
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

191

Modeling ODP Policies by using event-B

Belhaj Hafid, Bouhdadi Mohamed and Elhajji Said

Department of Mathematics & Computer Science, University Mohammed V, Faculty of science
BP 1014 RP, 4. Av Ibn Batouta – Agdal, Rabat, Morocco

Abstract

The Reference Model for Open Distributed Processing (RM-
ODP) defines a framework for the development of Open
Distributed Processing (ODP) systems in terms of five
viewpoints: information, enterprise, computational, technology
and engineering. Each viewpoint language defines concepts and
rules for specifying ODP systems from the corresponding
viewpoint. The enterprise viewpoint focuses on the roles and
policies on the enterprise that the system is meant to support.
The use of formal methods in the design process of ODP systems
is explicitly required. Formal notations provide precise and
unambiguous system specifications. An important point to take
into account is the incorporation of the many proofs which have
to be performed in order to be sure that the final system will be
indeed “correct by construction”. The Event-B method is being
defined as a formal notation.
In this paper, we explore the benefits provided by using the proof
construction approach to specify open distributed System in the
enterprise viewpoint focusing on the specification of actions and
the behavioral policies conditioning them.
Keywords: RM-ODP, Enterprise Language, Policies, event B,
RODIN platform.

1. Introduction

The RM-ODP[1,2,3,4] framework is increasingly being
used for modelling complex open distributed systems,
such as those in the domains of telecommunications,
finance, education and defence. While some of the ODP
viewpoint languages, in particular computational and
engineering are developed in sufficient details to describe
programming and infrastructure artifacts of any distributed
system, this is not true of the enterprise language. On the
other hand, the availability of maturing distributed
infrastructure platforms such as CORBA, DCOM, DCE
and Java-RMI increasingly encourages the use of
distributed objects for business applications. As a result,
the IT community is shifting its interest from platform
issues towards enterprise specifications. There is an
increasing demand from industry to use enterprise
specifications to improve the accuracy of the design of
distributed systems, in particular those that cross various
administrative and organisational boundaries [23] .

The existing ODP enterprise language, consisting of a
limited number of concepts and structuring rules, needs
further extensions and refinements in order to be better
suited for enterprise modelling of practical open
distributed systems. For example, there is a need for
rigorous specification of policies governing the behaviour
of complex systems and automated sub-systems. These
policies need to be made explicit because their monitoring
and enforcement will require actions by the system
implemented, and the correctness of these actions can only
be guaranteed if there is a well defined framework for the
description of concepts such as ownership, right, objective,
authority, delegation and policy.
The languages Z, SDL, LOTOS, and Estelle are used in
RM-ODP architectural semantics part [4] for the
specification of ODP concepts. However, no formal
method is likely to be suitable for specifying every aspect
of an ODP system.
Elsewhere, we used the meta-modeling approach [5] [6] to
define syntax of a sub-language for the ODP QoS-aware
enterprise viewpoint specifications. We defined a meta-
model semantics for structural constraints on ODP
enterprise language [7] using UML and OCL. We also
used the same meta-modeling and denotation approaches
for behavioral concepts in the foundations part and in the
enterprise language [8,9].
Furthermore, for modeling ODP systems correctly by
construction, the current testing techniques [10,11] are not
widely accepted. In a previous work [12,14], we specify
the trading function and the protocol of negotiating QoS
requirements between enterprise objects in event B.
For modeling business requirements and systems we will
use the concepts provided by the RM-ODP enterprise
viewpoint [15]. The enterprise viewpoint focuses on the
purpose, scope and policies for the system and its
environment. It describes the business requirements and
how to meet them, but without having to worry about
other system considerations, such as particular details of
its implementation, or the technology used to implement
the system.
Specifically, this paper focuses on a subset of the
enterprise concepts, namely on the notions of action and
policy (permissions, prohibitions and obligations), and try

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

192

to provide a more precise framework for reasoning about
these fundamental enterprise concepts. It aims to allow the
unambiguous specification of enterprise requirements.
we use the event-B formalism as our formal framework for
developing policies in enterprise viewpoint ODP language.
Event B [16] is a method with tool support for applying
systems in the B method. Hence we can benefit from the
useful formalism for reasoning about distributed systems
given by refinement techniques and from the tool support
in B. The Rodin Platform for Event-B provides effective
support for refinement and mathematical proof. [17]
The structure of this document is as follows. First,
Sections 2 and 3 serve as brief introductions to the RM-
ODP and event B, respectively. Then, Section 4 describes
our proposal to write enterprise policies specifications in
event B. Finally, Section 5 draws some conclusions and
describes some future research activities.

