

Assessing Pareto Software Reliability Using SAssessing Pareto Software Reliability Using SAssessing Pareto Software Reliability Using SAssessing Pareto Software Reliability Using SPCPCPCPC

Satya Prasad R1, Sita Kumari K2 and Sridevi G3

1
Department of CSE, Acharya Nagarjuna University,

Guntur, Andhra Pradesh, India

2Department of IT, V.R.Siddhartha Engineering College,

Kanuru, Vijayawada, Andhra Pradesh, India.

3Department of CSE, Nimra Women’s College of Engineering,

Vijayawada, Andhra Pradesh, India.

Abstract
Software reliability is one of the most important characteristics of

software quality and is very much essential for producing reliable

software systems. The reliability of software can be monitored

efficiently using Statistical Process Control (SPC). It helps to

identify when the failure takes place during the software

development process. In this paper we proposed a control

mechanism based on the cumulative observations of the time

domain data using the mean value function of Pareto type II

distribution, which is based on Non-Homogenous Poisson

Process (NHPP). To estimate the unknown parameters of the

model, maximum likelihood estimation method is used. The

failure data is analyzed with the proposed mechanism and the

results are exhibited through control charts.

Keywords: Control Charts, Mean Value Function, NHPP,

Pareto type II distribution, Statistical Process Control, Time

domain data.

1. Introduction

 Software Reliability is an important quality characteristic
of a software which can evaluate and predict the
operational quality of software system during its
development. Software Reliability is the probability of
failure free operation of software in a specified
environment for a specified period of time [5], [6].
Software Process Control (SPC) concepts and methods are
used for improving the software reliability by identifying
and eliminating the human errors in the software
development process. SPC is an important tool for
monitoring and controlling manufacturing processes. SPC
can be used to monitor the performance of a software
process over time in order to verify that the process
remains in the state of statistical control. It helps in finding
assignable causes, long term improvements in the software
process. Software quality and reliability can be achieved by
eliminating the causes or improving the software process
or its operating procedures [1].

SPC is a powerful tool to optimize the amount of
information needed for use in making management
decisions. Statistical techniques provide an understanding
of the business baselines, insights for process
improvements, communication of value and results of
processes, and active and visible involvement. SPC
provides real time analysis to establish controllable process
baselines; learn, set, and dynamically improve process
capabilities; and focus business areas needing
improvement. The early detection of software failures will
improve the software reliability. The selection of proper
SPC charts is essential to effective statistical process
control implementation and use. The SPC chart selection is
based on data, situation and need [2]. An advantage of SPC
over other methods of quality control, such as "inspection",
is that it emphasizes early detection and prevention of
problems, rather than the correction of problems after they
have occurred.

Control charts are the key tools which are used in SPC to

monitor the quality. Basically there are two types of

Control charts that can be used depending on the

characteristics to be monitored. There are two main

categories of Control Charts, those that display attribute

data, and those that display variables data.

Attribute Data -- This category of Control Chart displays

data that result from counting the number of occurrences or

items in a single category of similar items or occurrences.

These “count” data may be expressed as pass/fail, yes/no,

or presence/absence of a defect.
Variables Data -- This category of Control Chart displays
values resulting from the measurement of a continuous
variable. Examples of variables data are elapsed time,
temperature. The univariate control chart is a graphical
display of one quality characteristic and the multivariate
control chart is a graphical display of statistics that
represents more than one quality characteristic. The control

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 375

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

chart is one of the seven tools for quality control. The
control limits for the chart are defined in such a manner
that the process is considered to be out of control when the
time to observe exactly one failure is less than LCL or
greater than UCL. Our aim is to monitor the failure process
and detect any change of the intensity parameter [2].

