time). Since, an overflow event implies that

the current bandwith is not sufficient. To alleviate too

many changes (i.e. minimum reconfiguration cost) in the

current configuration, the application can switch to the

ideal configuration if the video stream of data can be

supported for long enough time (depending on the size of

the buffer). The ideal management on bandwith

degradation is to follow a minor change by the replacement

of a service connector (Video Encoder/Decoder with High

quality) by another connector service (Video

Encoder/Decoder with Lower quality).

Scenario # 3. In another scenario, due to movement of

devices, the network throughput connecting the devices is

very loss, making it difficult for communication service to

interact with auditor. The platform looks for a new

configuration to use, starting by looking for a new relay

allowing the moving a video resize connector to a suitable

device.

6. Related Works and Discussion

The first related area of research are ADLs that have been

proposed for representing dynamic architectures including:

ACME [14], π-ADL [6], C3 [2] and AADL [1]. However,

except for ACME, most ADLs do not support the concept

of evaluation function. In addition, most of them are not

contextual defined. MARTE [17] does not treat the

problem of heterogeneity by a meta-model which verifies

the adequacy of service regarding its context and research

of the adaptation strategy [19]. Π-ADL [6] is a formal

architecture description language based on the π-calculus.

It does not support contextual connectors and not integrate

quality metrics. Recently, Garlan and al. [14] extended

ACME ADL in order to support evaluation function in

evolution styles and their multiple decision forms.

However, this work does not consider exploiting

contextual connectors in heterogeneous environment where

entities of different nature collaborate: software and

hardware components. The second related area of research

are some works involving quality in MDA approach, like

QADA (Quality-driven Architecture Design and Quality

Analysis) [8] – a methodology targeted at the development

of service architectures. Other works involving Context in

MDA approach, e.g. Context-aware Model Driven

Architecture Model Transformation [13] – a methodology

targeted at the development of context-aware applications

and other networked systems. These works concentrate

only on quality system architecture or context-aware

system architecture, while CQ-MDA insisted on the

separation of the two concerns: software architecture

model and context model.

7. Conclusion and Future Works

This paper proposed ContextualArchRQMM metamodel

centred on the concept of contextual connector, which take

advantage of traditional architectural connectors and

provides a lightweight support for the definition of some

composition facilities such as heterogeneous interfaces at

the connector level. The paper proposed also CQ-MDA

approach based on ContextualArchRQMM, being an

extension to the MDA, allows for considering quality and

resources-awareness while conducting the design process.

The main idea of presented extension consists of three

abstractions levels: PIM, CPIM and CPSM. At the PIM

level, a model is decomposed on two interrelated models:

software architecture artifacts, which reflect functional

requirements and quality model. At the CPIM level a

simultaneous transformation of these two models with

contextual information details are elaborated and then

refined to a specific platform at the CPSM level. Such a

procedure ensures that the transformation decisions should

be based on the quality assessment of the created models.

At design-time, our approach is used to assess the quality

attributes of the system’s architectures. At run-time, the

framework copes with the challenges posed by the highly

dynamic nature of mobile systems through continuous

monitoring and calculation of the most suitable

architecture. If a better architecture is found, the

framework adapts at run-time the software, potentially via

connector adaptation and mobility. We presented an

illustrative example to show the applicability of the

proposed CQ-MDA approach. The results of the

experiments (based on the example of VideoConference

with four CPIMs) are encouraging. The experiment shows

that our approach outperforms two abstractions level in

terms of some quality metrics such as adaptation ratio and

time response. In the future, we will consider moving our

approach to a real execution platform to validate its

feasibility.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 803

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Acknowledgments

We would like to thank our colleagues and students for

testing our simulation tool and specially Hamza Reffad and

Bekakchi Youcef. The authors appreciate the in-depth

comments given by the anonymous reviewers to improve

this work.

References
[1] B. Berthomieu1, J.P. Bodeveix, C. Chaudet, F. Vernadat,

“Formal Verification of AADL Specifications in the

Topcased Environment,” 14th Ada-Europe International

Conference, 2009, pp. 207 – 221.

[2] A. Amirat and M. Oussalah, “First-Class Connectors to

Support Systematic Construction of Hierarchical Software

Architecture,” Journal of Object Technology, Vol. 8. N°.7,

2009, pp. 107-130.

[3] A. Alti, A. Boukerram and A. Smeda, “Architectural Styles

Quality Evaluation and Selection,” 9th International

Conference NOTERE’09, Montréal (Canada), 2009.

[4] A. Alti, A. Smeda, “Architectural Styles Quality Evaluation

and Selection,” Proceeding of 4th International Conference

on Software and Technologies (ICSOFT’2009), Barcelona

(Spain), 2009, pp. 74 - 82.

[5] J. Miller, J. Mujerki, editors. “MDA Guide, Version 1.0.