2. RM-ODP enterprise language

2.1 RM-ODP

Distributed systems are inherently complex, and their
complete specifications are so extensive that fully
comprehending all their aspects is a difficult task. To deal
with this complexity, system specifications are usually
decomposed through a process of separation of concerns
to produce a set of complementary specifications, each one
dealing with a specific aspect of the system. Specification
decomposition is a well-known concept that can be found
in many architectures for distributed systems. In particular,
the Reference Model for Open Distributed Processing
(RM-ODP) [1-4] provides a framework within which
support of distribution, networking and portability can be
integrated. It consists of four parts. The foundations part
[2] contains the definition of the concepts and analytical
framework for normalized description of arbitrary
distributed processing systems. These concepts are
grouped in several categories which include structural and
behavioral concepts. The architecture part [3] contains the
specifications of the required characteristics that qualify
distributed processing as open. It defines a framework
comprising five viewpoints, five viewpoint languages,
ODP functions and ODP transparencies. The five
viewpoints are enterprise, information, computational,
engineering and technology.
Each viewpoint language defines concepts and rules for
specifying ODP systems from the corresponding
viewpoint. However, RM-ODP is a meta-norm [5] in the
sense that it defines a standard for the definition of other
ODP standards. The ODP standards include modelling
languages, specification languages and verification[12, 13].

2.2 The Enterprise Viewpoint

RM-ODP [1-4] provides five generic and complementary
viewpoints on the system and its environment: enterprise,
information, computational, engineering and technology
viewpoints. They enable different abstraction viewpoints,
allowing participants to observe a system from different
suitable perspectives [18].
The enterprise viewpoint focuses on the purpose, scope
and policies for the system [15] and its environment. It
describes the business requirements and how to meet them,
but without having to worry about other system
considerations, such as particular details of its
implementation, or the technology used to implement the
system. Bellow, we summarize the basic enterprise
concepts.
Community is the key enterprise concept. It is defined as a
configuration of enterprise objects formed to meet an
objective. The objective is expressed as a contract that
specifies how the objective can be meet[19].
A contract is a generic concept that specifies an agreement
governing part of the collective behavior of a set of
objects. A contract specifies obligations, permissions and
prohibitions for objects involved.
The scope of the system is defined in terms of its intended
behavior, and this is expressed in terms of roles, processes,
policies, and their relationships.
Roles identify abstractions of the community behavior,
and are fulfilled by enterprise objects in the community.
Processes describe the community behavior by means of
(partially ordered) sets of actions, which are related to
achieving some particular sub-objective within the
community.
Finally, policies are the rules that constrain the behavior
and membership of communities in order to achieve their
objectives. A policy can be expressed as an obligation, a
permission, or a prohibition.
Obligation: A prescription that a particular behaviour is
required. An obligation is fulfilled by the occurrence of
the prescribed behaviour (RM-ODP, part 2, clause 11.2.4) .

Permission: A prescription that a particular behaviour
is allowed to occur. A permission is equivalent to there
being no obligation for the behaviour not to occur (RM-
ODP, part 2, clause 11.2.5) .
Prohibition: A prescription that a particular behaviour
must not occur. A prohibition is equivalent to there being
an obligation for the behaviour not to occur (RM-ODP,
part 2, clause 11.2.6) .
In general, ODP systems are modeled in terms of objects.
An object is a model of an entity; it contains information
and offers services. A system is therefore composed of
interacting objects. In the case of the enterprise viewpoint
we talk about enterprise objects, which model the entities
defined in an enterprise specification [20].

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

193

An enterprise object is an object that filles one or more
roles in a community. It can also participate in more than
one community at one time. An enterprise object may be a
role, an activity or a policy of the system. [19]

Fig. 1 Enterprise concepts [19].

