
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

1

Mobile agent driven by aspect

Youssef Hannad1, Fabrice Mourlin2

 1 LACL, Laboratory Algorithm Complexity Logics
Computer Science department, Paris 12 University,

Creteil, 94010, France

2 LACL, Laboratory Algorithm Complexity Logics
Computer Science department, Paris 12 University,

Creteil, 94010, France

Abstract
Domain application of mobile agents is quite large. They are
used for network management and the monitoring of complex
architecture. Mobile agent is also essential into specific software
architecture such that adaptable grid architecture. Even if the
concept of mobile agent seems to be obvious, the development is
always complex because it needs to understand network features
but also security features and negotiation algorithms.
We present a work about an application of aspects dedicated to
mobile agent development over a local network. At this level, the
underlying protocol is called jini and allows managing several
essential concepts such that short transaction and permission
management.
Three subsets of aspects are defined in this work. A part is for
the description of agent host and its security level, accessible
resource, etc. A second part is about mobile agent and their
collaboration. This means how they can operate on an agent host
with the respect of the execution context.
All the results are illustrated through a distributed monitoring
application called DMA. Its main objective is the observation of
component servers.
Keywords: mobile agent, aspect programming, distributed
application.

1. Introduction

In a distributed context, where software shares
resources, also a key concept is adaptability. Behind this
word, several problems are hidden. Such as examples,
numerical application need to access to computing
resources over a network. These resources can be locked
by another application, or the rights of the numerical
application are not sufficient for the operation. In that case,
this local anomaly can involve a global perturbation. It is
essential to solve this problem locally. A central approach
will involve a lot of message exchanges, every pieces of
the distributed application will be touched by a local
resource access violation. Therefore, a solution should be

found locally. It means that a strategy has to be deployed
for finding another resource for instance, or for acquiring
new access permissions.

For network monitoring, similar problems occur.
When an administrator wants to observe the hosts and the
state of the applications which are deployed, a part of an
application can be inaccessible, also a remote observation
can not be computed. Idem, administrator can not reboot
the whole application because of a local anomaly. A
diagnostic can be found and a solution can be set. For
instance, this solution could be to move the local activity
to another host or to save the current state of the activity,
then to restart local processes. Similar as before, the
decision graph has to be efficient if we want to solve a
problem without to many perturbations.

Previous examples highlight several features. First,
adaptable behavior means that diagnostic and action have
to be decided locally to the location where the problem
happens. Secondly, action has to be effective: if an activity
is not realized, it should be realized somewhere else. Often,
problems are due to a service failure or a breakdown of
material. Also, migration is a solution to replay an activity
into another context.

When a set of actions is moved from one node of the
network to another, a collection of properties have to be
checked. We can divide these properties into three subsets.
A first one is about network characteristics, this means
material description, protocol configuration and details on
message routes. A second subset describes security
permissions; this is essential for the negotiation step.
When an activity moves from a node to another one, this
activity has to be accepted by a host node. Because each
node has its own permission strategy, the host negotiates
with the activity to know whether or not this activity can
be imported. Of course, this depends on what the activity
wish to do and the resource it needs to use. Last subset of
properties is about administration of the migration. When

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

2

an activity changes its locality, this can impact other
activities, especially for message exchanges and more
generally for monitoring. We can easily sum up that
implementation of such mobile code is a complex task and
several technologies can be applied for that objective [1].

This document is divided into five parts with first an
introduction about mobile agent programming and
application. Secondly, we detail our choice about aspect
programming and the reasons for their introduction.
Thirdly, we present our design strategy through UML
notation and then we present our monitoring application.
By the end, we present results of data collection and also
the expressive power of message format

1.1 Mobile Agent Programming

Our past experience on mobile agent programming
allows us to compare frameworks and also to choose
technology depending on its limits. For instance, JADE [2]
needs to install services on host node; users cannot decide
whether a service is mandatory or not. When runtime
environment is restricted about CPU capacity of
deployment ability, too many services involves side effect.
Tryllian Mobile Agent Technology provides the necessary
elements such as security [3], mobility, decision for
activity management over a network, but administration is
missing. Also, it becomes difficult to diagnostic precisely
blocking into an agent application. The framework SOMA
[4] has been designed to achieve two main objectives:
security and interoperability. Application based on SOMA,
can interoperate with different application components
designed with different programming styles; it grants
interoperability by closely considering compliance with
CORBA and MASIF. But this brings a large amount of
development rules based on design patterns. Also,
software development costs much more with SOMA than
other framework like JADE or JAVact [5]. Developers
need to use tools for checking if design patterns are
correctly applied, but such tools do not exist, also each
developer has to assimilate a lot of knowledge to have
programming level. Our main observation is this lack of
help; it appears that a standard approach of agent mobile
programming has to be defined to reduce cost of
development. We present in the current document our
contribution to the domain of mobile agent development
based on the use of aspects approach. Our architecture
constraints, described previously, are based on these three
subsets and their controls imply particular properties of
aspect programming.

