
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

255

Genetic Algorithms as Virtual User Managers
Rasmiprava Singh 1, Snehalata Baede 2 and Sujata Khobragade3

1 National Institute of Technology,Raipur

CG,India

2 National Institute of
Technology,Raipur

CG,India

3 National Institute of
Technology,Raipur

CG,India

Abstract

A growing issue in genetic algorithm research involves
understanding the paths through the solution space that
are explored. This work presents a software design
architecture that can aid in the explanation process. This
architecture encourages more complete user interfaces
on the problem domain application, which facilitates the
integration of a genetic algorithm, at the same time,
taking advantage of substantial code re-use. The steps
taken to increase the usability of the problem domain
application can aid in the visualization of the
evolutionary paths explored by the genetic algorithm.
This effort on the designer's part results in improvements
in overall accessibility of the problem domain application
and the evolutionary process.

Keywords:Virtual User, visualization, genetic algorithm,domain .

1. Introduction

Automated software testing products use scripting
languages to describe user behaviors
[Bei90,Mer98a,Mer98b]. Executing the scripts emulates
users interacting with the test application. Variables within
the scripts can change virtual user behaviors. The standard
parameterization technique generates a brute force testing
method for the application in question. Yet there exist
problem domains where brute force is not feasible,
including : situations where a variable's range of values is
too large; domains where many variables need to be
parameterized. While discussing these problems with a
consultant in the automated software testing industry, it
became clear that their testing techniques could benefit

from a genetic algorithm (GA). Instead of a brute force
approach for testing, the GA could guide the selection of
the parameters used by the virtual users. The GA would
search for virtual users that maximized error conditions.

GAs could also benefit from taking a virtual user point of
view. Since the GA is essentially a generate and test
search method, a generated virtual user could test each
potential solution. Granted, GAs are applied to many
optimization problems where a user interface is ill fitted.
But as the popularity of GAs has grown, the domains that
GAs are utilized in has grown as well. In these new
domains understanding the subtleties of a solution might
involve more than just a fitness value and its genetic
representation. To understand the ``how'' of a solution one
might benefit from a visual interface for the problem
domain application.

Likewise, the set of users applying GAs is growing more
diverse. Communicating the evolutionary processes and
advantages becomes more challenging as domains
broaden. Often visualization is the most effective aid in
fostering an understanding of the underlying phenomena.
Recent work [BB98] towards visualizing the evolutionary
path greatly aids the understanding of evolutionary
processes. This work compliments their approach.

This paper describes an approach where each individual in
a genetic algorithm is treated as a virtual user. The GA
search involves finding the virtual users that manipulate
the problem domain application in the most appropriate
fashion. True, this paradigm demands more discipline on
behalf of the system architect in the early stages of design.
However this effort does not go unrewarded, as it leads to

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

256

a system that is easier to test, explore, understand, and
share. The payoff is not an optimized GA, but instead a
greater accessibility to the problem domain and the results
generated by the GA.

System architecture

An individual in a genetic algorithm acting as a virtual
user does not demand a sophisticated scripting system that
understands user interfaces. If one uses the Model-View-
Controller (MVC) design pattern [Gol84,BMR6#1+96] in
the program representing the problem space, an interface
is clearly defined that can be utilized by code designed for
either a human or virtual user. Figure 1 lays out the basic
genetic algorithm as a virtual user manager (GAVUM)
architecture. This mechanism leads to relatively painless
implementations of virtual users.

Figure: A graphical representation of the system
architecture. The user's application is composed of the
Model, View and Controller. The user affects the Model
through the Controller and the Model's state is visualized
through the View. The GAVUM mechanism integrates a
GA with the problem domain application by designing the
GA Individual to use the Model's View and Controller
interfaces.

