
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

198

A New Security Paradigm of File Sharing

Seifedine Kadry
 Faculty of General Education

American University of the Middle East

Abstract

Windows Right Management Services protects RMS-enabled
files or applications from unauthorized users. However, the
offered security on the whole file prevents other trusted
recipients with minor privileges to access it. The sender is
obliged to send each time to these recipients another file that
resembles to the former but does not contain sensitive
information which is considered as time wasting especially when
the number of recipients is increased.
This paper designs and implements a new security layer that
extends the WRMS security provided on a certain file, in a way
that the file still keeps its security towards unintended or
unauthorized recipients, but can be sent only once to trusted
recipients having different privileges in such a way that each
recipient will only see the data that grants access to.
Keywords: WRMS, File Sharing, Security, XML, XrML, .NET.

1. Introduction

Windows Right Management Services proves its ability in
protecting RMS-enabled information from unauthorized
use no matter where this information goes inside or
outside the organization [1]. This solution comes
subsequent to many perimeter-based methods such as
Firewalls, Access Control Lists, encryption, and
authentication technologies. Although these methods
could protect the information while in transit, but couldn’t
provide any layer of security when the information is
exposed to the recipient. WRMS was the first technology
that could introduce this layer of security whenever the
file is received because the permission to the file is stored
with the file itself. It can prevent the recipient to copy,
modify, print, forward the RMS-based file via email to
non-intended or perhaps malicious recipients, or to access
it after a certain period of time. However, WRMS also
prevents other trusted recipients with minor privileges to
access a certain file since the offered security is
implemented on the whole document [2]. Thus, the sender
is obliged each time to send to these recipients another file
similar to the former but does not contain confidential
data. This is considered as time consuming especially
when we are talking about a big organization that has
numerous branches perhaps in

different countries and each branch consists of many
departments. This limitation of WRMS motivated us to
think about a solution to the addressed problem.
The objective of this paper is to extend the functionality of
WRMS by adding a new security layer to Microsoft Excel
worksheets, in such a way that the file still keeps its
WRMS features and its security towards unintended
recipients, but can be sent only once to trusted recipients
having different privileges. To allow to this file to be sent
to different recipients, the provided solution will apply a
security on a portion of the document, this portion
contains the sensitive data. As a final result, each recipient
will only see the data that grants access to.
This paper is divided into the following sections:
In section two, we will discuss why we need this solution.
And we will explain the importance of WRMS and how it
works. The proposed solution that we adopt in this paper
and how it is implemented, are clearly detailed in section
three. Section four will discuss the conclusion, and the
advantages of this solution in addition to future works in
this domain.

2. Problematic

For a better understand the goal of this paper, we must
look at the described real life scenario:
At the end of the business year, the Financial Director of
“GlobalCom” Company prepares the annual bonuses file.
The company has three departments: IT, Logistics and
Quality Assurance. Each department has a manager and a
group of employees that reports to this manager. Every
department’s manager receives from the financial director
the bonuses file and approves it. The confidentiality plays
an important role here since it is part of the company
policy. For instance, the IT manager is not allowed to view
the Logistics and Quality bonuses. The same scenario is
repeated for the Logistics and Quality department, taking
into consideration that all departments are sharing the
same file.
How to achieve this? The financial director has a program
which will allow him to encrypt any data from the Excel

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

199

file. In our case, the bonus column value for all employees
in all departments will be the encrypted data.
In other words, the role of the sender is to encrypt
whatever data from the excel sheet and sends it to each
department’s manager, and to apply WRMS to this file to
assure that the file will not be edited or forwarded. The
receiver’s role is to view only its authorized data.
In absence of our solution: the final director will create
three files to be sent for each department’s manager and
applies WRMS on each of these files without getting the
benefit to send the common data. Each of the received
RMS-enabled file will contain the bonus value to each
department.
In the presence of our solution: The financial director can
get the benefit of the file-reusability and will send a
single shared RMS-enabled file to each department’s
manager. This file contains encrypted bonuses column for
all employees in all departments.
Upon receiving the file by each department’s manager,
only the relevant data of each department will be
decrypted, and the rest of the data that is relevant to other
department’s manager will remain encrypted because this
solution allows the decryption of selective information
based on the privileges of each department’s manager.
After presenting both cases before and after applying the
solution, it is logical to adopt this study that addresses this
problem. It is obvious that this solution is time and
resource effective (file reusability) and it deals with
confidential data of the company in a secure way up to the
latest technology techniques.

