

An Improved Genetic Algorithm and Its Application in
Classification

Xuesong Yan1,2, Wenjing Luo1, Wei Li1, Wei Chen1, Can Zhang1 and Hanmin Liu3

 1 School of Computer Science, China University of Geosciences
Wuhan, Hubei 430074, China

2 Department of Computer Science, University of Central Arkansas

Conway, AR 72035, USA

3 Wuhan Institute of Ship Building Technology
Wuhan, Hubei 430050, China

Abstract
In this paper, based on a simple genetic algorithm and combine
the base ideology of orthogonal design method then applied it to
the population initialization, using the intergenerational elite
mechanism, as well as the introduction of adaptive local search
operator to prevent trapped into the local minimum and improve
the convergence speed to form a new genetic algorithm. Through
the series of numerical experiments, the new algorithm has been
proved to be efficiency. we also use this new algorithm in data
classification, select 5 benchmark datasets and the experiment
results shown the new algorithm can get higher accuracy than k-
nearest neighbor method.
Keywords: Genetic Algorithm, Optimization, Classification, K-
Nearest Neighbor, Population.

1. Introduction

Candidate solutions to some problems are not simply
deemed correct or incorrect but are instead rated in terms
of quality and finding the candidate solution with the
highest quality is known as optimization. Optimization
problems arise in many real-world scenarios. Take for
example the spreading of manure on a cornfield, where
depending on the species of grain, the soil quality,
expected amount of rain, sunshine and so on, we wish to
find the amount and composition of fertilizer that
maximizes the crop, while still being within the bounds
imposed by environmental law.

Several challenges arise in optimization. First is the nature
of the problem to be optimized which may have several
local optima the optimizer can get stuck in, the problem
may be discontinuous, candidate solutions may yield
different fitness values when evaluated at different times,
and there may be constraints as to what candidate
solutions are feasible as actual solutions to the real-world
problem. Furthermore, the large number of candidate
solutions to an optimization problem makes it intractable

to consider all candidate solutions in turn, which is the
only way to be completely sure that the global optimum
has been found. This difficulty grows much worse with
increasing dimensionality, which is frequently called the
curse of dimensionality, a name that is attributed to
Bellman, see for example [1]. This phenomenon can be
understood by first considering an n-dimensional binary
search-space. Here, adding another dimension to the
problem means a doubling of the number of candidate
solutions. So the number of candidate solutions grows
exponentially with increasing dimensionality. The same
principle holds for continuous or real-valued search-
spaces, only it is now the volume of the search-space that
grows exponentially with increasing dimensionality. In
either case it is therefore of great interest to find
optimization methods which not only perform well in few
dimensions, but do not require an exponential number of
fitness evaluations as the dimensionality grows. Preferably
such optimization methods have a linear relationship
between the dimensionality of the problem and the number
of candidate solutions they must evaluate in order to
achieve satisfactory results, that is, optimization methods
should ideally have linear time-complexity O(n) in the
dimensionality n of the problem to be optimized.

Another challenge in optimization arises from how much
or how little is known about the problem at hand. For
example, if the optimization problem is given by a simple
formula then it may be possible to derive the inverse of
that formula and thus find its optimum. Other families of
problems have had specialized methods developed to
optimize them efficiently. But when nothing is known
about the optimization problem at hand, then the No Free
Lunch (NFL) set of theorems by Wolpert and Macready
states that any one optimization method will be as likely as
any other to find a satisfactory solution [2]. This is
especially important in deciding what performance goals
one should have when designing new optimization

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 337

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

methods, and whether one should attempt to devise the
ultimate optimization method which will adapt to all
problems and perform well. According to the NFL
theorems such an optimization method does not exist and
the focus of this thesis will therefore be on the opposite:
Simple optimization methods that perform well for a range
of problems of interest.

The most popular evolutionary model used in the current
research is Genetic Algorithms (GA), originally developed
by John Holland [3]. The GA reproduction operators, such
as recombination and mutation, are considered analogous
to the biological process of mutation and crossover
respectively in population genetics. The recombination
operator is traditionally used as the primary search
operator in GA while the mutation operator is considered
to be a background operator, which is applied with a small
probability.