OMG Technical Report,”, http://www.omg.org/docs/ptc/03-

05-01.pdf, 2003.

[6] F. Oquendo, “π-ADL: an architecture description language

based en the higher order typed π-calculus for specifying

dynamic and mobile software architecture,” ACM Soft. Eng.,

vol. 29, n°. 4, 2004, pp. 1 - 13.

[7] ISO/IEC 9126-3. In Software Engineering – Product quality

– Part 3: Internal metrics, ISO-IEC, 2003.

[8] QADA, http://virtual.vtt.fi/qada , 2007.

[9] P. Tarvainen, “Adaptability Evaluation at Software

Architecture Level, ” The Open Soft. Eng. J. vol. 2, Bentham

Sc. Pub. Ltd., 2008, pp. 1-30.

[10] F. Losavio, L. Chirinos, N. Lévy, and A. Ramdane Cherif,

“Quality characteristics for software architecture,” JOT, 2(2),

2003, pp. 133-150.

[11] F. Kritchen, B. Hamid, B. Zalila and B. Coulette,

“Designing Dynamic Reconfiguration for Distributed Real

Time Embedded Systems,” 10th International Conference

NOTERE’2010, Tozeur (Tunisia) ,2010, pp. 249-254.

[12] OMG. UML OCL 2.0 Specification: Revised Final Adopted

Specification. http://www.omg.org/docs/ptc/05-06-06.pdf,

June 2005.

[13] S. Vale, S. Hammoudi, Context-aware Model Driven

Development by Parameterized Transformation.

MDISIS’2008, pp. 167–180.

[14] D. Garlan, J.M. Barnes, B. Schmerl, O. Celiku., “Evolution

Styles: Foundations and Tool Support for Software

Architecture Evolution,” WICSA’09, 2009, pp. 16-25.

[15] S. Laplace, M. Dalmau, P. Roose, Prise en compte de la

qualité de service dans la conception et l’exploitation

d’applications réparties, In the Workshop GEDSIP@Inforsid

2009, Toulouse, 26 mai 2009.

[16] C. Raibulet, L. Masciadri, “Evaluation of Dynamic

Adaptivity through Metrics: an Achievable Target?”

WICSA’09, 2009, pp. 65-71.

[17] S. Gérard, D. Petriu and J. Medina. “MARTE: A New

Standard for Modeling and Analysis of Real-Time and

Embedded Systems”, 19th Euromicro Conf. on Real-Time

Systems (ECRTS 07), Pisa, Italy, 2007.

[18] OMG. A UML Profile for MARTE: Modeling and Analysis

of Real-Time Embedded systems, June 2008,

http://www.omg.org/docs/ptc /09-06-08.pdf , 2008.

[19] C. Marcel, R Michel, Christian M. “Autonomic Adaptation

based on Service-Context Adequacy Determination”. In

ENTCS, p. 35-50, 2007.

[20] M. Dalmau, P. Roose, S. Laplace. “Context Aware

Adaptable Applications - A global approach”, Special Issue

on Pervasive Computing Systems and Technologies -

International Journal of Computer Science - IJCSI Vol. 1,

Issue 1, 2009 - ISSN 1694-0784

Adel Alti obtained the Master degree from the University of Setif
(UFAS), Algeria, in 1998. He is holding a Ph.D. degree in software
engineering from UFAS university of Sétif, Algeria, 2011. Right
now he is an associate professor at University of Sétif. He is a
member of the research group LRSD. His area of interests
includes automated software engineering, mapping multimedia
concepts into UML, semantic integration of architectural
description into MDA platforms, context-aware quality software
architectures and automated service management, Context and
QoS. During his work he has published number of publications
concerning these subjects.

Roose Philippe is an associate professor at the LIUPPA/UPPA –
FRANCE. He obtained his PhD degree in computer science from
university of Bayonne, France, 2001. He head of the MOJITO and
AEXIUM projects. His research interests are software architecture
and platforms, pervasifs and ubiquitous computing, mobility,
software components services, context and QoS, multi-parts
profiles. He is the co-author of three books on software
component technologies.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 804

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

http://www.aadl.info/aadl/documents/FIACRE-AADL-AADLWorkshop-6-2009.pdf
http://www.aadl.info/aadl/documents/FIACRE-AADL-AADLWorkshop-6-2009.pdf
http://www.omg.org/docs/ptc/03-05-01.pdf
http://www.omg.org/docs/ptc/03-05-01.pdf
http://virtual.vtt.fi/qada
http://www.omg.org/docs/ptc/05-06-06.pdf
http://www.omgmarte.org/Documents/MARTE_TutorialForECRTS2007_v1.1b.zip
http://www.omgmarte.org/Documents/MARTE_TutorialForECRTS2007_v1.1b.zip
http://www.omgmarte.org/Documents/MARTE_TutorialForECRTS2007_v1.1b.zip
http://www.omg.org/docs/ptc%20/09-06-08.pdf