3. Event B modeling approach

The Event-B [21] [22] is formal techniques consist of
describing rigorously the problem, introduce solutions or
details in the refinement steps to obtain more concrete
specifications and verifying that proposed solutions are
correct. The system is modeled in terms of an abstract
state space using variables with set theoretic types and the
events that modify state variables. Event-B, a variant of B,
was designed for developing distributed systems. In
Event-B, the events consist of guarded actions occurring
spontaneously rather than being invoked. The invariants
state properties that must be satisfied by the variables and
maintained by the activation of the events.
The mathematical foundations for development of event
based system in B is discussed in [13]. An abstract
machine consists of sets, constants and variables clause
modelled as set theoretic constructs. The invariants and
properties are defined as first order predicates. The event
system is defined by its state and contain number strained
by the conditions defined in the properties and invariant
clause known as invariant properties of the system. Each

event in the abstract model is composed of a guard and an
action. A typical abstract machine may be outlined as
below.

MACHINE M
SETS S1,S2,S3...
CONSTANTS C
PROPERTIES P
VARIABLES v1,v2,v3...
INVARIANTS I
INITIALISATION init
EVENTS
 E1 = WHEN G1 THEN S1 END;

END.

4. Specifying ODP policies by using event B

4.1 Abstract and concrete levels on enterprise
concepts

The interaction of people with IT systems generate various
restriction needs to guarantee that each system user
benefits of its advantages without trespassing on another
user’s rights. These needs vary according to the activity
field required.
It could be regarding: Confidentiality (Non disclosure of
sensitive information to non authorised persons), Integrity
(Non alteration of sensitive information), Availability
(Supply of information to users according to their rights of
access these information), Auditability (The ability to
trace and determine the actions carried out in the system).
Such requirements usually result in expressing policies,
defining for each user his permissions, prohibitions and
obligations. Users (or objects type) are active entities
operating on enterprise objects (passive entities) of the
system.
Summing up, an enterprise specification is composed of
specifications of the elements previously mentioned, i.e.
the system’s communities (sets of enterprise objects), roles
(identifiers of behavior), processes (sets of actions leading
to an objective), policies (rules that govern the behavior
and membership of communities to achieve an objective),
and their relationships [15].
A contract specifies obligations, permissions and
prohibitions for objects comprising in a communities.
Just as for the objects, the actions are also gathered in
processes, this implies that there are two levels of
abstraction in ODP enterprise viewpoint:

– Abstract level: roles, processes and enterprise
viewpoint of the system on which various permissions,
prohibitions and obligations are expressed.

– Concrete level: object type (client, server, policy
maker, policy administrator), actions (create, delete) and
enterprise objects of the system.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

194

Object type, actions and enterprise objects are respectively
assigned to roles, processes and enterprise viewpoint by
relations defined over these entities(see figure 2). We
detail relations in the next sub-section.
Play, Use and belong.
Assignment of Objects type to roles: Objects type are
assigned to one or more roles in order to define their
privileges. Objects type play their roles in communities,
which implies that these objects are assigned to roles
through a ternary relation including the community:
play(com, Ot, r): means that the Object type Ot plays the
role r in the community com.
Assignment of actions to processes: As for roles and
Objects type, processes are an abstraction of various
actions authorized in the system. The relation binding
actions to processes is also a ternary relation including the
community:
belong(com, a, p): means that the action a is considered as
a process p in the community com.
Assignment of enterprise objects to enterprise viewpoint:
The relation binding the enterprise objects to the enterprise
viewpoint to which they belong is also a ternary relation
including the community:
use(com, o, v): means that the community com uses the
object o in the enterprise viewpoint v.

Fig. 2 Abstract and Concrete level of ODP enterprise viewpoint’s
concepts.

Modeling a Policy. When objects type, actions, and
enterprise objects are respectively assigned to roles,
processes and enterprise viewpoint, it is now possible to
describe the policy. It consists of defining different
permissions, prohibitions and obligations:

– permission(com, r, p, v): means that the community
com grants to the role r the permission to carry out the
process p on the enterprise viewpoint v.

– prohibition(com, r, p, v): means that the community
com prohibits the role r to carry out the process p on the
enterprise viewpoint v.

– obligation(com, r, p, v): means that the community
com require the role r to carry out the process p on the
enterprise viewpoint v.

Hierarchy
In situations when two or more groups of objects, under
control of different autorities, engage in cooperation to
meet a mutual objective, they form a specifal kind of
community called a federation.
The hierarchies allow the inheritance of the privileges
(permissions prohibitions or obligations), if for example r2
is a sub-role of r1, for a community com, a process p and
an enterprise viewpoint v:

– When permission(com, r1, p, v) holds then
permission(com, r2, p, v) holds.

– When prohibition(com, r1, p, v) holds then
prohibition(com, r2, p, v) holds.