Genetic algorithms have been successfully used in data
mining, in order to determine classification rules [4], in
order to search for appropriate cluster centers) [5], to
select the attributes of interest in predicting the value of a
target attribute [6], etc. Classification of instances was
performed using some hybrid algorithms based on genetic
algorithms and particle swarm optimization [7],
respectively Naive Bayes and k-Nearest Neighbors [8]. A
few applications in which genetic algorithms were
successfully applied to solve classification problems are
prints classification, heart disease classification,
classification of emotions on the human face, etc.

2. Improved Genetic Algorithm

In general, genetic algorithms are usually used to solve
problems with little or no domain knowledge, NP-
complete problems, and problems for which near optimum
solution is sufficient. The GA methods can be applied only
if there exist a reasonable time and space for evolution to
take place. But the traditional genetic algorithm has the
shortcoming: trapped into the local minimum easily [9].

2.1 Population Initialization

The traditional method of genetic algorithm is randomly
initialized population, that is, generate a series of random
numbers in the solution space of the question. Design the
new algorithm, we using the orthogonal initialization [10]
in the initialization phase. For the general condition,
before seeking out the optimal solution the location of the
global optimal solution is impossible to know, for some
high-dimensional and multi-mode functions to optimize,
the function itself has a lot of poles, and the global
optimum location of the function is unknown. If the initial

population of chromosomes can be evenly distributed in
the feasible solution space, the algorithm can evenly
search in the solution space for the global optimum.
Orthogonal initialization is to use the orthogonal table has
the dispersion and uniformity comparable; the individual
will be initialized uniformly dispersed into the search
space, so the orthogonal design method can be used to
generate uniformly distributed initial population.

2.2 Elite Select Mechanism

Genetic algorithm is usually complete the selection
operation based on the individual's fitness value, in the
mechanism of intergenerational elite, the population of the
front generation mixed with the new population which
generate through crossover and mutation operations, in the
mixed population select the optimum individuals
according to a certain probability. The specific procedure
is as follows:
Step1: using crossover and mutation operations for
population P1 which size is N then generating the next
generation of sub-populations P2;
Step2: The current population P1 and the next generation
of sub-populations P2 mixed together form a temporary
population;
Step3: Temporary population according to fitness values
in descending order, to retain the best N individuals to
form new populations P1.

The characteristic of this mechanism is mainly in the
following aspects. First is robust, because of using this
selection strategy, even when the crossover and mutation
operations to produce more inferior individuals, as the
results of the majority of individual residues of the
original population, does not cause lower the fitness value
of the individual. The second is in genetic diversity
maintaining, the operation of large populations, you can
better maintain the genetic diversity of the population
evolution process. Third is in the sorting method, it is
good to overcome proportional to adapt to the calculation
of scale.

2.3 Adaptive Search Operator

Local search operator has a strong local search ability, and
then can solve the shortcomings of genetic algorithm has
the weak ability for the local search. And the population
according to the current state of adaptive evolution of the
local search space adaptive local search operator will
undoubtedly greatly enhance the ability of local search. In
the initial stage of the evolution, the current optimal
solution from the global optimum region is still relatively
far away, this time the adaptive local search operator to
require search a large neighborhood space to find more
optimal solution, it can maintain the population diversity.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 338

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

When the population has evolved to the region containing
the global optimum, the adaptive local search operator to
require a relatively small area to search in order to
improve the accuracy of the global optimal solution.

In our algorithm, the adaptive local search operator is the
adaptive orthogonal local search operator. Adaptive
orthogonal local search operator is aimed at the
neighborhood of a point to search, so the key point is to
identify a point as the center of the hypercube, the
hypercube in the orthogonal test, expect to be better
solution.

2.4 Experiment Simulation

We design the experiments to study its convergence speed
by comparing with a traditional genetic algorithm (GA).
Ten benchmark functions are selected. One of them is a
multimodal function, which is a very difficult function
(explained in its function description). We choose it
because we want to investigate not only their convergence
speeds, but also their abilities of finding the optimal
solutions. The simple description of each function is given
as follows.

