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Abstract 

A growing issue in genetic algorithm research involves 
understanding the paths through the solution space that 
are explored. This work presents a software design 
architecture that can aid in the explanation process. This 
architecture encourages more complete user interfaces 
on the problem domain application, which facilitates the 
integration of a genetic algorithm, at the same time, 
taking advantage of substantial code re-use. The steps 
taken to increase the usability of the problem domain 
application can aid in the visualization of the 
evolutionary paths explored by the genetic algorithm. 
This effort on the designer's part results in improvements 
in overall accessibility of the problem domain application 
and the evolutionary process.  
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1. Introduction 

Automated software testing products use scripting 
languages to describe user behaviors 
[Bei90,Mer98a,Mer98b]. Executing the scripts emulates 
users interacting with the test application. Variables within 
the scripts can change virtual user behaviors. The standard 
parameterization technique generates a brute force testing 
method for the application in question. Yet there exist 
problem domains where brute force is not feasible, 
including : situations where a variable's range of values is 
too large; domains where many variables need to be 
parameterized. While discussing these problems with a 
consultant in the automated software testing industry, it 
became clear that their testing techniques could benefit 

from a genetic algorithm (GA). Instead of a brute force 
approach for testing, the GA could guide the selection of 
the parameters used by the virtual users. The GA would 
search for virtual users that maximized error conditions.  

GAs could also benefit from taking a virtual user point of 
view. Since the GA is essentially a generate and test 
search method, a generated virtual user could test each 
potential solution. Granted, GAs are applied to many 
optimization problems where a user interface is ill fitted. 
But as the popularity of GAs has grown, the domains that 
GAs are utilized in has grown as well. In these new 
domains understanding the subtleties of a solution might 
involve more than just a fitness value and its genetic 
representation. To understand the ``how'' of a solution one 
might benefit from a visual interface for the problem 
domain application.  

Likewise, the set of users applying GAs is growing more 
diverse. Communicating the evolutionary processes and 
advantages becomes more challenging as domains 
broaden. Often visualization is the most effective aid in 
fostering an understanding of the underlying phenomena. 
Recent work [BB98] towards visualizing the evolutionary 
path greatly aids the understanding of evolutionary 
processes. This work compliments their approach.  

This paper describes an approach where each individual in 
a genetic algorithm is treated as a virtual user. The GA 
search involves finding the virtual users that manipulate 
the problem domain application in the most appropriate 
fashion. True, this paradigm demands more discipline on 
behalf of the system architect in the early stages of design. 
However this effort does not go unrewarded, as it leads to 
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a system that is easier to test, explore, understand, and 
share. The payoff is not an optimized GA, but instead a 
greater accessibility to the problem domain and the results 
generated by the GA.  

System architecture 

An individual in a genetic algorithm acting as a virtual 
user does not demand a sophisticated scripting system that 
understands user interfaces. If one uses the Model-View-
Controller (MVC) design pattern [Gol84,BMR6#1+96] in 
the program representing the problem space, an interface 
is clearly defined that can be utilized by code designed for 
either a human or virtual user. Figure 1 lays out the basic 
genetic algorithm as a virtual user manager (GAVUM) 
architecture. This mechanism leads to relatively painless 
implementations of virtual users.  

  

Figure:  A graphical representation of the system 
architecture. The user's application is composed of the 
Model, View and Controller. The user affects the Model 
through the Controller and the Model's state is visualized 
through the View. The GAVUM mechanism integrates a 
GA with the problem domain application by designing the 
GA Individual to use the Model's View and Controller 
interfaces. 

 

In the MVC design pattern, the Model object contains the 
heart of the problem domain application. It encapsulates 
all the data and functions underlying the phenomena to 
model. When something ``interesting'' happens in the 
Model, it updates all the View objects associated with it. 
``Interesting'' is defined by the problem domain and the 
View itself. An example of these two objects would be a 
simple model oven. The Model would be tracking the 
temperature of the oven: calculating heat flow and 
transfer. As the temperature in the oven changes, it would 
notify all of its associated View objects with the 
temperature in degrees Fahrenheit. One View object could 
be coded to display the temperature, another View object 
could re-calculate the temperature into Celsius before 
displaying it, while another View could display the 
temperature as a color. A Model can have any number of 
Views, but each View can only have one Model.  