– When obligation(com, r1, p, v) holds then
obligation(com, r2, p, v) holds.
In the same way for the communities, if com2 is a sub-
community of com1 then, for a role r a process p and an
enterprise viewpoint v:

– When permission(com1, r, p, v) holds then
permission(com2, r, p, v) holds.

– When prohibition(com1, r, p, v) holds then
prohibition(com2, r, p, v) holds.
– When obligation(com1, r, p, v) holds then
obligation(com2, r, p, v) holds..

4.2 Event B Models for ODP policies

The expression of the policy in event B includes several
successive stages. A first B model is built and then other
successive refinements are made as shown by figure 3.
The first refinement validates the link between the abstract
level (role, ...) and the concrete level (object type,).
The approach is based on refinement and each model or
refinement model is enriched either by constraints required
by the system specification. Each constraint is attached to
an invariant. The invariant becomes stronger through the
refinement steps.

4.2.1 Abstract Model with policies

As presented in the paragraph 4.1, the enterprise
specification has two levels of abstraction (see figure 2).
The first step consists of an event B model modeling the
abstract part of the policy, i.e. initially, only concepts of
community, role, enterprise viewpoint, process are
considered. In the first model, permissions, obligations
and prohibitions should be described.
– The clause SETS in the event B model contains basic
sets such as community, roles, processes, enterprise
viewpoint: COMS, ROLES, PROCESSES, ENT VP.

Play
Belong

Use

Prohibition Permission

(com, role, process, enterprise viewpoint,)

(object type, action, enterprise object)

Obligation

Abstract level

Concrete level

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

195

Fig. 3. Steps of conception of event- B based model of ODP policies

– The clauses CONSTANTS and PROPERTIES contain
the constants like permission, obligation and prohibition
that will contain privileges of the ODP system description.
Two new constants sub_role and sub_com are introduced
to take into account respectively the role and community
hierarchy. It is enough to specify which roles and which
communities are concerned with inheritances, and the
permissions, obligations and prohibitions corresponding to
inheritances are deductively generated.

For a given particular case, it is enough to initialize sets in
the clause SETS by entities, communities, roles, enterprise
viewpoint, processes. Properties of constants, like
permission, prohibition, obligation, sub_role and sub_com,
should also be set in the clause PROPERTIES.
Consequently, permissions, prohibitions and obligations
cannot be modified, since they are defined as constants.

Introducing State Variables. An event B model
expresses properties over state and state variables.
Variables are used to model the status of the system with
respect to permissions, prohibitions and obligations:
– The clause VARIABLES contains the state variable
hist_abst that contains the history of system processes and
satisfy the following properties added to the invariant:
 INVARIANT

hist_abst � COMS × ROLES × PROCESSES ×

ENT VP
hist_abst � permission

The initial values of the variable is set as follows:
hist_abst :=
As the policy is supposed to be consistent, we should be
able to prove in the clause ASSERTIONS :
 ASSERTIONS

permission ∩ prohibition= permission ∩ obligation =

hist_abst ∩ prohibition = hist_abst ∩ obligation =

– The clause EVENTS contains the following event :

• The event action models when an authorization

request for the access of an object type to an enterprise
object of the system occurs.

The invariant should be preserved and it means that any
process in the system is controlled by the policy through
the variable hist_abst.

4.2.2 First Refinement: Concrete Model with Policies

We defined two levels of abstraction and the current
model is refined into a concrete model. The refinement
introduces object types, actions and enterprise objects:
sets OBJTYPES, ACTIONS and ENTOBJ contain
respectively object types, actions and enterprise objects of
the system under development. The clause CONSTANTS
includes the following constants: play (assignment of
objects types to roles), use (assignment of objects to
enterprise viewpoint) and belong (assignment of actions to
processes). Properties of constants are stated as follows:

 PROPERTIES

play COMS × ROLES × OBJTYPES

use COMS × ENT VP × ENTOBJ

SETS
 COMS; ROLES;
 ROCESSES;ENT VP;