1.2 Application domain of mobile agent system

Mobile agents are software abstractions that can
migrate across the network. This property has a large
spectrum of applications. As mentioned previously,
network administration was the first domain where mobile

agents are considered as a probe or a spy which provides
details about activities of a remote computer or device. A
first example is an agent which gauges the load on specific
ports. When a threshold is achieved, then agent can export
a messenger (or mobile agent) to server with data about
the alert.

Mobile agents are also used into intrusion detection
system. They have two roles. At the beginning, mobile
agents are deployed from an agent server onto hosts where
controls have to be done. For instance, an agent can
observe protocol login and filters users which try to
connect too many times. Regularly, agents notify server to
ensure that they are always alive. This is essential when an
attack occurs, because the invasion starts by killing agent
which observes the protocol. When an agent is not alive,
the server exports immediately another one. Thereby the
safety service continues until the next attack. We have
developed project based on AAFID (Autonomous Agents
for Intrusion Detection) [6] strategy, this means a
hierarchical architecture based on four kind of agent:
monitor, decider, guardian, and filter. Some of them are
mobile: decider and guardian, the others are static. Our
prototype was used to observe activities on network local
to teaching department. The results were surprising about
the attack number even on computer without any strategic
resource. The robustness of our approach has been
enhanced and the concept of mobile agent has been linked
for the first time to adaptable context. But a prototype is
not enough to affirm general assertion and other examples
are developed over the past decade.

To destroy an agent is similar to material failure. We
encountered this problem with grid computing where a
computation is distributed over the nodes of a grid. The
input data are scattered on the nodes, but when a part of
the whole computation has an exception, the global result
is touched. This exception can come from material or
software. To solve this problem of exception management,
we defined a software architecture based on a set of
mobile agents, called computing space [7]. A server
manages not only all components of numerical code, but
also all the input data. When a processor of the grid
becomes free, a mobile agent is exported onto that node
with corresponding input data. When this part of the
computation is done, the state of this part is set into the
space computing. When all the parts of computation are
realized, the termination of the computing case is detected.
We use this architecture for several case studies: Choleski
computing [8], FDTD computing, Laplace resolution [9].
With these examples, we enhance the idea that mobile
agent can adapt a code to its working context: exploitation
of free computing resources, replay a piece of computation
previously interrupted, etc. We highlight also a new facet
of mobile agent called local negotiation. Before agent is
exported on a node, a negotiation is established between

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

3

agent host and mobile agent to know whether or not the
computation can take place on this specific node. Control
can be about resource access, location constraints, or
security permissions, etc.

This new facet of mobile agent programming add a
layer of concepts. This increases development complexity
and a project can become hard to maintain if its authors do
not apply clear development rules and code convention.
Also people who have enough experience in software
development can accept and understand easily these
constraints but it could be more useful to strive to identify
a set of best practices. Then, software engineering tools
could help developers to apply them. In order to prepare
such tools, we have to isolate concept families.

1.3 Concept partitioning

Today, everyone knows aspect-oriented programming
as a new approach to software design. But its advantages
are not so used such as modularity, concept isolation, etc.
Other approaches, including structured programming and
object-oriented programming need user experience to
obtain same results. Also we can consider aspect-oriented
programming as complement to traditional approaches. It
introduces the mechanism of cross cutting for expressing
concerns like action migration and automatically
incorporating the associated code into the whole system.

Thus, it enhances our ability to express the separation
of concerns necessary for a well-designed, maintainable
mobile agent system. Some concerns are appropriately
expressed as encapsulated agents, or components. As an
example, we can note the behavior of a mobile agent onto
a node. Others are best expressed as cross-cutting
concerns, for example, the precise route of a mobile agent
through the client network. A difficulty remains: the
identification of places in the code where we want to insert
the route description. This is called defining join points.
Where the aspects are used much depend one what they
are used for. For instance, route definition of mobile agent
is key information which can be defined at the declaration
step. Again, security constraints are good candidates for
becoming an aspect definition. This is functionality that is
often used in agent but not a part of the normal business
logic. This is also aspects that can be reused in many
mobile agents and also be reused in different applications.