In the MVC design pattern, the Model object contains the
heart of the problem domain application. It encapsulates
all the data and functions underlying the phenomena to
model. When something ``interesting'' happens in the
Model, it updates all the View objects associated with it.
``Interesting'' is defined by the problem domain and the
View itself. An example of these two objects would be a
simple model oven. The Model would be tracking the
temperature of the oven: calculating heat flow and
transfer. As the temperature in the oven changes, it would
notify all of its associated View objects with the
temperature in degrees Fahrenheit. One View object could
be coded to display the temperature, another View object
could re-calculate the temperature into Celsius before
displaying it, while another View could display the
temperature as a color. A Model can have any number of
Views, but each View can only have one Model.

Adding a Controller object to this application would allow
us to alter the oven's behavior. The Model object provides
a set of methods through which its behavior and/or state
can be changed. The Controller object could map
keystrokes and mouse actions in the user interface to the
appropriate method calls. The user could be presented
with a knob labeled with temperatures. As the knob's
value changes, through user actions, the Controller object
would alter the settings within the Model. Again, the
mapping from Controller to Model is many to one. There
could also be a text field where the user can type in a
desired temperature. Either way, the change in temperature
of the oven would affect the model and in turn, be
visualized through the various Views.

Once the MVC structure is in place, coding the GA virtual
users is straightforward. The process involves these steps:

 Create a Controller object to map a genetic
representation to the appropriate method calls in
the Model object. Different genomes would
encode for different parameters passed to the
Model methods.

 Create a View object that can interpret the data
from the Model and calculate a fitness value.
Depending on the way the Model is implemented,
fitness values can be derived after one update or
after many updates.

 Glue the Controller and View together in a GA
Individual object. This interfaces the GA with the
problem application by defining exactly how a
fitness value is generated from a genetic
representation.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

257

There is no runtime penalty for visualization for the virtual
users, as their data does not need to be displayed. Mutation
and crossover operations can act upon the genome in one's
preferred fashion. Similarly, one's favorite selection
methods can then drive the GA, to evolve the virtual users.

This architecture doesn't define any changes to the actual
evolutionary computational method. Instead, it improves
on the interface among the evolutionary computation, the
problem domain application, and the researcher. It also
fosters reusability at the level of the GA and the problem
domain application. GA Individuals seen as virtual users
can control a variety of application types, all being
evolved by an unmodified GA. The Model object, which
defines the majority of the domain application, is used by
both human and virtual users. With one code base,
changes to the application are less complicated and
consistency is maintained without any effort.

1. Case studies

As mentioned earlier, the number of domains that utilize
GAs is growing. The domain of multi-agent systems is an
example of a new area benefitting from GAs. Multi-agent
systems are difficult to design and analyze because the
group's behavior often relies on subtle traits in the local
behavior of the individuals. GAs allow designers to search
through the space of individual behaviors for desired
group behaviors. This work presents three different
examples of GAs applied to multi-agent systems using the
GAVUM architecture.

1.1 Resource Allocation

 Sen et. al. [SRA96] suggest that limited knowledge in
multi-agent systems can be beneficial in certain cases.
Their work involves the resource allocation problem,
where N autonomous agents must distribute themselves

among M resources linked in a circular chain .
During a time step each agent chooses a resource to use.
The performance of the system can be measured by the
number of time steps it takes for the agents to converge
upon and maintain the optimal state starting from random
initial distributions.

In Sen's implementation, each agent's behavior is
controlled by identical probabilistic functions. fii
determines the probability of an agent staying at the
current resource and fij defines the probability of moving
from resource i to resource j. These are the control
functions:

Here, ri represents the current number of agents at

resource i; , , and are control parameters. Sen
introduces a window parameter, which limits the number
of resources an agent has knowledge of at any time. This
window value defines how many neighboring resources
the agent has access to. The window is centered around
the agent, so a window value of 3 would allow agents
access to the number of agents at the adjacent resources.
The window value also defines legal values of j for each i
in the control functions. With Sen's control parameters,
larger windows led to slower convergence to the optimal
state, and smaller windows led to faster convergence. To
explain their results, Sen presents the number of agents at
one resource over time. As the number of sites visible to
the agents increases, the number of agents at the resource
varies longer.