F1: Schaffer function

2 2 2
1 2

2 2 2
1 2

(sin 0.5)
min () 0.5 ,

[1 0.001()]

100 100

i

i

x x
f x

x x

x

+ −
= −

+ +
− ≤ ≤

Fig. 1 Schaffer Function.

The global optimal value of this function is 1.0, located at
the central point with coordinates (0, 0), and the circle
with the radius 3.14 on the overall situation from
numerous major points of the uplift. This function has a
strong shock. Therefore, it is difficult to find a general
method, which can find its global optimal solution.

F2: Shubert function

()

()

5

1

5

1

m in (,) c o s 1

c o s 1 , , [1 0 ,1 0]

i

i

f x y i i x i

i i y i x y

=

=

⎧ ⎫
= + + ×⎡ ⎤⎨ ⎬⎣ ⎦
⎩ ⎭

⎧ ⎫
+ + ∈ −⎡ ⎤⎨ ⎬⎣ ⎦

⎩ ⎭

∑

∑

Fig. 2 Shubert Function.

This function has 760 local minima and 18 global ones.
The global minimum value is -186.7309.

F3: Hansen function

5

1

5

1

min (,) cos((1))

cos((1)), , [10,10]

i

j

f x y i i x i

j j y j x y

=

=

= − +

+ + ∈ −

∑

∑

Fig. 3 Hansen Function.

This function has a global minimum value -176.541793, in
the following nine points, i.e., (-7.589893, -7.708314), (-
7.589893, -1.425128), (-7.589893, 4.858057), (-1.306708,
-7.708314), (-1.306708, -1.425128), (-1.306708,
4.858057), (4.976478, -7.708314), (4.976478, -7.708314),
and (4.976478, 4.858057). It also has 760 local minima.

F4: Camel function

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 339

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

() []

4
2 2

2 2

m i n (,) 4 2 .1
3

4 4 , , 1 0 0 ,1 0 0

x
f x y x x

x y y y x y

⎛ ⎞
= − + +⎜ ⎟

⎝ ⎠

+ − + ∈ −

Fig. 4 Camel function.

Camel function has six local minima, i.e., (1.607105,
0.568651), (-1.607105, -0.568651), (1.703607, -0.796084),
(-1.703607, 0.796084), (-0.0898, 0.7126) and (0.0898, -
0.7126). It has two global minimum points, i.e., (-0.0898,
0.7126) and (0.0898, -0.7126). Its global minimum is -
1.031628.

The function 5 (called F5 in this paper) can be stated as
follows:

[]

2
1 2

1 2 2 2
1 1 2 1 2 2

2
1 2

2 2
1 1 2 1 2 2

1 2

1 (1)
m in (,) =

(1 9 1 4 3 1 4 6 3)

3 0 (2 3)
,

(1 8 3 2 1 2 4 8 3 6 2 7)

, 5 0 , 5 0

x x
f x x

x x x x x x

x x

x x x x x x

x x

⎧ ⎫+ + +⎪ ⎪
⎨ ⎬

− + − + +⎪ ⎪⎩ ⎭
⎧ ⎫+ −⎪ ⎪× ⎨ ⎬

− + + − +⎪ ⎪⎩ ⎭
∈ −

Fig. 5 Function 5.

This function is an eighth-order polynomial with two
variables, shown in Figure 5. However, it has four local
minima, including a global one, i.e.,

(1.2,0.8) 840.0f = , (1.8,0.2) 84.0f = , (0.6,0.4) 30.0f =

and * (0,1.0) 3.0f = (global minimum).

The function 6 (called F6 in this paper) can be stated as
follows:

[]

s in (9)
m i n (,) ,

c o s (2 5) 2 0

, 1 0 ,1 0

x y
f x y

y x

x y

π
π

+⎡ ⎤
= − ⎢ ⎥+⎣ ⎦

∈ −

Fig. 6 Function 6.