The main design improvement we get with aspect
oriented programming is better modularization. Redundant
code can be placed in an aspect instead of copied to all
agent definitions that need it. Developer can concentrate
on putting the business logic in the agent definitions and
the other part can be handled with aspects. Maintenance of
mobile agent application can be improved by an aspect
approach programming. This makes the code easier to
read and observe. This is particularly essential during
debugging phase. A disadvantage is about the

understanding of join points and aspect definition. The
code can become harder to follow because this can
specially be a problem if the design is changed later during
the lifecycle of application and functionality can be added
with aspects. In our case study, we can sum up with three
groups of facets: mobility, security and administration. We
consider this objective as a basis of our framework.
Moreover, limits can be added in a first approach:
dynamicity of migration, permission evolution or evolving
observation can be considered as advanced concepts. Also,
we are interested in their application but in a second
development step. The first development step is about
migration, negotiation and agent management. This
involves technical choice about aspect definition tool.

2. Aspect definition tool

Aspect definition raises technical constraint
depending on kind of aspect. Most of aspect compilers are
based on a clear principle: code injection. But the strategy
to apply this principle can vary from one implementation
to another. A large set of aspect weaver works on source
code or byte code. This means that they modify project by
injection of technical code into source or byte code. This
is useful for generation of XML descriptor into a J2EE
project for instance. In our context of mobile agent
application, when the migrations of agent are predefined,
technical code can be generated from agent definition. But
because the effect of the weaver occurs before the
execution of the project, the limit of this approach happens
when the travel of mobile agent changes during its work.
The weaver is not able to change what it was previously
generated.

Tools operate with that kind of mechanism: such that
AspectJ (first version) [10], JAC [11] or Hyper/J [12]. To
solve the lack of dynamicity, a tool like AspectWerkz [13]
or JMangler [14] proposes to apply aspect weaver when
the class is loading. In a distributed system, this approach
is interesting because each agent host has its own class
loader. Also, we obtain a new behavior where the effect of
advices can be used not only once, but several times
depending of the travel of mobile agent. It is dynamic in
the sense that it is possible to add, remove and restructure
advices as well as swapping the implementation of the
introductions at runtime. Like before, the byte code is
touched at the loading step but a new limit is achieved.
Now, agent behavior is determined at its entrance on to an
agent host. This means that its local activity and its next
migration are fixed when it arrives on an agent host. In
other words, this mechanism prohibits any change into
local agent behavior and also with the decision to navigate
over the network.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

4

2.1 Dynamic weaving process

This approach is more powerful, aspect declaration has
specific language in XML and tools are encapsulated into
IDE plug-ins. The aspect oriented programming (AOP)
instrumentation process modifies the Java byte code to add
runtime hooks around point cuts into agent definition.
Those hooks collect reflection information and invoke
advices. But to be really dynamic, aspect weaver should
be launched by program, this means when a specific event
occurs or after a given request. Few aspect tools have this
ability. The JBoss AOP [15] instruments takes point cuts
definition from an XML file or the metadata file or the
annotation tags already embedded in the byte code by the
annotation compiler. Now there are three different modes
to run our aspect oriented applications: precompiled, load
time or hot swap. Hot swap weaving is the most dynamic
use when we need to enable aspects in runtime and don't
want that the flow control of our classes be changed
before that. When using this mode, our classes are
instrumented a minimum necessary before getting loaded,
without affecting the flow control. If any join point is
intercepted in runtime due to a dynamic aspect operation,
the affected classes are weaved, so that the added
interceptors and aspects can be invoked. As the previous
mode, hot swap has some drawbacks that need to be
considered such as performance perturbation. But this has
a real impact into a reactive environment and for the
current case study, this feature is not so essential. Also,
our AOP choice has been to adopt JBoss AOP toolkit and
associated IDE plug in.

2.2 Mobile aspect declaration

The first step in creating a mobile aspect in JBoss
AOP is to encapsulate the whole mobile feature in a Java

class. The kernel of the mechanism is based on use of
distributed services. The first one is a lookup service
which is used to register not only mobile agents but also
mobile agent hosts.