The Non-Homogeneous Poisson Process (NHPP) based
models are the most important models because of their
simplicity, convenience and compatibility. The NHPP
based software reliability growth models are proved quite
successful in practical software reliability engineering [5].
The NHPP model represents the number of failures
experienced up to certain time. The main issue in the
NHPP model is to determine an appropriate mean value
function to denote the expected number of failures
experienced up to a certain time point [3]. The Maximum
likelihood estimation (MLE) is the most useful technique
for deriving the point estimators. Parameter estimation is of
primary importance in software reliability prediction. Once
the analytical solution for m (t) is known for a given
model, parameter estimation is achieved by applying a
technique of Maximum Likelihood Estimate (MLE). The
failure data is collected in time domain data. The idea
behind maximum likelihood parameter estimation is to
determine the parameters that maximize the probability
(likelihood) of the sample data. The method of maximum
likelihood is considered to be more robust (with some
exceptions) and yields estimators with good statistical
properties. In other words, MLE methods are versatile and
apply to most models and to different types of data.
Although the methodology for maximum likelihood
estimation is simple, the implementation is mathematically
intense. In our proposed model the parameters are
estimated using MLE. The Newton Raphson method is
used for obtaining the parameter values.

This paper presents Pareto type II model for analyzing
the reliability of a software system using time domain data.
The layout of the paper is as follows: Section II gives the
interpretation of the model for the underlying NHPP,
Section III describes the proposed Pareto type II software
reliability growth model, Section IV discusses parameter
estimation of Pareto type II model based on time
domain data. Section V describes the control charts
that are used for analysing the live data for software
failures and finally Section VI gives the Conclusion.

2. Model Formulation

Software reliability growth models can be used as an

indication of the number of failures that may be

encountered after the software has shipped and thus as an

indication of whether the software is ready to ship. These

models use system test data to predict the number of

defects remaining in the software. There are essentially two

types of software reliability models - those that attempt to

predict software reliability from design parameters and

those that attempt to predict software reliability from test

data. The first type of models are usually called "defect

density" models and use code characteristics such as lines

of code, nesting of loops, external references,

input/outputs, and so forth to estimate the number of

defects in the software. The second type of models is

usually called "software reliability growth" models. These

models attempt to statistically correlate defect detection

data with known functions such as an exponential function.

If the correlation is good, the known function can be used

to predict future behaviour. Software reliability growth

models are the focus of this report. Most software

reliability growth models have a parameter that relates to

the total number of defects contained in a set of code. If we

know this parameter and the current number of defects

discovered, we know how many defects remain in the code

(see Figure 1).Knowing the number of residual defects, it

can be decided whether or not the code is ready to ship

and how much more testing is required if we decide the

code is not ready to ship. It gives us an estimate of the

number of failures that our customers will encounter when

operating the software. This estimate helps us to plan the

appropriate levels of support that will be required for

defect correction after the software has shipped and

determine the cost of supporting the software.

Software reliability growth models are a statistical

interpolation of defect detection data by mathematical

functions. The functions are used to predict future failure

rates or the number of residual defects in the code. There

are different ways to represent defect detection data as

discussed in Section 2.1. There are many types of software

reliability growth models as described in Section 2.2, and

there are different ways to statistically correlate the data to

the models as discussed in Section 2.3. Current software

reliability literature is inconclusive as to which data

representation, software reliability growth model, and

statistical correlation technique works best. The advice in

the literature seems to be to try a number of the different

techniques and see which works best in your environment.

In Section 3, we describe the application of the techniques

in the Tandem environment.

There are numerous software reliability growth models
available for use according to probabilistic assumptions.
The Non Homogenous Poisson Process (NHPP) based
software reliability growth models are proved quite
successful in practical software reliability engineering.
NHPP model formulation is described in the following
lines.

A software system is subject to failures at random times
caused by errors present in the system. Let {N(t), t >0 } be
the cumulative number of software failures by time ‘t’,
where t is the failure intensity function, which is
proportional to the residual fault content.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 376

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Let m (t) represents the expected number of software
failures by time’t’. The mean value function m (t) is finite
valued, non-decreasing, non-negative and bounded with
the boundary conditions.

���� = 0, � = 0
 = �, � → ∞
Where a is the expected number of software errors to be
eventually detected.