Adding a Controller object to this application would allow 
us to alter the oven's behavior. The Model object provides 
a set of methods through which its behavior and/or state 
can be changed. The Controller object could map 
keystrokes and mouse actions in the user interface to the 
appropriate method calls. The user could be presented 
with a knob labeled with temperatures. As the knob's 
value changes, through user actions, the Controller object 
would alter the settings within the Model. Again, the 
mapping from Controller to Model is many to one. There 
could also be a text field where the user can type in a 
desired temperature. Either way, the change in temperature 
of the oven would affect the model and in turn, be 
visualized through the various Views.  

Once the MVC structure is in place, coding the GA virtual 
users is straightforward. The process involves these steps:  

 Create a Controller object to map a genetic 
representation to the appropriate method calls in 
the Model object. Different genomes would 
encode for different parameters passed to the 
Model methods.  

 Create a View object that can interpret the data 
from the Model and calculate a fitness value. 
Depending on the way the Model is implemented, 
fitness values can be derived after one update or 
after many updates.  

 Glue the Controller and View together in a GA 
Individual object. This interfaces the GA with the 
problem application by defining exactly how a 
fitness value is generated from a genetic 
representation.  
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There is no runtime penalty for visualization for the virtual 
users, as their data does not need to be displayed. Mutation 
and crossover operations can act upon the genome in one's 
preferred fashion. Similarly, one's favorite selection 
methods can then drive the GA, to evolve the virtual users.  

This architecture doesn't define any changes to the actual 
evolutionary computational method. Instead, it improves 
on the interface among the evolutionary computation, the 
problem domain application, and the researcher. It also 
fosters reusability at the level of the GA and the problem 
domain application. GA Individuals seen as virtual users 
can control a variety of application types, all being 
evolved by an unmodified GA. The Model object, which 
defines the majority of the domain application, is used by 
both human and virtual users. With one code base, 
changes to the application are less complicated and 
consistency is maintained without any effort.  

1. Case studies  

As mentioned earlier, the number of domains that utilize 
GAs is growing. The domain of multi-agent systems is an 
example of a new area benefitting from GAs. Multi-agent 
systems are difficult to design and analyze because the 
group's behavior often relies on subtle traits in the local 
behavior of the individuals. GAs allow designers to search 
through the space of individual behaviors for desired 
group behaviors. This work presents three different 
examples of GAs applied to multi-agent systems using the 
GAVUM architecture.  

1.1 Resource Allocation  

        Sen et. al. [SRA96] suggest that limited knowledge in 
multi-agent systems can be beneficial in certain cases. 
Their work involves the resource allocation problem, 
where N autonomous agents must distribute themselves 

among M resources linked in a circular chain . 
During a time step each agent chooses a resource to use. 
The performance of the system can be measured by the 
number of time steps it takes for the agents to converge 
upon and maintain the optimal state starting from random 
initial distributions.  

In Sen's implementation, each agent's behavior is 
controlled by identical probabilistic functions. fii 
determines the probability of an agent staying at the 
current resource and fij defines the probability of moving 
from resource i to resource j. These are the control 
functions:  

 

Here, ri represents the current number of agents at 

resource i; , , and are control parameters. Sen 
introduces a window parameter, which limits the number 
of resources an agent has knowledge of at any time. This 
window value defines how many neighboring resources 
the agent has access to. The window is centered around 
the agent, so a window value of 3 would allow agents 
access to the number of agents at the adjacent resources. 
The window value also defines legal values of j for each i 
in the control functions. With Sen's control parameters, 
larger windows led to slower convergence to the optimal 
state, and smaller windows led to faster convergence. To 
explain their results, Sen presents the number of agents at 
one resource over time. As the number of sites visible to 
the agents increases, the number of agents at the resource 
varies longer.  

This counter intuitive phenomena brought forth an attempt 
to reproduce the results [Bar98a]. First, the Model object 
was created to represent the resources and the agents. 
Next, the Controller was designed, creating a user 
interface through which the control parameters and 
window value could be set. A View of the resources 
displays the the number of agents at each resource and the 
current time step. These components together create the 
problem domain application. With this program, users can 
alter the variables and explore the effects the control 
parameters and window values have on group behavior.  