On our deployment diagram, there is one such
registry per node of the network. An agent host is a
candidate to a future reception of a mobile agent. It has to
publish its reference into the registry of the node where it
is. After that, it will be accessible by a mobile agent.
Agent server is first a server which creates and manages
mobile agents. After creation, mobile agents are published
into local registry (1). When a mission is available, mobile
agent can book it and then this agent can start to realize it.
A mission consists in two parts: a route of nodes and a set
of actions. The route is a sequence of computers which
support agent host. The set of actions is written in an
extern piece of code. Also to find out first node, mobile
agent has to look up it into the lookup service. We can
identify two aspect definitions: one for mobile agent,
another for agent host.

The role of the first mobile agent aspect covers the
initial part of the mobile agent life: from its creation until
its first publication. When mobile agent starts its mission,
its configuration is done by the application of aspect called
MobileAspect. The business logic of mobile agent is
similar to an automaton with six states: first reading the
mission, preparing migration, migration, negotiation,
application of the mission, updating it description into
registry.

A second aspect is about authorized actions on an
agent host. This one has also the role of a gate keeper.
This means that it has to check what a mobile agent is
going to do before operating its mission. Also, this aspect
called HostAspect, is coupled with another one called
SafetyAH, (figure 2). HostAspect is used to management
of a set of mobile agents. An agent host knows what kinds
of mobile agent it is waiting for, also this aspect
implements this control before checking the rights of a
permitted incoming agent.

It business logic is simply an automaton with four
states: waiting for an incoming message, negotiation,
observation of activity, sending output message. Because
an agent host has to be published into lookup service, it
supports also first aspect MAAspect.

When first part of its mission is ended, mobile agent
updates own information in the local lookup service. This
will be useful for administration of mobile agents. Next, it
continues until the end of its mission.

2.3 Safety aspect declaration

When a mobile agent is imported by an agent host, it
cannot start its local activity before checking by host
whether or not the permissions of mobile agent are

Figure 1: Interaction diagram between main parts of a mobile agent system

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

5

enough. Because this control algorithm is similar for all

mobile agent importation, we defined a new aspect called
SafetyMA for the creation of negotiation step. During this
step, mobile agent has to send its requirements to agent
host; it means all local resources used for by agent with
action. Its requirements can not be computed at the
compile time, but at its entrance. This corresponds to agent
loading time on agent host. A dynamic weaver can respect
this strategy.

Another aspect is applied to agent host which
contains a definition of permissions with signature and
localization. During its negotiation step (figure 2), agent
host receives safety request from mobile agent. Its
business logic starts by the analysis of this demand (figure
3) and the comparison with the accepted operation on the
host and also permission list. This aspect called SafetyAH,
creates from these collections, an AccessController
instance which realized the controls/ If the request is
satisfied, mobile agent could operate its local activity on
the host. If the demand is not satisfied, host rejects the
request and raises an exception.

When negotiation step is satisfied, a security manager
is created by agent host to control local activity. This last
element is essential when mobile agent executes a local
script. The actions which belong to that script have to
respect initial contract of mobile agent with agent host.

The lifetime of an AccessController instance depends
on the safety request, but a SecurityManager instance
observes mobile agent until the end of its mission. Then it
will notify agent host and built a report about its own
activity. It could be used for a post mortem analysis of
mobile agent system.

In previous section, two aspect were defined which
can be used at compile time. But this second subset of
aspects can not be used before deployment of all the

distributed system. Permission management is intrinsically

dynamic, for instance, when a mobile agent has realized an
operation on a main agent host, it can operate on all hosts
which depend on the main one. At the opposite, if a local
resource is not accessible on a specific kind of agent host,
then this property can be kept to simplify negotiation step
on next host.

But the scope of our safety aspects allows us to
extract all safety property control from the source code of
our project. Now, we can evolve separately the business
code of distributed system (work of developer) and safety
concerns which are managed by administrator or architect
of a project.

2.4 Instrumentation aspect declaration

Instrumentation is a large spectrum of activities from
deployment step to runtime observation (performance,
security, transaction state, etc). At the first level of domain
is use of log files. We decided to manage centralized log
information. But, if the used of log file is a basic example
in all AOP framework, it becomes more complex into a
distributed system. We want not only log centralization
but also log consolidation. Standard UNIX syslogd offers
UDP-based log forwarding to a central log consolidator
today. We need additional features that make it a powerful
tool for log forwarding, log centralization and log
consolidation. We decided to use a technical framework,
called JMX (for Java Management eXtension [16]. JMX
specification defines instrumentation of services as
MXBeans, agent architecture and standard services. The
contract for MXBeans is simple, easy to implement, and
unobtrusive for managed resources. Furthermore, the
architecture set in the specification decouples the
management clients from the managed resources,

Figure 2: State chart of two main piece of mobile agent system

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

6

increasing the reusability of JMX-based components. Also,
its creation is candidate to an aspect definition.