This is a very complex and difficult function. First, it is a
multimodal function. Besides, sin(9)yπ and

cos(25)xπ are high frequency oscillations in the different

directions. Furthermore, its peak (or ravine) of the
function is intensive at the points when , 10x y → . The

scene of this function is also very complicated, shown in
Figure 6. The global optimal of this function is (-10,
9.9445695) = -39.944506953367.

The function 7 (called F7 in this paper) is defined as
follows:

2 2
1 2 1 2

1 2

min (,) 20 10*

(cos 2 cos 2)

f x x x x

x xπ π
= + + −

+

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 340

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 7 Function 7.

Its minimum value is 0, as shown in Figure 7.

The function 8 (called F8 in this paper) is defined as
follows:

2 2 2
1 2 1 2 1min (,) 100*() (1) ,

[-2.048,2.048]

f x x x x x

x

= − + −
∈

Fig. 8 Function 8.

Its minimum value is 0, as shown in Figure 8.

The function 9 (called F9 in this paper) is defined as
follows:

2 2
1 2 1 2 1 2min (,) , , [100,100]f x x x x x x= + ∈ −

Fig. 9 Function 9.

Its minimum value is 0, as shown in Figure 9.

The function 10 (called F10 in this paper) is defined as
follows:

2 2
1 2 1 2 2min (,) 0.5 0.5(1 cos 2)f x x x x x= + − +

Fig. 10 Function 10.

Its minimum value is 0, as shown in Figure 10.

In order to obtain a solid comparison between GA and
improved GA (IGA), we run each algorithm 100 times for
the ten functions described above. Our experimental
results are shown in Table 1, including the best solution
and the number of times of finding the best solution for
each function. For example, on the most difficult function
F6 among the ten functions, GA could not find its optimal
solution (i.e, 0 times out of 100 runs). The best solution
GA achieved is -14.786954. However, PSO found its
optimal solution (-39.944506) five times out of 100 runs).

Table 1: The number of times of both GA and PSO achieve optimal
solutions among 100 runs on the ten functions

Functio
n

Algorith
m

Converge
nce Times

Optimal
Solution

GA 72 1.0000000F1
IGA 75 1.0000000
GA 75 -

186.730909
F2

IGA 82 -
186.730909

GA 85 -
176.541793

F3

IGA 91 -
176.541793

GA 23 -1.031628 F4
IGA 58 -1.031628
GA 16 3.000000 F5
IGA 25 3.000000
GA 0 -14.786954F6
IGA 8 -39.944506
GA 90 0.000000 F7
IGA 97 0.000000
GA 90 0.000000 F8
IGA 98 0.000000

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 341

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

GA 100 0.000000 F9
IGA 100 0.000000
GA 93 0.000000 F10
IGA 98 0.000000

From Table 1, we can see that IGA achieves optimal
solution more frequently than GA does on nine out of the
ten functions, except the easiest one (i.e., F9). On the
easiest function F9, both of them achieve the optimal
solution in all 100 runs. From the experimental results in
Table 1, we can conclude that the IGA algorithm has more
efficient global searching capability than the GA algorithm.
Our experiments verified that IGA converges more
quickly than the GA algorithm.

3. K-Nearest Neighbor Classification
Algorithm

The nearest neighbor method [11, 12] represents one of
the simplest and most intuitive techniques in the field of
statistical discrimination. It is a nonparametric method,
where a new observation is placed into the class of the
observation from the learning set that is closest to the new
observation, with respect to the covariates used. The
determination of this similarity is based on distance
measures.

Formally this simple fact can be described as follows: Let

{(,), 1, 2,..., }i i LL y x i n= = be training or learning set of

observed data, where {1, 2,..., }iy c∈ denotes class

membership and the vector '
1 2(, ,...,)i i i ipx x x x= represents

the predictor values. The determination of the nearest
neighbors is based on an arbitrary distance function (.,.)d .

Then for a new observation (,)y x the nearest neighbor

(1) (1)(,)y x within the learning set is determined by

(1)(,) min ((,))i id x x d x x= and
^

(1)y y= the class of the

nearest neighbor is selected as prediction for y . The

notation ()jx and ()jy here describes the jth nearest

neighbor of x and its class membership, respectively.