It would take one user too long to explore the space of 
potential control parameters over all the window values. 
Thus, the GA was introduced, to emulate the actions of 
many users. The GA's task was to find the virtual user that 
would create the fastest settling group of agents. The 
mutation and crossover operations alter the genetic 

representation which changes the , , and values set 
by the GA Controller. The GA View object would ignore 
the updates until the optimal state was reached. Once the 
optimal state was reached, the current time step was used 
as a fitness value. In some cases, the optimal state was 
never maintained. For those cases, the simulation was 
halted after 30,000 time steps. To gather more accurate 
statistics, several iterations of the model needed to be run. 
Additional logic was added to the GA Individuals, 
enabling them to repeat their experiments in the model.  

Running the GA found a virtual user with a set of control 
parameters that provided superior performance regardless 
of the window values. The GA results were immediately 
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examined by plugging the best individual's parameters into 
the problem domain application. The agents quickly 
settled into the optimal state as expected.  

By examining the time series of fitness values, an increase 
in fitness was apparent. Yet this reveals very little in this 
domain. But with this system architecture, one can pick 
out the best individual every 10 time steps and plug the 
virtual user's values into the stand-alone application. This 
ends up being much more informative, as the group 
behavior starts out being very volatile in the early 
generations. It becomes clear that in these volatile agent 
situations, the window size has little to do with group 
behavior. The group performs equally poorly at all 
window sizes. As the GA individuals evolve, one can 
observe agent volatility decrease. First for only some 
window values, then for all the window values. This 
information gives many hints about the nature of the 
problem space, allowing the user to generate more 
hypotheses about the behavior of the system. This 
example illustrates the GAVUM architecture's ability to 
enhance the knowledge acquisition process.  

1.2 Game Playing Artificial Intelligence  

Designing artificial intelligence routines for games is 
another application of the GAVUM architecture. Though 
the AI in some of today's commercial games might use 
more information than what is provided to the user, that 
hasn't always been the case [Sam63]. Additionally, in 
cognitive science research, AI models are designed with 
the human player's abilities and techniques in mind 
[KM92]. These facts support using virtual users to evolve 
game playing AIs.  

A simple client/server game of Snake was written as a 
separate project to learn about networking. Snake is a 
simple game, where a user controls a snake's movement in 
a 2-d world. A snake increases in size when food is eaten, 
and it dies when the snake's head comes in contact with 
any non-food object in the world. Users interested in 
playing the game launch a snake View in order to see the 
world. Launching a snake Controller enables the user to 
control a snake in the game. Both client programs connect 
to the snake world Model object, which doubles as the 
server. With the client-server architecture, multiple snakes 
can be introduced into the game.  

Using the GAVUM architecture, a GA individual then can 
use a snake View (to understand the world and its place in 
it) and a snake Controller to control its own snake. The 
GA individual becomes a real-time, interactive player in a 
networked game of snake. The snake game reports 
statistics about players, like the longest length attained, 
number of lives, etc. The GA individual then can use this 

data to calculate its fitness. Once its fitness is calculated 
(longest length achieved during 10 games), it quits the 
snake game. The selection process of the GA decides its 
fate.  

This example shows displays how the GAVUM 
architecture can get co-evolution for free. The networked 
architecture of the game enables co-evolution in the GA, 
as the individuals are competing against other snakes 
controlled by other GA Individuals. Additionally, the 
GAVUM system even allows visualization of the co-
evolutionary paths. The user can open up their own snake 
View of the game, in order to watch the GAVUM snakes 
play and evolve. The user can also join the game, affecting 
the fitness of the individuals in the GA. Many benefits are 
reaped simply by using a different program structure. This 
architecture could be directly applied to the iterated 
prisoner's dilemma domain as well as its related 
tournament models.  

1.3 Artificial Life Models  

My research focuses on artificial life (AL) models. These 
models rely on visualization to express their behavior. 
Again, through the model's API designed for use with the 
Views and Controllers, the GA individual has control over 
the Model, without having to compute the display. My 
models are designed to facilitate examining the evolution 
of coordination in multi-agent systems [Bar98b]. In my 
model, survival is the task facing homogenous populations 
of agents. The model's agent environment has many 
parameters that can be adjusted, offering a variety of ways 
to increase its hostility. The behavior of the agents 
themselves can be adjusted via the Controller. The agent's 
behavior is what the GA virtual users adapt.  