Suppose N (t) is known to have a Poisson probability mass
function with parameters m (t) i.e.,

��
���� = ��� = �������. ������
�! , � = 0,1,2…∞

Then N (t) is called an NHPP. Thus the stochastic
behaviour of software failure phenomena can be described
through the N (t) process. Various time domain models
have appeared in the literature that describes the stochastic
failure process by an NHPP which differ in the mean value
functions m (t).

3. The Proposed Pareto Type II SRGM

In this paper we consider m (t) as given by

 ���� = �	�1		 −	� � � ��!�� " (3.1)

Where [m (t)/a] is the cumulative distribution function of
Pareto type II distribution (Johnson et al, 2004) for the
resent choice.

��
���� = ��� = �������	. ������
�!

lim�→&�	�
��� = �� = ��'. ��
�!

This is also a Poisson model with mean ‘a’.

Let N (t) be the number of errors remaining in the system at
time‘t’

��� =
�∞� −
���
(�
���� 			= (�
�∞�� − (�
����

= � −����
 = � − 	�)1 − �

��!�� "
 =

'�
��!��

4. Parameter Estimation Based On Time
Domain Data

In this section we develop expressions to estimate
the parameters of the Pareto type II model based on time

domain data. Parameter estimation is of primary
importance in software reliability prediction.

A set of failure data is usually collected in one of two
common ways, time domain data and time domain data. In
this paper parameters are estimated from the time domain
data.

The mean value function of Pareto type II model is given
by

���� = �)1 − �
��!�� " ,									� ≥ 0 (4.1)

In order to have an assessment of the software reliability, a,
b and c are to be known or they are to be estimated from
software failure data. Expressions are now delivered for
estimating ‘a’, ‘b’ and ‘c’ for the Pareto type II model [7].

We conduct an experiment and obtain N independent
observations, t1, t2…, tn. The likelihood function for time
domain data [8] is given by

 +,-	. = −� /1 − 0 1
�+13

45+		

6�log � + log 4 + 4	.,-1 − �4 + 1� log��9 + 1��
�

9:;
			

 (4.2)

Accordingly parameters ‘a’,’b’ and ‘c’ would be solutions
of the equations.

< =>? @
<' = 0

� = ���!��
��!�� �	� (4.3)

The parameter ‘b’ is estimated by iterative Newton
Raphson Method using

4�!; = 4� − A�B�
AC�B�																				

 Where -�4���D	 -′�4� are expressed as follows.

-�4� = <@EA@
<B = 0		

<@EA	@
<B = �FEA0 G

HIG3
��!;� 	�; +

�
B − ∑ .,-��9 + 1��9:; 		

 (4.4)

-K�4� = <L	@EA	@
<BL = 0		

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 377

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

<L	@EA	@
<BL = −�.,- 0 ;

�!;3 /
��!;� 	=>?	��!;�
M��!;� 	�;NL 5 − �

BL		
 (4.5)

The parameter ‘c’ is estimated by iterative Newton
Raphson Method using

1�!; = 1�		 − A��O�
AK��O�		

Where -�1�	��D	-′�1� are expressed as follows.

-�1� = <@EA@
<� = 0		

<@EA	@
<� = �

��!��+	
�
�	 –∑

Q
�R	!�

�9:;

 (4.6)

-′�1� = <L@EA@
<�L = 0		

<LFEA@
<�L = 	 ��

��!��L		 −
�
�L	 +∑ Q

��R!��L
�9:;

 (4.7)

The values of ‘b’ and ‘c’ in the above equations can be
obtained using Newton Raphson Method. Solving the
above equations simultaneously yields the point estimates
of the parameters b and c. These equations are to be solved
iteratively and their solutions in turn when substituted in
equation (4.3) gives value of ‘a’.

5. Data Analysis

In this section, we present the analysis of software failure
data set. The set of software errors analysed here is
borrowed from software development project as published
in Pham (2005) [3].

The data named as NTDS data are summarized in the
below table.

