
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

28

Ontology Based Agent Communication in Resource Allocation
and Monitoring

Manish Arora1 and M. Syamala Devi 2

 1 DOEACC Society Chandigarh Centre,
Chandigarh, India

2 Department of Computer Science and Application, Panjab University
Chandigarh, India

Abstract

The aim of ontology is to share information between sending and
receiving agents of Multi Agent System (MAS). It provides
standard vocabulary and terms for knowledge sharing and is
designed to share information conveniently and understandably.
Agent based application requires complex interaction among
agents. This complexity is due to agent-agent and agent-user
communication. It is required to use ontology in agent based
application of resource allocation and monitoring. The purpose
of Resource Allocation and Monitoring System is to make the
procedures involved in allocating fund resources to competing
fund seekers transparent so that deserving candidates get funds.
Proactive and goal directed behaviour of agents make the system
transparent and intelligent. This paper presents ontology
designed and implemented for the purpose of communication
among agents of Multi Agent System for Resource Allocation
and Monitoring (MASRAM). FIPA (Foundation for Intelligent
Physical Agents) compliant software JADE (Java Agent
Development) is used to implement ontology.
Keywords: Multi Agent System, Resource Allocation, ACL,
FIPA, JADE, Ontology.

1. Introduction

Ontology is used to represent knowledge that is shared
between different entities. It provides terms and
vocabulary used to represent knowledge so that both
sender and receiver can understand. Ontology is widely
used in many areas like MAS and Biomedical Informatics
to share knowledge. The study of MAS focuses on
systems in which many intelligent agents interact with
each other. The agents are considered to be autonomous
software or hardware entities, such as software programs.
Their interactions can be either cooperative or selfish.
Agent acts on the behalf of users / other agents with
different goals and motivations. Agents require ability to
cooperate, coordinate and negotiate with each other to
complete task successfully [1]. Agents work

independently but share information. Ontology helps
designers of agent based systems to make information
understandable between agents. Ontology is applied in one
such agent based application, resource allocation and
monitoring.

Resource allocation problem occurs when fixed and
limited resources are allocated to competing fund seekers
to execute their projects. These resources may be of
different types like work force, machine timings, raw
material and funds. Fund seekers can submit their project
proposals to avail grant to allocating agencies. Projects
can be of different nature like R & D projects and social
oriented schemes. On receiving the project proposals from
fund seekers, fund allocating agencies evaluate proposals
technically as well as financially. After the submission of
fund request, committee on the behalf of funding agency
evaluates proposals. In some cases, fund seekers are asked
to present the project proposal. Based on the
recommendation of committee, funds are allocated by
considering both quantifiable and non-quantifiable factors.

Considering above facts, an integrated decision making
system ‘Multi Agent System for Resource Allocation and
Monitoring’ (MASRAM) is designed and agents of system
require information sharing. This paper describes the
ontology based communication between agents of
MASRAM. The designed ontology is implemented in
JADE.

The paper has been organized into different sections.
Second section reviews the related research, third
describes the model, fourth details construction of
ontology and fifth shows how ontology is implemented in
JADE.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

29

2. Review of Related Research

A fundamental characteristic of MAS is communication
among different agents operating in the system. Agents
exchange information in order to achieve their goals.
Message follows Agent Communication Language (ACL)
standard which allows encoding/decoding of actual
message. The structure of the message is set of terms
written in FIPA-ACL like message content, message
parameters, encoded message and transports layer
information. Contents of messages are written in content
language such as FIPA-SL (Semantic Language) and
FIPA-KIF (Knowledge Interchange Format). FIPA-ACL
is based on Speech Act Theory which means that message
represents action or communication act, also known as
performative act. Other commonly used communication
acts are inform, request, agree and refuse [2].

When agents in MAS communicate with each other,
message is sent and main component of message is content
slot. According to FIPA specification, value of this slot
could be either string or raw sequence of bytes. In real
world application, agent needs to send complex
information to the receiving agent like list of agencies
providing funds. In such scenario, a well defined syntax
of the message content is adopted so that both sender and
receiver agents can understand and share information. The
concept is called Content Language. Two kinds of
languages are used SL and Leap. Our research work is
based on FIPA-SL content language. This language is
used to define concept and symbols used in content of the
message and is known as Ontology. Ontology is
agreement about shared conceptualization that includes
framework for modelling application specific contents for
communication among agents [3]. The aim is to clarify
meaning of the message for exchange.