Each GA run evolves agents best fit for a given 
environment. In these experiments, GA individuals are 
created that define new environmental conditions in which 
to evolve agents. The researcher now takes the position of 
defining meta-experiments, with the virtual users 
performing sets of experiments. This allows one to study 
the environmental effects on the agents and their 
evolution. Each GA run creates an evolutionary path that 
represents a set of experiments, each resulting in agents 
performing to varying degrees of success. And then 
collectively, the GA runs define another set of 
evolutionary paths across meta-experiments. Hopefully, 
the automation of the experiments that is intrinsic in the 
GAVUM architecture will increase the rigor of AL 
research. As I extend the model to allow heterogeneous 
populations, the same GA will be used, with some 
modifications to the GA Individual object. Again, co-
evolution will be a convenient side effect.  
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This AL domain highlights another benefit of this 
paradigm. With the other models, reproducibility was not 
as much of an issue, because the code was simpler and 
there were fewer variables in play. But with artificial life 
models, programmers are only limited by their imagination 
and the programs quickly get rather complex. 
Reproducibility has been a problem facing the AL 
community from the beginning. By encouraging the MVC 
and virtual user system, programmers might find it 
worthwhile to introduce useable Views and Controllers. 
Then the problem domain applications can stand-alone 
and be shared with other researchers. Instead of trying to 
duplicate the code, others can use the same code to repeat 
the experiments and run their own new ones.  

2. Discussion  

All too often, researchers are too excited to start evolving 
individuals in a GA, and not enough effort is put into 
figuring out how to explain the results. The GAVUM 
architecture provides a step towards insuring that the most 
can be learned from the evolutionary computation. 
Diligent application of the GAVUM paradigm will also 
allow others to use the problem domain application and to 
explore the problem domain themselves. With the Java 
programming language and applets that can be run 
through web browsers, accessibility of the problem 
domain application can become trivial. URLs of all work 
discussed here is soon to come.  

The GAVUM architecture is currently being discussed 
with instructors of an artificial intelligence class as a way 
of introducing the class to GAs. First, students will be 
introduced to modelling through a particular problem 
domain application. Through hands on experience with the 
application, the students gain a deeper understanding of 
the domain problems that the model represents. Then, as 
they become familiar with the program, they would be 
asked to create their own metric for comparing two 
instances of their models with each other. In essence, each 
student is implicitly creating a fitness function. Next, the 
students would be introduced to a method of finding 
individuals that maximize performance according to a 
metric - the GA. They can then code up their own GA 
individual.  

The students would already be familiar with the kinds of 
information expected by the Controller, as they have had 
to supply the same information to the program when they 
were using it. Through creating their own metric for 
comparison, they have used information from the View. 
The students just have to formalize this information in 
actual code. This clearly defines assignments in the sense 
of coding routines with well documented input and output. 
Additionally, these methods probably would not be too 

technically demanding, which can be a benefit in 
introductory classes. But the elements of the model that 
are tested, how the individuals are evaluated, and the 
genetic representations are completely open ended. Each 
student has the freedom to explore the areas of the model 
that are personally interesting.  

After running the experiments, (most likely editing their 
GA individuals along the way), the students can then 
discuss the various advantages and disadvantages of their 
different representations, fitness functions, and 
evolutionary techniques (mutation and crossover operators 
and rates, plus the selection methods). Throughout the 
assignments, the process reinforces the benefits of the 
scientific method.  

Hopefully the advantages of the GAVUM architecture are 
apparent and seem worth the design and coding effort. 
Programming as if people mattered [Bor91] is a honest, 
practical book that stresses the need to bridge the gap 
between programmers and users. The same need is found 
in the GA community. Although GAs came from a 
programmer-rich environment, one can no longer assume 
that users of GAs will only be other programmers, due to 
the growing diversity in the GA user population. Both the 
GA and the problem domain application should be 
considered tools to be used by others for learning - making 
visualization all the more important.  

Currently, work is being conducted to integrate the GA 
into the actual problem domain application. User interface 
issues need to be refined in order to merge the View and 
Controller of both the GA and the problem domain 
application. Future work is directed towards better 
formalizations of the model. There are most likely better 
ways to generalize the API in order to create more re-
useable code. Finally, applying this approach to other 
domains would help evaluate the effectiveness of the 
GAVUM architecture.  
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