2.1 What is WRMS?

Windows Right Management Services is information
protection technology that works with RMS-enabled
applications to protect digital information from
unauthorized use–both online and offline, inside and
outside of the firewall.

RMS increases the security strategy of an organization by
providing protection of the information through usage
rights and conditions, which remain with the information,
no matter where it goes. In other words, these permissions
are assigned to an authorized recipient after the
information is accessed [3].

2.2 WRMS Workflow

In a reference to [3], Windows RMS which includes both
server and client components provides the following
capabilities:

 Creating rights-protected files and containers:

Users who are trusted entities in an RMS system

could apply usage rights and conditions to digital

information using RMS-enabled applications or

browsers.

 They can easily create and manage protected files

using applications that people use every day -for

example: computer-aided design (CAD) applications

or Microsoft Office 2007 Editions- that incorporate

Windows RMS technology features. Using common

task management procedures within a familiar on-

screen environment, organizations could assign usage

rights and conditions to digital information such as an

e-mail message or document.

In addition, RMS-enabled applications provide
users with the option of applying authorized
rights policy templates such as “Company
Confidential.”

 Licensing and distributing rights-protected

information: The XrML-based [4] certificates issued

by an RMS system (right account certificate) identify

trusted entities that can publish or view rights-

protected information. Users who are trusted entities

in an RMS system can assign usage rights and

conditions to information they want to protect through

an RMS-enabled application. These usage policies

specify who can use the information and what they

can do with it.

The RMS system validates transparently the
trusted entities and issues the publishing licenses
that contain the specified usage rights and
conditions for the information. The information is
encrypted using the electronic keys from the
RMS-enabled application (for example:
Microsoft Word) and the XrML-based
certificates of the trusted entities. After the
information is encrypted or locked, only the
trusted entities specified in the publishing
licenses can unlock and use that information.
Users could then distribute the rights-protected
information to other users in their organization
via e-mail, internal servers, or external sites to
enable trusted external partners to access the
information.

 Acquiring licenses to decrypt rights-protected

information and enforcing usage policies:

Trusted entities recipients who are named by information
author, can open or view rights - protected information by
using trusted computers having WRMS client software

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

200

installed along with RMS-enabled applications or
browsers.
In a process that is transparent to the recipient, the RMS
server, which has the public key that was used to encrypt
the information, validates the recipient and then issues a
user license that contains the usage rights and conditions
that were specified in the publishing license. The
information is decrypted using the electronic keys from
the end-user license and the XrML-based certificates of
the trusted entities. The usage rights and conditions are
then enforced by the RMS-enabled application. The usage
rights are persistent and enforced everywhere the
information goes.
Referring to [3], for a better understanding of the RMS
workflow within an organization, see Figure 1:

Fig1: RMS Workflow

1. Authors receive a client licensor certificate from the
RMS server the first time they rights-protect
information. (This is a one-time step that enables
offline publishing of rights-protected information in
the future.)

2. An author creates a file and defines a set of rights and
rules. The RMS-enabled application in conjunction
with the Windows Rights Management client software
creates a “publishing license” and encrypts the file.

3. The author can distribute the file in any preferred
manner.

4. The recipient clicks the file to open it. The RMS-
enabled application calls to the RMS server, which
validates the user and issues a user license.

The application renders the file and enforces the rights
defined in the use license.