For example, such typical distance functions are the

Euclidean distance
1

2 2

1

(,) (())
p

j is js
s

d x x x x
=

= −∑ .

The method has been explained by the random occurrence
of the learning set, as described in Fahrmeir et al. [13].
The class label (1)y of the nearest neighbor (1)x of a new

case x is a random variable. So the classification
probability of x into class (1)y is (1) (1)(|)P y x . For large

learning sets x and (1)x coincide very closely with each

other, so (1) (1)(|) (|)P y x P y x≈ results approximately.

Therefore the new observation x is predicted as
belonging to the true class y with the probability

approximately (|)P y x .

A first extension of this idea, which is widely and
commonly used in practice, is the so-called k-nearest
neighbor method. Here not only the closest observation
within the learning set is referred for classification, but
also the k most similar cases. The parameter k has to be
selected by the user. Then the decision is in favor of the
class label, most of these neighbors belong to.

Let rk denote the number of observations from the group

of the nearest neighbors, that belong to class r :
1

c

r
r

k k
=

=∑ .

Then a new observation is predicted into the class
l with max ()l r rk k= . This prevents one singular

observation from the learning set deciding about the
predicted class. The degree of locality of this technique is
determined by the parameter k : For 1k = one gets the
simple nearest neighbor method as maximal local
technique, for Lk n→ a global majority vote of the whole

learning set results. This implies a constant prediction for
all new observations that have to be classified: Always the
most frequent class within the learning set is predicted.

K-Nearest Neighbor (KNN) is one of the most popular
algorithms for pattern recognition. Many researchers have
found that the KNN algorithm accomplishes very good
performance in their experiments on different data sets.
The traditional KNN text classification has three
limitations [14]:
1. High calculation complexity: To find out the k nearest
neighbor samples, all the similarities between the training
samples must be calculated. When the number of training
samples is less, the KNN classifier is no longer optimal,
but if the training set contains a huge number of samples,
the KNN classifier needs more time to calculate the
similarities. This problem can be solved in 3 ways:
reducing the dimensions of the feature space; using
smaller data sets; using improved algorithm which can
accelerate to [15];
2. Dependency on the training set: The classifier is
generated only with the training samples and it does not
use any additional data. This makes the algorithm to
depend on the training set excessively; it needs
recalculation even if there is a small change on training set;
3. No weight difference between samples: All the training
samples are treated equally; there is no difference between
the samples with small number of data and huge number

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 342

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

of data. So it doesn’t match the actual phenomenon where
the samples have uneven distribution commonly.

4. Classification Experiment

String Representation [16]-Here the chromosomes are
encoded with real numbers; the number of genes in each
chromosome represents the samples in the training set.
Each gene will have 5 digits for vector index and k
number of genes. For example, if k=5, a sample
chromosome may look as follows:
00100 10010 00256 01875 00098

Here, the 00098 represents, the 98th instance and the
second gene say that the 1875 instance in the training
sample. Once the initial population is generated now we
are ready to apply genetic operators. With these k
neighbors, the distance between each sample in the testing
set is calculated and the accuracy is stored as the fitness
values of this chromosome.

The algorithm process step is given as Fig. 11.

Fig. 11 Algorithm framework

The performance of the approaches discussed in this paper
has been tested with 5 different datasets, downloaded from
UCI machine learning data repository. All experiments are
performed on Intel Core(TM)2 Duo CPU 2.26GHz/4G
RAM Laptop. Each datasets run 10 times with different k
values. Table 2 shows the details about the datasets used
in this paper.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 343

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Table 2: Experiment dataset

Dataset Name
Total No. of

Instances
Total No. of

Features

Balance 624 5

Iris 150 4

Sonar 208 60

Glass 214 10

Ionosphere 351 34

Table 3 depicts the performance accuracy of our proposed
classifier compared with traditional KNN. From the results
it is shown that our proposed method outperforms the
traditional KNN method with higher accuracy.