This counter intuitive phenomena brought forth an attempt
to reproduce the results [Bar98a]. First, the Model object
was created to represent the resources and the agents.
Next, the Controller was designed, creating a user
interface through which the control parameters and
window value could be set. A View of the resources
displays the the number of agents at each resource and the
current time step. These components together create the
problem domain application. With this program, users can
alter the variables and explore the effects the control
parameters and window values have on group behavior.

It would take one user too long to explore the space of
potential control parameters over all the window values.
Thus, the GA was introduced, to emulate the actions of
many users. The GA's task was to find the virtual user that
would create the fastest settling group of agents. The
mutation and crossover operations alter the genetic

representation which changes the , , and values set
by the GA Controller. The GA View object would ignore
the updates until the optimal state was reached. Once the
optimal state was reached, the current time step was used
as a fitness value. In some cases, the optimal state was
never maintained. For those cases, the simulation was
halted after 30,000 time steps. To gather more accurate
statistics, several iterations of the model needed to be run.
Additional logic was added to the GA Individuals,
enabling them to repeat their experiments in the model.

Running the GA found a virtual user with a set of control
parameters that provided superior performance regardless
of the window values. The GA results were immediately

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

258

examined by plugging the best individual's parameters into
the problem domain application. The agents quickly
settled into the optimal state as expected.

By examining the time series of fitness values, an increase
in fitness was apparent. Yet this reveals very little in this
domain. But with this system architecture, one can pick
out the best individual every 10 time steps and plug the
virtual user's values into the stand-alone application. This
ends up being much more informative, as the group
behavior starts out being very volatile in the early
generations. It becomes clear that in these volatile agent
situations, the window size has little to do with group
behavior. The group performs equally poorly at all
window sizes. As the GA individuals evolve, one can
observe agent volatility decrease. First for only some
window values, then for all the window values. This
information gives many hints about the nature of the
problem space, allowing the user to generate more
hypotheses about the behavior of the system. This
example illustrates the GAVUM architecture's ability to
enhance the knowledge acquisition process.

1.2 Game Playing Artificial Intelligence

Designing artificial intelligence routines for games is
another application of the GAVUM architecture. Though
the AI in some of today's commercial games might use
more information than what is provided to the user, that
hasn't always been the case [Sam63]. Additionally, in
cognitive science research, AI models are designed with
the human player's abilities and techniques in mind
[KM92]. These facts support using virtual users to evolve
game playing AIs.

A simple client/server game of Snake was written as a
separate project to learn about networking. Snake is a
simple game, where a user controls a snake's movement in
a 2-d world. A snake increases in size when food is eaten,
and it dies when the snake's head comes in contact with
any non-food object in the world. Users interested in
playing the game launch a snake View in order to see the
world. Launching a snake Controller enables the user to
control a snake in the game. Both client programs connect
to the snake world Model object, which doubles as the
server. With the client-server architecture, multiple snakes
can be introduced into the game.

Using the GAVUM architecture, a GA individual then can
use a snake View (to understand the world and its place in
it) and a snake Controller to control its own snake. The
GA individual becomes a real-time, interactive player in a
networked game of snake. The snake game reports
statistics about players, like the longest length attained,
number of lives, etc. The GA individual then can use this

data to calculate its fitness. Once its fitness is calculated
(longest length achieved during 10 games), it quits the
snake game. The selection process of the GA decides its
fate.

This example shows displays how the GAVUM
architecture can get co-evolution for free. The networked
architecture of the game enables co-evolution in the GA,
as the individuals are competing against other snakes
controlled by other GA Individuals. Additionally, the
GAVUM system even allows visualization of the co-
evolutionary paths. The user can open up their own snake
View of the game, in order to watch the GAVUM snakes
play and evolve. The user can also join the game, affecting
the fitness of the individuals in the GA. Many benefits are
reaped simply by using a different program structure. This
architecture could be directly applied to the iterated
prisoner's dilemma domain as well as its related
tournament models.