3. The Proposed Solution

3.1 Design

Since WRMS works in Microsoft-based environment, it
was logical to use VB.NET [5] in our solution as an object
oriented programming language in order to get some
benefits of .NET Framework class libraries.
The proposed solution should be tested first in VB.NET
Windows Form Application and then it should be applied
in Excel application where there is a need to be created in
a separate module.
This security layer provides us the opportunity to encrypt
a simple node or an entire column through the .NET and
XML technology.
The implementation of this solution in VB.NET in the
Encryption process includes: Converting Excel to XML
file, Encrypt / Decrypt XML Nodes, and converting the
encrypted XML to Excel file (Figure 2). The conversion
from an Excel to XML file helps us to select the specific
nodes to be encrypted in later step.
 XML was used because it is the most popular technology
for structuring data; therefore XML-based encryption is
the natural way to handle complex requirements for
security in data interchange applications [8].
In the decryption process, the result is revealed: The
description of the Microsoft Windows logged-on user is
compared with the privileges of each user in the Excel
input file. Thus, each recipient can see the information that
grants access; the other part of the data will remain
encrypted. The decrypted XML file is also converted to
decrypted Excel file.
Finally, after testing the proposed solution in VB.NET
Windows Form Application, we can apply it in Excel file
supporting macros and we must get the same result.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

201

Fig2: Workflow of the proposed solution

3.2 Implementation

This code in the proposed solution is divided into two
main parts:

A. Windows Form Application: “Excel Security”
in VB.NET

 Convert Excel File to XML:

ADO.NET: stands for (ActiveX Data Object), is special
set of .net framework allows the user to work with
different type of databases such as Access, SQL server
and Oracle. It provides two ways to work with data in a
database: connected mode and disconnected mode [5].
In order to convert Excel file to XML file, we will use the
ADO.NET in disconnected mode.

 The ConvertExcelToXML()method will perform
the following Actions:

1. Creates a connection to the Excel file using
OLEDBConnection object.

2. Opens a connection with the property settings
specified.

3. Selecting the data from the Excel file using
DataAdapter object.

4. TableMapping.
5. Fills this DataTable with the imported data.
6. Set the property “Table” with the first DataTable

contained in the DataSet “DtSet”.
7. Exports this Dataset to an XML file.
8. Reads the DataColumns and adds them the

ArrayList “collist”.
9. Closes the connection to the data source.

To create a connection to the Excel file:

Referring to [6, 7], we have three ways to manipulate an
Excel file. It can be done either by using Microsoft Office
Component, Microsoft Jet Engine, and Access Database
Engine. As per Microsoft recommendation, it is not
advisable to use Office components on the server. Since
Microsoft Jet Engine is only used to open a connection to
Excel 2003 worksheets, but doesn’t support connectivity
to Excel 2007 worksheets. So, the connection will be done
using Microsoft.ACE.OLEDB.12.0 engine.

Before using Access Database Engine we must download
the 2007 Office system driver from:
http://www.microsoft.com/downloads/details.aspx?Family

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

202

ID=7554F536-8C28-4598-9B72-
EF94E038C891&displaylang=en

To connect to an Excel file, we can use an OLEDB object
that treats Excel as a database. The required information
can be easily fetched by using SQL queries.

 Encrypt Node(s) in XML file:
Since we need to encrypt only a portion of the file, XML
Encryption is the best choice if the application requires a
combination of secure and insecure communication
(which means that some of the data will be securely
exchanged and the rest will be exchanged as is)[8] .

 The SelectNodesToEncrypt()method will perform
the following actions:

1. Gets the “EmployeeID” of the nodes to be
encrypted.

2. Loops through the selected items and creates an
EncryptedXML object “exml”.

3. Selects the XML element(s) needed to be
encrypted.

4. Encrypts the element(s) using the key generated
“sharedkey” by the encryption algorithm object.

5. Creates an encrypted data object “ed” and
specifies its properties.

6. Creates a cipherData element and sets its value to
the encrypted XML element “EncryptedElem”.

7. Replaces the plaintext XML element “Elem” with
the encrypted data object “ed”.

8. Saves the encrypted data to a file
"EncryptedData.xml"

 Encrypt Entire Column in XML file:
 The SelectColumnToEncrypt()method will

perfom the following actions:

This method is similar to the
SelectNodesToEncrypt() method but instead, it
takes the entire column to be encrypted.
Therefore, an “XMLNodeList” object will be
created to hold all the elements inside the
plaintext XML file:

To select an ordered list “xmllist” of XML nodes,
we should create an object of XmlNodeList() and
use the function SelectNodes()which takes an
argument as X-Path expression. Referring to [9],
X-path is a syntax for defining parts of an XML
document.