Jenyl Mumpower and Thomas A Darling [4] have
discussed three procedures that can be used to resolve
Resource Allocation problem. In Incremental
Appropriation, resource allocation begins with no
allocation and then allocates small resources. The process
is repeated until resources are exhausted. In the second
procedure, multiple negotiators give different concessions.
Resources are moved from one point to another and utility
function is checked. In the third procedure, different
negotiators assign different weights to different
programmes.

Quantification of non-quantitative factors is important to
make decision of allocation [5]. The non-quantifiable
factors can be measured through fuzzy comprehensive
measurement method. Since non-quantifiable factors are
measured by human whose knowledge and experiences

may not be exact or complete. The probabilistic tools are
used to deal with such data. This approach is also used to
rank employees’ performance using both quantitative and
non-quantitative measures.

Monitoring is very important factor to know the utilization
of the funds, benefits gained from funding and giving
further financial help.

Various agent oriented tools are available to develop
intelligent agents that include basic services like
communication act. One of them is JADE. It is FIPA
compliant tool and same is used to develop agents defined
in MASRAM problem. JADE simplifies the
implementation of MAS through middle tier. Message in
JADE can be passed through string data type, Java object
or ontology. The focus of research is to construct and
implement ontology comprising complex information in
JADE [6].

From review, it has been found that MAS systems are
widely used in resource allocation problems, such as
transportation, scheduling, production planning and
system resources in which ontology plays important role
in communication between agents [7, 8].

3. MASRAM Model

Three agents have been designed for MASRAM problem.
At the abstract level these agents are:-

 Coordinator Agent

 Fund Seeker Agent

 Fund Allocator and Monitor Agent

3.1 Coordinator Agent

Coordinator Agent interacts with three types of users of
MASRAM i.e. Fund Seeker user, Fund Allocator user and
Reviewer user. Fund Seeker user seeks funds, Fund
Allocator user allocates funds and monitors the utilization
while Review user reviews the proposal. Coordinator
Agent forwards requests received from Fund Seeker user
to Fund Seeker Agent. Coordinator Agent also forwards
requests received from Fund Allocator user and Reviewer
user to Fund Allocator and Monitor Agent. To summarize,
this agent interacts with following agents/users.

 Fund Seeker User

 Fund Allocator User

 Reviewer User

 Fund Seeker Agent

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

30

 Fund Allocator and Monitoring Agent

3.2 Fund Seeker Agent

Fund Seeker Agent receives all the requests received from
Coordinator Agent and act accordingly. This agent
interacts with Coordinator Agent only.

3.3 Fund Allocator and Monitor Agent

Fund Allocator and Monitor Agent in turn evaluates
proposal, assigns weights and allocates suitable funds
based on allocation procedure. Fund Allocator and
Monitor Agent (FAMA) interacts with Coordinator Agent
only.

Agents and overview of the interaction among them have
been shown is figure 1.

4. Design of Ontology

Ontology for multi agent based application described
above is designed and implemented in JADE. After the
agents have been defined, next step considered was to
design ontology that includes set of concepts and symbols.
Table 1 describes the messages passed to Fund Seeker
Agent from Coordinator Agent along with type of
communication act e.g. source_type is message of
communication act ‘request’. Coordinator Agent uses this
message to request Fund Seeker Agent to provide list of
funding agencies based on particular type of project.
Similarly fund_utilization message is used to inform Fund
Seeker Agent the status of utilization. Other content
messages are also designed based on responsibilities of
agent in similar fashion.

Ontology was also designed for Coordinator and Fund
Allocator and Monitor agent to communicate with each
other. Table 2 describes one such content message,
fund_category that is passed to Fund Allocator and
Monitor Agent by Coordinator Agent. Coordinator Agent
informs various fund categories out of which funds can be
provided.

Table 3 and 4 show some responses given by Fund Seeker
Agent and Fund Allocator and Monitor Agent after
receiving requests from Coordinator Agent.

Fig 1. Multi Agent System Resource Allocation and Monitoring Model.