1.3 Artificial Life Models

My research focuses on artificial life (AL) models. These
models rely on visualization to express their behavior.
Again, through the model's API designed for use with the
Views and Controllers, the GA individual has control over
the Model, without having to compute the display. My
models are designed to facilitate examining the evolution
of coordination in multi-agent systems [Bar98b]. In my
model, survival is the task facing homogenous populations
of agents. The model's agent environment has many
parameters that can be adjusted, offering a variety of ways
to increase its hostility. The behavior of the agents
themselves can be adjusted via the Controller. The agent's
behavior is what the GA virtual users adapt.

Each GA run evolves agents best fit for a given
environment. In these experiments, GA individuals are
created that define new environmental conditions in which
to evolve agents. The researcher now takes the position of
defining meta-experiments, with the virtual users
performing sets of experiments. This allows one to study
the environmental effects on the agents and their
evolution. Each GA run creates an evolutionary path that
represents a set of experiments, each resulting in agents
performing to varying degrees of success. And then
collectively, the GA runs define another set of
evolutionary paths across meta-experiments. Hopefully,
the automation of the experiments that is intrinsic in the
GAVUM architecture will increase the rigor of AL
research. As I extend the model to allow heterogeneous
populations, the same GA will be used, with some
modifications to the GA Individual object. Again, co-
evolution will be a convenient side effect.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

259

This AL domain highlights another benefit of this
paradigm. With the other models, reproducibility was not
as much of an issue, because the code was simpler and
there were fewer variables in play. But with artificial life
models, programmers are only limited by their imagination
and the programs quickly get rather complex.
Reproducibility has been a problem facing the AL
community from the beginning. By encouraging the MVC
and virtual user system, programmers might find it
worthwhile to introduce useable Views and Controllers.
Then the problem domain applications can stand-alone
and be shared with other researchers. Instead of trying to
duplicate the code, others can use the same code to repeat
the experiments and run their own new ones.

2. Discussion

All too often, researchers are too excited to start evolving
individuals in a GA, and not enough effort is put into
figuring out how to explain the results. The GAVUM
architecture provides a step towards insuring that the most
can be learned from the evolutionary computation.
Diligent application of the GAVUM paradigm will also
allow others to use the problem domain application and to
explore the problem domain themselves. With the Java
programming language and applets that can be run
through web browsers, accessibility of the problem
domain application can become trivial. URLs of all work
discussed here is soon to come.

The GAVUM architecture is currently being discussed
with instructors of an artificial intelligence class as a way
of introducing the class to GAs. First, students will be
introduced to modelling through a particular problem
domain application. Through hands on experience with the
application, the students gain a deeper understanding of
the domain problems that the model represents. Then, as
they become familiar with the program, they would be
asked to create their own metric for comparing two
instances of their models with each other. In essence, each
student is implicitly creating a fitness function. Next, the
students would be introduced to a method of finding
individuals that maximize performance according to a
metric - the GA. They can then code up their own GA
individual.

The students would already be familiar with the kinds of
information expected by the Controller, as they have had
to supply the same information to the program when they
were using it. Through creating their own metric for
comparison, they have used information from the View.
The students just have to formalize this information in
actual code. This clearly defines assignments in the sense
of coding routines with well documented input and output.
Additionally, these methods probably would not be too

technically demanding, which can be a benefit in
introductory classes. But the elements of the model that
are tested, how the individuals are evaluated, and the
genetic representations are completely open ended. Each
student has the freedom to explore the areas of the model
that are personally interesting.

After running the experiments, (most likely editing their
GA individuals along the way), the students can then
discuss the various advantages and disadvantages of their
different representations, fitness functions, and
evolutionary techniques (mutation and crossover operators
and rates, plus the selection methods). Throughout the
assignments, the process reinforces the benefits of the
scientific method.