5. Conclusions

This paper introduces a new algorithm based on the
traditional genetic algorithm, for the traditional GA
algorithm the new algorithm has done some improvements:
By introducing genetic selection strategy, decreased the
possibility of being trapped into a local optimum.
Compared the traditional genetic algorithm, the new
algorithm enlarges the searching space and the complexity
is not high. By analyzing the testing results of
benchmarks functions optimization, we reach the
conclusion: in the optimization precision, the new
algorithm is efficiency than the traditional genetic
algorithm. We also use this new algorithm for data
classification and the experiment results shown that our
proposed algorithm outperforms the KNN with greater
accuracy.

Acknowledgments

This paper is supported by Natural Science Foundation of
China. (No.61272470 and No.61203307), National Civil
Aerospace Pre-research Project of China, the Provincial
Natural Science Foundation of Hubei (2012FFB04101),
and the Fundamental Research Founds for National
University, China University of Geosciences(Wuhan). The
author thanks Dr. Victor Sheng of Department of
Computer Science, University of Central Arkansas, U. S.
A for his help.

References
[1] R. Bellman, “Dynamic Programming”, Princeton University

Press, 1957.
[2] D. H. Wolpert and W. G. Macready, “No free lunch theorems

for optimization”, IEEE Transactions on Evolutionary
Computation, 1(1), 1997, pp.67-82.

[3] J. Holland, “Adaptation in natural and artificial systems”,
University of Michigan press, 1975.

[4] S.Dehuri, A. Ghosh and R. Mall, “Genetic Algorithms for
Multi-Criterion Classification and Clustering in Data
Mining”, International Jurnal of Computing & Information
Sciences, 2006, pp. 143-154.

[5] U. Maulik and S. Bandyopadhyay, “Genetic algorithm-based
clustering technique”, Pattern Recognition 33, 2000, pp.
1455-1465.

[6] A.A. Freitas, “A survey of evolutionary algorithms for data
mining and knowledge discovery”, Advances in
Evolutionary Computation, Springer-Verlag, 2002, pp. 819-
845.

[7] R. Ding, H. Dong, X. Feng and G. Yin, “A Hybrid Particle
Swarm Genetic Algorithm for Classification”, Proceedings of
the 2009 International Joint Conference on Computational
Sciences and Optimization, vol.2, 2009, pp. 301.

[8] M. Aci, C. Inan and M. Avci, “A hybrid classification
method of k nearest neighbor”, Bayesian methods and
genetic algorithm, Expert Systems with Applications, Vol. 37,
2010, pp. 5061-5067.

[9] Xuesong Yan, Qinghua Wu, Can Zhang, Wei Li, Wei Chen,
Wenjing Luo, “An Improved Genetic Algorithm and Its
Application” TELKOMNIKA Indonesian Journal of
Electrical Engineering, vol. 10, No. 5, 2012, pp. 1081-1086.

[10] Leung Yiu-Wing, Wang Yuping, “An orthogonal genetic
algorithm with quantization for global numerical
optimization”, IEEE Transactions on Evolutionary
Computation, 5(1), 2001, pp. 41-53.

[11] E. Fix, and J. Hodges, “Discriminatory analysis
Nonparametric discrimination: Consistency properties”,
Technical Report 4, USAF School of Aviation Medicine,
Randolph Field, Texas, 1951.

[12] T.M. Cover, and P.E. Hart, “Nearest neighbor pattern
classification”, IEEE Transactions on Information Theory,
13, pp. 21–27, 1967.

[13] Fahrmeir, Hamerle and Tutz, “Multivariate statistische
Verfahren”, Walter de Gruyter & Co Verlag; Berlin, 1996.

[14] W. Yu, and W. Zhengguo, “A fast kNN algorithm for text
categorization”, Proceedings of the Sixth International
Conference on Machine Learning and Cybernetics, 2007, pp.
3436-3441.

[15] W. Yi, B. Shi, and W. Zhang’ou, “A Fast KNN Algorithm
Applied to Web Text Categorization”, Journal of The China
Society for Scientific and Technical Information, 26(1), pp.
60-64, 2007.