 Convert Encrypted XML file to Excel:
 The ConvertXMLtoExcel()will perform the

following actions:

1. Creates a new Excel Application, workbook

“exbook” containing one Datasheet
“exsheet”.

2. Creates a new dynamic DataSet which has a
DataTable that itself contains DataRows and
DataColumns.

3. Loads the encrypted XML file specified by
the user.

4. Creates DataColumns, sets their Data types
and adds them to the DataTable.

5. Creates XMLNodeList object “empList” that
contains all “TableMapping” nodes
specified by the user.

6. The DataRows of the XMLElements in
“empList” are filled with data available in
“EncryptedData.xml” file

7. Sets the value of the property
“DataTableENC” to the first table of the
dataSet “ds”.

8. Fills the Datasheet’s cells “exsheet” with the
DataTable’s headers and rows.

9. Saves the new workbook Excel file and
closes it, and quits the Excel Application.

 Decrypt the XML file:
 The DecryptXML()method will perform the

following actions:

1. Loads the encrypted XML document specified by
the user.

2. Creates an XMLNodeList ’regList’ holding all
encrypted nodes in the encrypted XML document.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

203

3. Loops through this list and searches inside all
“<Employee>” tags if they contain the current
description of the logged on user.

4. When this description is found , it retrieves the
encrypted XML Element(s), Creates an encrypted
data object ”ed2” and loads the encrypted
element “c.firstChild” into the encrypted data
object.

5. Creates an encrypted XML object “exml2”.

6. Decrypts the encrypted element”ed2” using the
shared key

7. Replaces the encrypted element “c.firstChild”
with the plain-text XML element
“decryptedElem”.

8. Saves the decrypted data to an external file
(optional).

 Post XML file in Web Browser:
 The PostXMLFile() method will perform the

following actions:

It declares an instance of URI ”uri” that takes the file
name as an argument and sets the WebBrowser’s URL’s
value to this instance.

 Write the shared key:
 The WriteSharedKey() method will perform the

following actions:

1. Creates an instance ”sharedkey” of the
encryption algorithm provider

2. Converts the generated key to Base-64 String and
write it to an external file specified by the user.

1. Create an instance of the encryption algorithm
provider chosen:
 here, TripleDES will be the algorithm used to
encrypt the XML data.

The .NET framework provides us with multiple
types of encryption algorithms we can use such
as: Triple DES, AES 128, AES 192, AES 256,
RSA (Rijndael algorithm) and
X509CertificateEx.

2. Using the instance created “sharedkey”, we can
get the value of the secret key for this algorithm
used, and convert it from 8 bit-Array to Base-64
String and write it to an external file specified by
the user:

 Read the shared key:
 The ReadSharedKey() method will perform the

following actions:
1. Reads the stored generated key using

StreamReader class.

2. Converts the read key from base 64 digit to
an equivalent 8-bit integer array.

3. Sets the secret’s key value for the TDES
algorithm to the convert 8-bit read key.

1. To read the stored shared key, we should create
an instance “reader” of the StreamReader class:

2. After reading the key stream until the end, we
can convert it from base 64-bit to an equivalent
8-bit integer array and saves it into the data()
array

3. Set the secret’s key value “sharedkey” to the
converted 8-bit array and close the reader:

 Load the XML file:
 The LoadXmlFile()method will perform the

following actions:

It sets the value of the property to the new
“XMLDocument()”, and then it loads the XML
Document from the user specified location. If an
error occurred during loading this file, an error
message will appear.

 Get Current User Information:
 The GetCurrentUserInfo()function will perform

the following actions:

1. Searches for all ‘win32’ accounts available in
this local machine and saves them in
‘ColCSItems’ object.

2. Gets the current logged-on user.
3. Gets the user Description for this logged-on user.

1. This function will search for all win32 user

accounts [10] available in this local PC including
the built-in accounts and saves them in
“ColCSItems” object [11].
ConnectionOptions.Impersonation property sets
COM impersonation level to be used for
operations in this connection. In our case,

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

204

“root\cimv2” is the namespace used and
“WIN32” is the provider used.
 “impersonationLevel=impersonate” is used when
the provider is a trusted application or service. It
eliminates the need for the provider to perform
client identity and access checks for the requested
operations [12].