Table 1. NTDS Data

Failure Number

n

Time Between Failure

(xk) days

Cumulative

Time

1 9 9

2 12 21

3 11 32

4 4 36

5 7 43

6 2 45

7 5 50

8 8 58

9 5 63

10 7 70

11 1 71

12 6 77

13 1 78

14 9 87

15 4 91

16 1 92

17 3 95

18 3 98

19 6 104

20 1 105

21 11 116

22 33 149

23 7 156

24 91 247

25 2 249

26 1 250

Test Phase

27 87 337

28 47 384

29 12 396

30 9 405

31 135 540

User Phase

32 258 798

Test Phase

33 16 814

34 35 849

Solving equations by Newton Raphson Method for the
NTDS test data, the iterative solutions for MLEs of a, b
and c are

� = 55.01871

4 = 0.998899

1 = 278.6101

Using ‘a’ and ‘b’ and ‘c’ values we can compute m�t�.
Now the control limits are calculated by the following
equations taking the standard values 0.00135, 0.99865 and
0.5.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 378

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Table 2. Successive differences of Cumulative mean values

Failure

number

Cumulative

failures

Mean

values

1 9 1.7198

2 21 3.852228

3 32 5.662288

4 36 6.289126

5 43 7.348594

6 45 7.642885

7 50 8.362949

8 58 9.470581

9 63 10.13652

10 70 11.03676

11 71 11.16243

12 77 11.90158

13 78 12.02235

14 87 13.07962

15 91 13.533

16 92 13.64481

17 95 13.97667

18 98 14.30324

19 104 14.94104

20 105 15.0454

21 116 16.15847

22 149 19.15426

23 156 19.73128

24 247 25.83456

25 249 25.94507

26 250 26.00001

Z[= 	�1		 −	� � �

��!�� " = 0.99865

Z�				 = 	�1		 −	� � �

��!�� " = 0.5

ZF					 = 	�1		 −	� � �

��!�� " = 0.00135

These limits are converted to m�t\�
form. They are used to find whether the software process is
in control or not by placing the points in Mean value chart
shown in figure 1.

Successive differences of Cumulative mean values

Successive

differences

2.132428

 1.810059

 0.626838

 1.059468

 0.294291

 0.720064

 1.107632

 0.66594

 0.90024

 0.125665

 0.739154

 0.120775

 1.057264

 0.453377

0.111816

 0.331858

 0.326574

 0.637793

 0.10436

1.113071

 2.995794

 0.577016

 6.103281

 0.110506

 0.05494

� � ,����� and ���F�
form. They are used to find whether the software process is
in control or not by placing the points in Mean value chart

Fig 1. Mean Value Chart

A point falling below the control limit

alarming signal. A point above the control

indicates the better quality. If the points are falling within

the control limits it indicates

stable. The mean value chart shows all the successive

differences. No failure data fall outside

indicate any alarm signal. The values of control limits are

as follows.

���]� = 54
���_	� = 27
���@� 	= 		

By placing the failure cumulative data shown in table 2 on
y axis and failure week on x axis and the values of control
limits are placed on Mean Value chart, we obtained
Figure2. The Mean Value chart shows that the 25th failure
data has fallen below ��Z
process is identified. It is significantly early detection of
failures using Mean Value chart.

6. Conclusion

Software reliability is an important quality measure that
quantifies the operational profile of computer systems. In
this paper we proposed Pareto type II software reliability
growth model. This model is primarily useful in estimating
and monitoring software reliability, viewed as a measure of
software quality. Equations to obtain the maxi
likelihood estimates of the parameters based on time
domain data are developed.

 This analysis of NTDS data shows out of control
signals i.e., below the LCL. We conclude that our method
of estimation and the control chart are giving a +
recommendation for their use in finding out preferable

1. Mean Value Chart

below the control limit `�ab� indicates an
alarming signal. A point above the control limit m�t\�

better quality. If the points are falling within

the control limits it indicates that the software process is in

stable. The mean value chart shows all the successive

No failure data fall outside m�t\� . It does not
The values of control limits are

54.944434742
27.509355000
		0.074275258

By placing the failure cumulative data shown in table 2 on
y axis and failure week on x axis and the values of control
limits are placed on Mean Value chart, we obtained

The Mean Value chart shows that the 25th failure
�ZF� which indicates the failure

process is identified. It is significantly early detection of
failures using Mean Value chart.