Table 1: Message passing (coordinator-fund seeker)

Sender Agent: Coordinator

Receiver Agent: Fund Seeker

Content Messgae Act

Source_type Request

Fund_utilization Inform

Table 2: Message passing (Coordinator-Fund Allocator)

Sender Agent: Coordinator

Receiver Agent: Fund Allocator and Monitor

Content Message Act

Fund_category Inform

Table 3: Message passing (Fund Seeker-Coordinator)

Sender Agent: Fund Seeker

Receiver Agent: Coordinator

Content Message Act

Available_source Inform

Proposal_id Inform

Fund Seeker
User (s)

Fund Allocator
User (s)

Reviewer
User(s)

Fund Allocator
and Monitor
Agent

Fund Seeker
Agent

Coordinator
Agent

MASRAM Database

MASRAM

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

31

Table 4: Message passing (Fund Allocator and Monitor-Coordinator)

Sender Agent: Fund Allocator and Monitor

Receiver Agent: Coordinator

Content Message Act
Allotted_fund_categor

y Inform

Review_proposal Request

One of the content messages described above is detailed in
table 5.

Table 5: Ontology

The message shows that Fund Seeker agent named FSA
wanted to send list of allocators who are funding project
related with ‘Information and Technology’. It sends
criteria set by allocator. Agent also sends availability of
funds. Ontology mentioned here is application specific
ontology (ra-ontology). On the similar lines remaining
messages are defined.

5. Implementation in JADE

To implement agents and ontology, JADE tool is used
[9]. Following steps describe implementation procedure.

5.1 Developing Ontology

Ontology in JADE is instance of
jade.content.onto.Ontology class. Ontology is collection
of schemas. For MASRAM problem, conceptSchema is
used in Java code that extends Ontology class of JADE.
Table 6 shows the code written in Java. Name of the
ontology is defined as ra-ontology. Five schemas have

been defined. LOGIN and PWD schema are used for user
verification, PROJ_NATURE is used to pass type of the
project e.g. Education and Research, PROJ-SOURCE is
used to send list of the fund allocators along with their
criteria and availability. Lastly PROJ_LIST is used to send
list of project types. First three schemas are of primitive
in nature while remaining two are of the aggregate schema
in which list is passed as message.
ObjectSchema.UNLIMITED means any number of rows
can be sent.

5.2 Developing Java Classes

While implementing ontology in JADE, each schema is
associated with java class that implements AgentAction
class of JADE. Each Schema can have one Java class for
each schema or can have single Java class for multiple
schemas. In MASRAM case, one single java class file is
used. Each schema has two public declared methods. One
method is setXXXX and other is getXXXX where XXXX is
name of schema. These two methods are used to set and
retrieve the values respectively as briefed in table 7.

Table 6: Defined ontology listing

5.3 Passing Message Using Ontology

Third step is to call defined ontology in Java agent
program to fill and send message. Table 8 shows the
important lines of code of setting message. The java
program imports ontology defined earlier along with other
packages. RAOnotlogy.getInstance() in code sets user
defined ontology.

Table 7: Listing of Java class

// import statements
public class RAOntology extends Ontology
{
 public static final String ONTOLOGY_NAME = "ra-ontology";
 public static final String LOGIN = "Login_id";
 public static final String PWD = "Login_pwd";
 public static final String PROJ_SOURCE = "Proj_source";
 …
 public static Ontology getInstance ()
 {return theInstance; }
 private RAOntology()
 {
 super(ONTOLOGY_NAME,BasicOntology.getInstance());
 try {
 add(new ConceptSchema(LOGIN),Login.class);
 ConceptSchema cs = (ConceptSchema)getSchema(LOGIN);
cs.add(LOGIN,(PrimitiveSchema)getSchema(BasicOntology.STRIN
G));
cs.add(PWD,(PrimitiveSchema)getSchema(BasicOntology.STRING),
ObjectSchema.OPTIONAL);
…
cs.add(PROJ_SOURCE,(AggregateSchema)getSchema(BasicOntolog
y.SEQUENCE),0,ObjectSchema.UNLIMITED);
..

Available_source
(Inform
 : sender (agent-identifier :name FSA@manish:1099/JADE)
 : receiver (agent-identifier :name COA@manish:1099/JADE)
 : ontology ra-ontology
 : language fipa-sl
 : content
 (
 Available_source: (Sequence (
 (
 nature_of_project_id : 1
 Nature_of_project_desc: Information and Technology
 allocator_id: 2001
 allocator_desc: Department of Information Technology
 allocator_address: New Delhi
 criteria: (sequence
 (1, ‘Number of Technical Staff Members’,5)
 (2, ‘Projects Handled’, 5)
)
 Fund_available : (sequence (500000))
))
)
)

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

32

Table 8: Listing of setting message
…
Login lg = new Login();
 Types ty = new Types();
ACLMessage msg = new ACLMessage(ACLMessage.REQUEST);
getContentManager().registerLanguage(codec);
getContentManager().registerOntology(ontology);
…
 List l = new ArrayList();
 msg.setLanguage(codec.getName());
 msg.addReceiver(new AID(board.getReceiver(),
AID.ISLOCALNAME));
 msg.setLanguage(codec.getName());
 msg.setOntology(ontology.getName());
 msg.setOntology(ontology.getName());
 action.setActor(new AID(board.getReceiver()));
 action.setAction(lg);
 this.getContentManager().fillContent(msg,action);
 send(msg);
…..