2. It also gets the current logged-on user. Since the
name of the logged-on user will be returned as
‘computername\username’ shape and we are only
interested in the username itself, we should split
it and get the second part of it and save it in a
string array called “name”. This string array will
hold both parts on the split logged-on user [10].

3. Loops through all the win-32 accounts retrieved,
when a match is found between the win-32 user
and the logged-on user: we can get the
description of this logged-on user and return it.
Because we are only interested in the description
of the logged-on user, the other cases are skipped.

Now, after we have presented the
“SecurityLayer” class, we must build it and
convert it to “dll” file to be used as reference in
both “Excel Security” form application and
“emp.xlsm” Excel file Visual Basic Editor.

The following items are required in order to create this
form:

 Browse Button called “btn_Browse”

 Convert encrypted XML to Excel Button called
“Btn_ConvertEncryptedXMLtoExcel”

 Convert decrypted XML to Excel Button called
“Btn_ConvertDecryptedXMLtoExcel”

 Decrypted XML Button called
“Btn_DecryptXML”

 Instance of TabControl to contain 6 tab pages
called “TabControl1”

 Textbox to write the path of the excel file called
“txt_Path”

 CheckBox to select all nodes in the column called
“chk_all”

 ComboBox to select which column should be
encrypted called “cb_colnames”

 Instance of OpenFileDialog control called
“OpenFileDialog1”

 Three instances of DataGridView control called
“DataGridView1”, “DataGridView2”, and
“DataGridView3” to display the plaintext Excel
file, the encrypted Excel file and the decrypted
files respectively.

 Instances of WebBrowser control to display the
content of encrypted XML, Decrypted XML and
plaintext XML called “webBrowser1”,
“webBrowser2” and “webBrowser3”
respectively.

 We can set the text property of the form to “New
Security Layer To Excel”

 We could set the properties of both
“txtPlainText”,“txtEncrypted” and
“TxtDecryptedXML” to the following:

 ReadOnly: True, to prevent the user to change
the text’s content.

 MultiLine: True, to display more than one line of
the text.

 Scrollbars: Both, Both the vertical and the
horizontal scrollbars are displayed when the text
contains multiline.

 We can set an initial directory to“OpenFileDialog1”
control: InitialDirectory: c: so, the first directory will
open when the user clicks on the browse button is C:.

 We set the AutoSizeColumnMode property to
AllCells of the “DataGridView1”, “DataGridView2”
and “DataGridView3” to determine the auto size mode
for the visible columns.

 We must set the DropDownStyle of the

“cb_colnames” ComboBox to DropDownList to
oblige the user to select an Item from the list.

 To add the 6 tab members to the “TabControl1”, we
need to click on the tabPages: (Collection)… property
and add 6 members TabPage1 … to TabPage6, and set
their texts to: “XML Data”, “XML Plaintext”, and
“Encrypted XML”,”Encrypted Excel File”,
“Decrypted XML” and “Decrypted Excel File”
respectively.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

205

 Finally, we should add a column to the

“DataGridView1” to allow the user to select a node to
be encrypted. This is done by clicking on the property
Columns: (Collection)… and add a column.

The added column has “SelectEmployee” as a Name,
“DataGridViewCheckBoxColumn” as a type, and
“Select” as a Header text. After the “SelectEmployee”
column is added to the DataGridView1, the user is able to
browse the Excel file:

Fig3: Final form shape

 The Btn_Browse_Click()method will perform the
following actions:
1. Filters the Excel file Extension choice
2. Saves the selected file in textbox control
3. Sets the values of properties in

“SecurityLayer” class & convert the Excel
file to XML

4. Sets the DataGridView’s DataSource to the
property “dataTable”

5. Fills the ComboBox “cb_colnames” with the
items in “columnList” property

6. Posts the converted xml file on the “xml
plaintext” tab and sets this DataGridView
to” read-only”.

 Fig4: Displaying the Excel data in a DataGridView

Fig5: Displaying the exported XML file.