Software reliability is an important quality measure that
profile of computer systems. In

this paper we proposed Pareto type II software reliability
growth model. This model is primarily useful in estimating
and monitoring software reliability, viewed as a measure of
software quality. Equations to obtain the maximum
likelihood estimates of the parameters based on time

This analysis of NTDS data shows out of control
signals i.e., below the LCL. We conclude that our method
of estimation and the control chart are giving a +ve
recommendation for their use in finding out preferable

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 379

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

By observing the Mean Value control chart we
have identified that the failure situation is detected at 25th
point of Table-2. Hence our proposed Mean Value Chart
detects out of control situation. This is a simple method for
model validation and is very convenient for practitioners of
software reliability.

The early detection of software failure will improve
the software reliability. The methodology adopted in this
paper is better than the methodology adopted by Xie et al,
[2002] .Therefore; we may conclude that this model is the
best choice for an early detection of software failures.

7. Acknowledgements

Our thanks to Department of Computer Science and

Engineering, Acharya Nagarjuna University for providing

necessary details to carry out the research work.

 8. References

[1] Kimura, M., Yamada, S., Osaki, S., 1995. ”Statistical
Software reliability prediction and its applicability
based on mean time between failures”.
Mathematical and Computer Modelling Volume 22,
Issues 10-12, Pages 149-155.

[2] MacGregor, J.F., Kourti, T., 1995. “Statistical process
control of multivariate processes”. Control
Engineering Practice Volume 3, Issue 3, March 1995,
Pages 403-414 .

 [3] Pham. H., 2006. “System software reliability”,
Springer.

 [4] Goel, A.L., Okumoto, K., 1979. Time-dependent
error detection rate model for software reliability
and other performance measures. IEEE Trans.
Reliab. R-28, 206-211.

[5] Musa J.D, Software Reliability Engineering
MCGraw-Hill, 1998.

[6] Wood, A(1996), “Predicting software Reliability”,
IEEE Computer,2253-2264.

[7] Satya Prasad R and Geetha Rani N (2011), “Pareto
type II Software Reliability Growth Model”.
International Journal of Software Engineering,
Volume 2, Issue(4) 81-86.

[8] Musa J.D., Iannino, A.,Okumoto, K.,1987. Software
Reliability: Measurement Prediction application.
MC Graw Hill, NewYork.

9. Authors Profile

Dr. R. Satya Prasad received Ph.D.degree in

computer science in the faculty of Engineering in

2007 from Acharya Nagarjuna University, Andhra

Pradesh. He received gold medal from Acharya

Nagarjuna University for his outstanding performance in

master’s degree. He is currently working as Associate

Professor in the department of Computer Science &Engg.,

Acharya Nagarjuna University. His current research is

focused on Software engineering. He has published several

papers in National & International Journals.

 Mrs. K.Sita kumari received M.Sc degree

from Acharya Nagarjuna University, Guntur and

M.Tech degree from Dr.MGR university,

Chennai. She is currently pursuing her Ph.D from

Department of Computer Science and Engineering,

Acharya Nagarjuna University, Guntur, Andhra Pradesh ,

India. Presently she is working as an Associate Professor

in the department of Information Technology ,

V.R.Siddhartha Engineering College, Kanuru, Vijayawada.

 Mrs. G. Sridevi received M.Sc. and M.Tech

degree from Acharya Nagarjuna University. She

is currently pursing Ph.D at Department of

Computer Science and Engineering ,Acharya Nagarjuna

University, Guntur, Andhra Pradesh, India. She is currently

working as a Vice-Principal and Associate professor in the

Department of Computer Science, Nimra Women’s College

of Engineering, Jupudi, Ibrahimpatnam, Vijayawada,

Andhra Pradesh. Her research interests lies in Data Mining

and Software Engineering.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 380

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