CONSTANTS
 permission, prohibition,
obligation, sub_com, sub_role

PROPERTIES
permission � COMS × ROLES × PROCESSES × ENT VP
prohibition � COMS × ROLES × PROCESSES × ENT VP
obligation � COMS × ROLES × PROCESSES × ENT VP
sub_org � ORGS × ORGS
sub_role � ROLES × ROLES
/ * Organization hierarchies * /
�(com1, com2, r, p, v).
 ((com1 � COMS � com2 � COMS� r � ROLES �
 p � PROCESSES� v � ENT VP � (com1 com2) �
sub_com � (com2 r p v) � permission)
 � (com1 r p v) � permission)
/ * Role hierarchies * /
�(com, r1, r2, p, v). ((r1 � ROLES � r2 � ROLES� com
� COMS � p � PROCESSES � v � ENT VP � (r1 r2)
� sub_role � (com r2 p v)�permission)

 � (com r1 p v) � permission)
/ * Same properties for prohibitions and obligation * /

action ≡
 any com, r, v, p where
 com � COMS � r � ROLES � v � ENT VP
 � p � PROCESSES
 (org r p v) � permission
 then
 hist_abst := hist_abst � {(com r p v)}
end

refinement

ODP Policy Checking
Consistency

refinement

Continue to develop the system with B

Specifying policies
with event B

B Concrete model with permissions,
obligations and prohibitions

B Abstract model with
permissions, obligations and prohibitions

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

196

belong COMS × PROCESSES × ACTIONS

Concrete Variables. A new variable hist_conc models the
control of the system according to the policy; it contains
the history of the actions performed by an object type on a
given enterprise object. The context in which the action
occurred is also stored in this variable.
The relation between hist_conc and the variable hist_abst
of the abstract model is expressed in the gluing invariant;
the first part of the invariant states properties satisfied by
variables with respect to permissions.

The invariant states that each action performed by the
system satisfies the policy. For the prohibitions, when a
subject s wants to carry out an action a on an object o in
an organization org, it is necessary to check that no
prohibition exists for that action. The second part of the
invariant states properties satisfied by variables with
respect to prohibitions and obligations:

The Events. The abstract model should consider the
permissions, the prohibitions and the obligations for an
object type ot that asks to perform an action a on an
enterprise object o.

5. Conclusions

The use of formal methods in the design process of ODP
systems is explicitly required. An important point to take
into account is the incorporation of the many proofs which
have to be performed in order to be sure that the final
system will be indeed «correct by construction».
In this article We presented our approach for developing
distributed system in Event B. we used event B for
modeling policies in ODP enterprise viewpoint.
The work was carried out on the Rodin platform. In order
to verify our models, the abstract and refinement model of
ODP policies are developed by using Event-B, Each
model is analyzed and proved to be correct.
Our experience strengthens our believe that abstraction
and refinement are valuable technique for modeling
complex distributed system.
As for future work, we are going to generalize our
approach to other concepts in ODP systems. This will be
our basis for further investigation of using event-B in the
design process of ODP systems. Moreover, case studies
should be developed using these models.

References
[1] ISO/IEC, ‘’Basic Reference Model of Open Distributed

Processing-Part1: Overview and Guide to Use, ‘’ISO/IEC
CD 10746-1, 1994

[2] ISO/IEC, ‘’RM-ODP-Part2: Descriptive Model, ‘’ ISO/IEC
DIS 10746-2, 1994.

[3] ISO/IEC, ‘’RM-ODP-Part3: Prescriptive Model, ‘’ ISO/IEC
DIS 10746-3, 1994.

[4] ISO/IEC, ‘’RM-ODP-Part4: Architectural Semantics, ‘’
ISO/IEC DIS 10746-4, July 1994.

[5] M. Bouhdadi and al., ‘’A UML-Based Meta-language for the
QoS-aware Enterprise Specification of Open Distributed
Systems’’ IFIP Series, Vol 85, Springer, (2002) 255-264.

[6] Mohamed Bouhdadi and al. ‘A Semantics of Behavioural
Concepts for Open Virtual Enterprises’. Series: Lecture
Notes in Electrical Engineering, , Vol. 27 .Springer, 2009.
p.275-286.

[7] Belhaj H and al. Event B for ODP Enterprise Behavioral
Concepts Specification, Proceedings of the World Congress
on Engineering 2009 Vol I, WCE '09, July 1 - 3, 2009,
London, U.K., Lecture Notes in Engineering and Computer
Science, pp. 784-788, Newswood Limited, 2009

[8] Mohamed Bouhdadi and al., ‘Using BPEL for Behavioural
Concepts in ODP Enterprise Language’, Virtual Enterprises
and Collaborative Networks, IFIP, Vol. 283, pp. 221-232,
Springer, 2008

[9] Mohamed Bouhdadi and al., ‘Meta-modelling Syntax and
Semantics of Structural Concepts for Open Networked
Enterprises’, Lecture Notes in Computer Science, Vol. 4707,
pp. 45-54, Springer, 2007.