 Set the DataGridView to ‘Read-only’:
 The SetGridColumn() method:

Since the first column of the DataGridView
“SelectEmployee” should be editable to allow the user to
select node(s) to encrypt,The SetGridColumn()sub will
loop through each column of this DataGridView,except
the first column, and make their values “read-only” in
order to prevent the user from changing the DataGridView
Cells:

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

206

 Selecting all nodes in a column in one click:

Fig 6: Encryption of all nodes in “BASICSALARY” by

clicking “chk_all” checkbox

 The chk_all_CheckedChanged() method:

The following method assigns the value of the checkboxes
in the DataGridView1 to the value of “chk_all” checkbox.
If it was selected, then these checkboxes will be selected
too; similarly if “chk_all” was reset, these checkboxes will
be reset too. This sub also makes the value of the
DataGridView1 read-only after the “chk_all” checkbox
was checked, to prevent the user to un-check any cell in
the DataGridView1.
 Encrypt node(s) or entire column in XML file:

 Fig 7: Encryption of “<BASICSALARY>” XML node

 The Btn_encrypt_click()method will perform the

following actions:

1. Loads the XML document posted in “XML
Plaintext” tab.

2. Sets the values of some properties and writes the
shared key to an external file.

3. User Validation

4. Checks whether “chk_all" checkbox was selected,
and calls either SelectColumnToEncrypt() and
Posts the encrypted xml file.

5. If not, it calls SelectNodesToEncrypt() & also
posts the encrypted xml file in “web Browser”.

Fig 8: No node or an entire column was selected to be

encrypted

Fig 9: The Column from the ComboBox wasn’t selected

1. Check whether “chk_all" checkbox was selected.
If so, call SelectColumnToEncrypt()method and
post the encrypted file in “Encrypted XML” tab:

2. If “chk_all" checkbox was not selected, loop
through the “ID” of the selected nodes and save
them in a string separated by “,” to call
SelectNodesToEncrypt() method. the encrypted
file is also posted under “Encrypted XML” tab in
a web Browser:

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

207

 Decrypt the encrypted XML file:

Fig 10: Decryption of the XML file for the ‘Manager,B1’

 The Btn_DecryptXML_Click() method will

perform the following actions:

The values of some properties in “securityLayer”
class should be set to call the decryptXML()
method. the decrypted xml file will be posted on
the “Web Browser”.

Note: Only the information that the logged-
on user has access to it will be decrypted; the
other information will remain encrypted. Here,
the logged-on user has access to view the
information of EmployeeID: 1, 2, and 3; but
doesn’t have enough privileges to view the
information related to EmployeeID: 4,5,6,7.

 Convert the encrypted XML to Excel file:

Fig 11: Encryption of the some nodes in “BASICSALARY” column

 The Btn_ConvertEncrypted_XMLtoExcel_Click()

method will perform the following actions:
The values of both InputXMLFile() and
OutPutExcelFile() properties will be set in
order to call the ConvertXMLtoExcel()
method. The result will be posted on
DataGridView2

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

208

Fig 12: Encryption of the Basic Salary column Fig 13: the encrypted excel file

 Convert the Decrypted XML file to Excel:

 Fig 14: Displaying the “EmployeeDecryptedExcel.xlsx” file

 The

Btn_ConvertDecrypted_XMLtoExcel_Click()
method will perform the following actions:

The values of both InputXMLFile() and OutPutExcelFile()
properties will be set in order to call the
ConvertXMLtoExcel() method. The result will be posted
on DataGridView3

B. Excel file supporting Macros: “emp.xlsm” in Visual
Basic for Application.

 Create Command Buttons and set their properties:

1. Go to Developer tab>Insert>ActiveX Control>
Command Buttons

2. Drag 5 command buttons and set their names
respectively: “ConvertXMLtoExcel”,
“EncryptSelectedNodes”, “EncryptAll”,
“Create_Encrypted_Excel”,“Decrypt” and
“Create_Decrypted_Excel”.