[16] N. Suguna and Dr. K. Thanushkodi, “An Improved k-
Nearest Neighbor Classification Using Genetic Algorithm”,
International Journal of Computer Science Issues, Vol. 7,
Issue 4, No 2, 2010, pp. 18-21.

Xuesong Yan associate professor received him B.E. degree in Computer
Science and Technology in 2000 and M.E. degree in Computer
Application from China University of Geosciences in 2003, received he
Ph.D. degree in Computer Software and Theory from Wuhan University
in 2006. He is currently with School of Computer Science, China
University of Geosciences, Wuhan, China and now as a visiting scholar
with Department of Computer Science, University of Central Arkansas,
Conway, USA. He research interests include evolutionary computation,
data mining and computer application.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 344

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Wenjing Luo received her B.E. degree in Computer Science and
Technology in 2012. She is currently is the M.E. degree candidate
with School of Computer Science, China University of
Geosciences, Wuhan, China. Her research interests include
evolutionary computation.

Wei Li received her B.E. degree in Computer Science and
Technology in 2012. She is currently is the M.E. degree candidate
with School of Computer Science, China University of
Geosciences, Wuhan, China. Her research interests include
evolutionary computation.

Wei Chen received him B.E. degree in Computer Science and
Technology in 2012. He is currently is the M.E. degree candidate
with School of Computer Science, China University of
Geosciences, Wuhan, China. Her research interests include
evolutionary computation.

Can Zhang received him B.E. degree in Computer Science and
Technology in 2011. He is currently is the M.E. degree candidate
with School of Computer Science, China University of

Geosciences, Wuhan, China. Her research interests include
evolutionary computation.

Hanmin Liu associate professor. He is currently as a Ph.D
candidate of School of Computer Science, China University of
Geosciences, Wuhan, China. He research interests include
evolutionary computation and applications.

Table 3: Experiment results comparison

Dataset Name K Value Algorithm Best Accuracy Worst Accuracy Mean Accuracy

IGA 0.904255 0.840426 0.869903 3
KNN 0.914894 0.824468 0.866489

IGA 0.882979 0.824468 0.860511 5
KNN 0.941489 0.851064 0.875

IGA 0.925532 0.81383 0.863862 7
KNN 0.898936 0.819149 0.86117

IGA 0.909574 0.84 0.877272

Balance

9
KNN 0.920213 0.840426 0.882979

IGA 0.977778 0.866667 0.933333 3
KNN 1 0.933333 0.973333

IGA 1 0.933333 0.973867 5
KNN 1 0.911111 0.971111

IGA 1 0.911111 0.968889 7
KNN 1 0.888888 0.948889

IGA 1 0.96 0.981683

Iris

9
KNN 1 0.955556 0.977778

IGA 0.920635 0.825397 0.868173 3
KNN 0.904762 0.746032 0.806349

IGA 0.904762 0.714286 0.82618 5
KNN 0.857143 0.666667 0.78254

IGA 0.904762 0.714286 0.790363 7
KNN 0.888889 0.587302 0.739683

Sonar

9 IGA 0.934564 0.698413 0.787446

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 345

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

KNN 0.873016 0.603175 0.736508

IGA 0.923077 0.643357 0.765542 3
KNN 0.861538 0.584615 0.713846

IGA 0.783516 0.676923 0.745714 5
KNN 0.784615 0.630769 0.687692

IGA 0.830769 0.630769 0.730769 7
KNN 0.753846 0.569231 0.672308

IGA 0.784615 0.553846 0.671057

Glass

9
KNN 0.753846 0.553846 0.661538

IGA 0.981132 0.871749 0.927245 3
KNN 0.943396 0.811321 0.866038

IGA 0.943396 0.867925 0.911003 5
KNN 0.915094 0.830189 0.883962

IGA 0.962264 0.792453 0.900066 7
KNN 0.896226 0.764151 0.834906

IGA 0.933962 0.839623 0.90321

Ionosphere

9
KNN 0.858491 0.716981 0.774528

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 346

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