Hopefully the advantages of the GAVUM architecture are
apparent and seem worth the design and coding effort.
Programming as if people mattered [Bor91] is a honest,
practical book that stresses the need to bridge the gap
between programmers and users. The same need is found
in the GA community. Although GAs came from a
programmer-rich environment, one can no longer assume
that users of GAs will only be other programmers, due to
the growing diversity in the GA user population. Both the
GA and the problem domain application should be
considered tools to be used by others for learning - making
visualization all the more important.

Currently, work is being conducted to integrate the GA
into the actual problem domain application. User interface
issues need to be refined in order to merge the View and
Controller of both the GA and the problem domain
application. Future work is directed towards better
formalizations of the model. There are most likely better
ways to generalize the API in order to create more re-
useable code. Finally, applying this approach to other
domains would help evaluate the effectiveness of the
GAVUM architecture.

2.1.1 Acknowledgements
I am grateful to Catherine Kim at Mercury Interactive for
numerous discussions about automated software testing,
virtual users, and their potential relationships with genetic
algorithms. This research is supported by the National
Science Foundation under grants GER93-54898 and
CDA93-03189.

References

[1]. Baray.Effects of individual decision schemes on
group behavior.
In The Third International Conference on Multi-Agent
Systems, New York, NY, 1998. IEEE Press.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

260

[2].Baray.
Effects of population size upon emergent group
behavior.
In Complex Systems '98 Conference Proceedings,
1998.

[3].M.A. Bedau and C.T. Brown.
Visualizing evolutionary activity of genotypes.
Technical Report 98-03-23, The Santa Fe Institute,
Santa Fe, NM, 1998.

[4].Beizer.
Software Testing Techniques.
International Thomson Publishing, Boston, MA, 1990.

[5].Frank Buschmann, Regine Meunier, Hans Rohnert,
Peter Sommerlad, and Michael Stal.
Pattern Oriented Software Architecture: A System of
Patterns.
John Wiley and Sons, New York, NY, 1996.

[6]. N.Borenstein.
Programming as if people mattered.
Princeton University Press, Princeton, NJ, 1991.

[7].Adele Goldberg.
Smalltalk-80: the interactive programming
environment.
Addison-Wesley, Reading, MA, 1984.

[8].D.Kirsh and P. Maglio.
Reaction and reflection in tetris.
In J. Hendler, editor, Artificial intelligence planning
systems: Proceedings of the First Annual International
Conference (AIPS92), San Mateo, CA, 1992. Morgan
Kaufman.

[9].Mercury Interactive.
Load Runner : Controller Users Guide.
Mercury Interactive Press, 1998.
[10].Mercury Interactive.
Load Runner : Creating Vuser Scripts.
Mercury Interactive Press, 1998.

[11].A.L.Samuel.
Some studies in machine learning using the game of
checkers.
In E.A. Feigenbaum and J. Feldman, editors,
Computers and Thought. McGraw-Hill, New York,
NY, 1963.

[12].S. Sen, S. Roychowdhury, and N. Arora.
Effects of local information on group behavior.
In Mario Tokoro, editor, The Second International
Conference on Multi-Agent Systems, Menlo Park, CA,
1996. AAAI Press.

First Author: Msc (computer Science) On 2006, M.Tech
(Computer Technology) On 2010,National Institute of Technology,
Raipur, CG Two international paper, Generally interest in wireless,
image processing and genetic algorithm.

Second Author Msc (Mathematics), MCA (Computer Application),
National Institute of Technology, Raipur, CG Two international
paper, Generally interest in wireless, image processing and
genetic algorithm.

Third Author BSC (Electronics), MCA (Computer
Application),National Institute of Technology, Raipur, CG Two
international paper, Generally interest in wireless, image
processing and genetic algorithm.