3. Set their captions respectively to: “Convert this
Excel to XML”, “Encrypt Selected Nodes”,
“Encrypt All ‘BASICSALARY’ Column”,
“Create Encrypted Excel”, “Decrypt”, and
“Create Decrypted Excel”.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

209

Fig 15: emp.xlsm excel file

Fig 16: employee.xml file

Fig 17: encryptedxml.xml file

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

210

 Fig 18: “EncryptedExcel.xlsx” file.

Fig 19: decryptedxml.xml file

Fig 20: decryptedexcel.xlsx file

Setting privileges to Windows logged-on users:

Logged-on users have different privileges between each others.
To give a certain user a permission to view a portion of data
while other logged-on user is given other portion, we have to
add a meaningful description to them. This description may
present their positions in the Company. This description is
used in the decryption process and leads to different results. In

Adding Description to windows logged-on Users:

our case, we have two logged-on users: “thawari” and
“Rouwa”. “thawari” is a Manager of the first branch of
the EGC company and must grant access only to
information relevant to EmployeeID: 1,2, and 3 while
“Rouwa” is a Manager of the second branch of this
company and must grant access only to information
relevant to EmployeeID: 4,5,6 and 7.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

211

Fig21: Adding Description to user ‘thawari’ Fig22: Adding Description to user ‘Rouwa’

Fig23: Decryption File of user “thawari” Fig24: Decryption file of user ”Rouwa”

Getting User Information using WMI:

In order to get the description of the current user in the
local PC, we must know some information concerning
Windows Management Instrumentation.

WMI: Windows Management Instrumentation
Referring to [13], WMI is the instrumentation and
plumbing through which almost all—Windows resources
can be accessed, configured, managed, and monitored.

There are three steps common to any WMI script used in
the script to retrieve information about a WMI managed
resources: connecting to WMI service, retrieving a WMI
managed resource and displaying properties of WMI
managed resource. Establishing a connection to the
Windows Management Service on a local or remote
computer is done by calling
VBScript's Getobject function and passing GetObject the
name of the WMI Scripting Library's moniker, which is
"winmgmts:" followed by the name of the target computer.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

212

WMI Architecture
The WMI architecture consists of three primary layers:

Managed resources, WMI infrastructure and Consumers.

Fig25: WMI Infrastructure

Managed Resources
A managed resource is any logical or physical component,
which is exposed and manageable by using WMI.
Windows resources that can be managed using WMI
include the computer system, disks, peripheral devices,
event logs, files, folders, file systems etc… A WMI
managed resource communicates with WMI through a
provider.
WMI Infrastructure
The middle layer is the WMI infrastructure. WMI consists
of three primary components: the Common Information
Model Object Manager (CIMOM), the Common
Information Model (CIM) repository, and providers.
Together, the three WMI components provide the
infrastructure through which configuration and
management data is defined, exposed, accessed, and
retrieved. A fourth component, even if small, but
absolutely essential to scripting is the WMI scripting
library.
CIM Repository
WMI is based on the idea that configuration and
management information from different sources can be
uniformly represented with a schema. The CIM is the
schema, also called the object repository or class store that
models the managed environment and defines every piece
of data exposed by WMI. The schema is based on
the DMTF Common Information Model standard.
Much like Active Directory's schema is built on the
concept of a class, the CIM consists of classes. A class is a
blueprint for a WMI manageable resource.

Classes are grouped into namespaces, which are logical
groups of classes representing a specific area of
management. For example, the root\cimv2 namespace
includes most of the classes that represent resources
commonly associated with a computer and operating
system.
WMI Providers
WMI providers act as an intermediary between WMI and
a managed resource. Providers request information from,
and send instructions to WMI managed resources on
behalf of consumer applications and scripts. For example,
WIN32 provider provides information about the
computer, disks, peripheral devices, files, folders, file
systems, networking components, operating system,
printers, processes, security, services, shares, SAM users
and groups, and more.