[10] Myers, G. The art of Software Testing, John Wiley &Sons,
New York, 1979

[11] Binder, R. Testing Object Oriented Systems. Models.
Patterns, and Tools, Addison-Wesley, 1999

INVARIANT
�(ot, a, o).(
 (ot � OBJTYPES � a � ACTIONS�
 o � ENTOBJ � (ot a o) � hist_conc)

�
(�(com, r, p, v).(com � COMS � r � ROLES�
 p � PROCESSES � v � ENTVP�
(r ot) � play� (v o) � use� (p a) � belong
� (com r p v) � hist_abst)))

INVARIANT
(ot, a, o).(

 (ot OBJTYPES a ACTIONS o ENTOBJ
 (ot a o) hist_conc)

 ((com, r, p, v).(com COMS r ROLES
 p PROCESSES v ENTVP
 (r ot) play (v o) use (p a) belong)
 (com r p v) prohibition)
 (com r p v) obligation))

action ≡
any ot, a, o, com, r, v, p where ot OBJTYPES a ACTIONS

 o ENTOBJ com COMS r ROLES p PROCESSES
 v ENTVP (r ot) play (v o) use (p a)

belong
/ permission /
(com r p v) permission
/ prohibition and obligation /
((comi, ri, pi, vi).((comi ORGS ri ROLES pi
PROCESSES

 vi ENTVP (ri ot) play (vi o) use (pi a)
belong)

((comi ri pi vi) prohibition)
(comi ri pi vi) obligation))

Then hist_conc := hist_conc {(ot a o)} end

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

197

[12] Belhaj Hafid and al.: Using Event B to specify QoS in ODP
Enterprise language. PRO-VE'10 11th IFIP Working
Conference on VIRTUAL ENTERPRISES, Saint-Etienne,
France, 11-13 October 2010.

[13] J.-R. Abrial. The B-Book: Assigning programs to meanings.
Cambridge University Press, 1996.

[14] Belhaj Hafid, Bouhdadi Mohamed, El hajji Said : Verifying
ODP trader function by using Event B. IJCSI International
Journal of Computer Science Issues, Vol. 7, Issue 4, No 9,
July 2010.

[15]ISO/IEC. RM-ODP Enterprise Language. Draft International
Standard ISO/IEC 15414, ITU-T X.911, ISO, 2001.

[16] http://www.event-b.org/
[17] RODIN. Development Environment for Complex Systems

(Rodin). 2009. http://rodin.cs.ncl.ac.uk/.
[18] P. Linington. RM-ODP: The architecture. In K. Milosevic

and L. Armstrong, editors, Open Distributed Processing II,
pages 15–33. Chapman & Hall, Feb. 1995.

[19] Mohamed Bouhdadi and al. “ A UML/OCL Meta-model
Syntax for Structural Constraints in ODP Enterprise
Language” Journal WSEAS Transactions on Computers,
Vol 6, Issue 1, WSEAS Press, pp:31-36, 2007.

[20] Francisco Duran, Javier Herrador, and Antonio Vallecillo.
“Using UML and Maude for Writing and Reasoning about
ODP Policies”. Proceedings of the 4th International
Workshop on Policies for Distributed Systems and Networks
(POLICY’03) , Lake Como (Italy). pp. 15-25, IEEE
Computer Society Press, June 2003.

[21] Joochim, T., Snook, C., Poppleton, M. and Gravell, A.
(2010) TIMING DIAGRAMS REQUIREMENTS
MODELING USING EVENT-B FORMAL METHODS. In:
IASTED International Conference on Software Engineering
(SE2010), February 16 – 18, 2010, Innsbruck, Austria.

[22] C.Snook & M.Butler, UML-B and Event-B: an integration
of languages and tools. Proc. IASTED International Conf. on
Software Engineering (SE2008), Innsbruck, Austria, 2008.

[23] P.F. Linington, Z Milosevic, and K. Raymond, Policies in
communities: Extending the enterprise viewpoint. In Proc.
2nd International Workshop on Enterprise Distributed Object
Computing (EDOC'98), San Diego, USA, page 11,
November 1998.