6. Conclusion

This paper detailed the way agents interact with each other
through ontology. During construction of ontology, FIPA
specifications were followed and implemented in FIPA
compliant agent development framework, JADE.
Ontology was developed in java classes by importing
JADE packages. A three layer approach is used. In first
layer, java class file defines terms (objects) to be used. In
second layer, Ontology and schemas are defined and in
third layer, message is filled. This method of ontology
found suitable to exchange complex information like
multiple records and made them understandable.

7. Scope for Future Work

Future plan includes implementing fund allocation
algorithm in JADE so that agent can allocate funds among
competing fund seekers. The complete developed
MASRAM will be tested to validate the work done.

References
 [1] Jarg Denzinger, “Multi Agent Systems”, Department of

Computer Science, University of Calgary, Canada,
available at

 http://pages.cpsc.ucalgary.ca/%7Edenzinge/courses/567-
winter2006/slides/04-masdef-handout.pdf, accessed on
April 11, 2007.

[2] History of FIPA, available at
http://www.fipa.org/subgroups/ROFS-SG-docs/History-of-
FIPA.htm accessed on Sep 11, 2010

[3] Prashant M, “Integrating Ontologies into Multi-Agent
Systems Engineering (MaSE) for University Teaching
Environment”, Journal of Emerging Technologies in Web
Intelligence, Vol 2, No 1, 2010, pp. 42-47.

[4] J. L. Mumpower, and T. A. Darling, “Modeling Resource
Allocation Negotiations”, in IEEE Twenty Fourth Annual
Hawaii International Conference, 1991, Vol. 3, pp. 641-649.

[5] J. Cheng, H. B., and Ziping Li, “Quantification of Non
Quantitative Indicators of Performance Measurement”, in 4th
International Conference on Wireless Communications,
Networking and Mobile Computing WiCOM '08, 2008, pp.
1-5.

[6] JADE Administration’s Guide, available at
http://jade.tilab.com/doc/administratorsguide.pdf, accessed
on June 30, 2007.

[7] V. Gorodetski, Oleg Karsaev, and Victor Konushy, “Mulit
Agent System for Resource Allocation and Scheduling”, in
3rd International Workshop of Central and East European
conference on Multi Agent System, Prague, Czech Republic,
2003, Vol. 2691/2003, pp. 1067.

[8] Anthony Chavez, Alexandros Moukas and Pattie Maes,
“Challenger: A Multi Agent System for Distributed Resource
Allocation”, in First International Conference on
Autonomous Agents (Agent97): Marina Del Ray, California:
ACM Press, 1997, pp. 323-331.

[9] Fabio Bellifemine et el, “JADE – A FIPA Compliant agent
framework”, available at www.citeseerx.ist.psu.edu
/viewdoc/download?doi=10.1.1.86.6371
&rep=rep1&type=pdf , accessed on July 20, 2010.

Manish Arora holds MCA (GNDU, Amritsar), MBA in Operation
Management (IGNOU) and ‘C’ Level (M. Tech) from DOEACC
Society, New Delhi. He has nearly two decades experience in
teaching, software development and consultancy. Presently, he is
working as Principal Systems Analyst in DOEACC Society,
Chandigarh Centre and managing different government projects.
He has published 3 papers on multi agent technologies in
international journals and conferences.

Dr. M. Syamala Devi is a professor in the Department of
Computer Science & Applications, Panjab University, Chandigarh
(India). She received her Ph.D degree in Computer Science and
Systems Engineering from Andhra University, Visakhapatnam and
M. E. in Computer Science & Engineering, from NIT, Allahabad.
She had also served ISRO, Sriharikota, and NITTTR, Chandigarh.
Her areas of expertise include algorithms Design and analysis,
Image Processing, Distributed AI. She has about fifty national and
international research papers to her credit.

// import statement
public class Login implements AgentAction
{
 String login_id;
 String login_pwd;
 List proj_source;
 …
 public void setProj_list(List l)
 { proj_list=l; }
 public List getProj_list()
 { return proj_list; }
…