4. Conclusions

To sum up, the idea of this paper has born to address a
certain limitation in Windows Right Management Services
which is the non-reusability of a file per different trusted
recipients. Since WRMS provides a security on the whole
document, it is not possible to share a part of the data in an
RMS-enabled file with other trusted recipients having
different privileges. Therefore, the sender is obliged to
send to those recipients’ different files that do not contain
confidential data, and applies WRMS on each file.
This paper has introduced a new layer for securing
sensitive data in Excel worksheet. It gives the flexibility to
the sender to send only one copy of the file to different
trusted recipients having different privileges and
permissions. The provided solution will apply a security
on a portion of the document which contains the
confidential and sensitive data. As a final result, it does a
selective access to the data: each receiver can only see
data that grants access to.
If this solution is accompanied with WRMS, the sender
can get extra benefits such as: the Excel file can be kept
secure toward unauthorized recipients in addition it can be
ensured that the received data will not be changed.

The advantages of this solution are:

 Efficiency in memory usage, time saving and file
reusability in a proper secure way that fits many
recipients having different privileges and protects
the file from unintended or malicious recipients.

 The provided solution can be considered as
scalable since the tremendous number of users
does not affect on how the solution works.

 Since this solution was implemented as a separate
module (DLL file), any update or improvement in

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

213

the code became easier to apply since it doesn’t
affect other parts of the program [14].

 In addition, the separate module makes the
solution user-friendly, since any basic
programmer can get all its benefits simply by
sending few parameters (such as name of certain
files) without the need to master programming
languages.

 Furthermore, this solution also provides a large
compatibility and interoperability with different
types of applications such as (Component Object
Model) and different programming languages
(such as C, Pascal, or standard call).

 This solution is not relying on WRMS; it is
capable of working independently.

In future works, this security layer should be applicable in
all Microsoft Office applications (word documents,
PowerPoint presentations, Microsoft Access …) and
perhaps portable document file (.pdf) files. Furthermore,
if the solution was extended to a web service, any
application that supports web services can use it (such as:
Java application, PHP application …).

References

[1] Deb Shinder, How the Windows Rights Management
Service can Enhance the Security of your Documents.
Published: Sep 23, 2003 Updated: Apr 06, 2005.
http://www.windowsecurity.com/articles/Windows_Ri
ghts_Management_Service_Documents.html

[2] Tony Bradley, NETWORK SECURITY TACTICS,
Information protection: Using Windows Rights
Management Services to secure data. Published: Aug
01, 2008:
http://searchsecurity.techtarget.com/tip/0,289483,sid14
gci1287738,00.html

[3] Technical Overview of Windows Rights Management
Services for Windows Server 2003:
www.winbr.com.br/downloads/RMSTechOverview

[4] XrML, W3C.
[5] Visual Basic .NET for first time programmers

Workbook, Question Edition, Document Version 1.1
Copyright 2004 LearnVisualStudio.Net pages: 131,
132, and 138. http://www.learnvisualstudio.net/

[6] Jaspal Singh, Excel Connectivity in VB.NET published: Aug
18, 2005:
http://www.codeproject.com/KB/vb/Excel_Connectivit
y.aspx

[7] Import from excel 2007 into dataset problem:
http://forums.asp.net/p/1093352/1644797.aspx#164479

[8] Bilal Siddiqui, Exploring XML Encryption Part 1,
demonstrating the secure exchange of structured data.
Published: Mar 01, 2002:

http://www.ibm.com/developerworks/xml/library/x-
encrypt/

[9] XPath Tutorial:
http://www.w3schools.com/XPath/default.asp

[10] Win32_userAccount Class:
 http://msdn.microsoft.com/en-
us/library/aa394507(VS.85).aspx#properties

[11] Vicky Desjardins, Script to get local user, description,
last logon, Group Membership for dummies’.
Published: Feb 15, 2007:
http://www.visualbasicscript.com/m43246.aspx

[12] Impersonation of Client:
http://msdn.microsoft.com/enus/library/system.manage
ment.connectionoptions.impersonation.aspx

[13] Windows Management Instrumentation:
 http://msdn.microsoft.com/en-
us/library/ms974579.aspx

[14] Advantages of Dynamic Linking:
http://msdn.microsoft.com/en-
us/library/ms681938(VS.85).aspx