Centralized log consolidation offers the following
benefits: easier log file analysis, increased security,
simplified archiving of logs. A centralized log provides a
single location for the administrator to perform log file
analysis. It offers a single view of events that impact
mobile agent systems. A security breach might
compromise the local logs but not the centralized copy.
Moreover, it is usually simpler to archive a set of
centralized logs rather than per-system logs.

Using the JMX technology, a given agent host is
instrumented by one remote objects known as Managed
Beans, or MBeans. These MBeans are registered in a core-
managed object server, known as an MBean server. The
MBean server acts as a management agent. The JMX
technology provides scalable, dynamic management
architecture. Every JMX agent service is an independent
module that can be plugged into the management agent,
depending on the requirements

We defined standard connectors (known as JMX
connectors) that enable us to access JMX agents from
remote management server. JMX connectors using
different protocols provide the same management interface.

Consequently, a management application can manage
resources transparently.

We defined a third subset of aspects which contains a
definition for the creation of the instrumentation classes
for agent host. This one uses it as a local logger but the
logger exposes its interface on Jini protocol. Also, it is
now possible to observe it from the agent server. Now,
administrators are able to know where mobile agents are
and also where are current problems, for instance
negotiation failure, resource access violation.

From agent host definition, aspect extracts location
information and then creates and registers an instance of
Instrumentation class. This instance is launched as a
parallel flow of agent host. Its starter will be decided at
run time. This means that the aspect weaver has to be call
at run time. This last subset completes our application of
aspect onto mobile agent system.

3. Aspect oriented design to aspect
development

Software engineering of mobile agent systems
involves a number of concerns, including migration,
safety, instrumentation, but also error handling, and a lot

Figure 3: Sequence diagram of negotiation step.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

7

of other facets. The modeling, design, and implementation
of many of these concerns are essential because they are
inherently crosscutting as the system complexity increases.
There is a pressing need for specifying aspect approach
and its relations towards object-oriented design. This
projection is also interesting because, we have already
projection from mobile agent model towards object
oriented specification. Some works are already published
about mapping between AO design and OO design [17],
this work is based on a UML specification of all the
concepts belonging to aspect oriented programming and
evaluation. Main disadvantage is lack generality, a
specification is also linked to a aspect framework such as
AspectJ or Spring AOP. A specification language like
UML is a language specification providing a common
interface usable for defining semantics applicable toward
arbitrary AOP framework binding

Suzuki and Yamamoto [18] propose a general
approach to express aspects during design. They suggest
an extension to UML to support aspects appropriately
without violation to the meta model specification. For this
purpose, they add to the meta model new elements for the
aspect and the weaver and an existing element is reused to
model the relationship class-aspect.

We emphasize the generation of technology
independent models using the Unified Modeling Language
(UML) at different points in the software development
lifecycle, e.g. requirements modeling, system analysis
modeling, and design modeling with use of annotation. It
helps to minimize changes on logic specification.

3.1 Analysis modeling

We adopted UML notation with additional stereotype
to place our aspects as sub classes of technical class
belonging into JBoss AOP framework. Link between
aspect and class is done by the use of a class association.
For a couple aspects, class, this association represents the
point cut for the weaving. Advice concept is described on
Fig5 as a subclass of Interceptor class. This class belongs
to JBoss, framework, this is why it is placed into its
technical package. It is behavior that can be inserted
between a caller and a callee, a method invoker and the
actual method: for instance, between mobile agent and
agent server. These aspect construction allow us to define
cross-cutting behavior

 Point cuts tell the JBoss AOP framework which
interceptors to bind to which classes, what metadata to
apply to which classes, for example MobilePointcut is the
link between MobileAgent class and one of its facets
called MobileAspect.

Aspect definitions of the three subsets are quite
similar except for their business logic. The aspects
MobileAspect and HostAspect are written with the use of
Jini toolkit [19]. Jini is a simple set of Java Classes and
services that allows node on a network (e.g., workstation)
and agent (e.g., mobile collector) to access each other
seamlessly, adapt to a continually changing environment,

The package aspect.safety contains aspects and point
cuts about security control. The aspect definition
(SafetyAM and SafetyAH) are based on JCE [20] for the
cryptographic features (used for certificate management)
and JAAS [21] for authentication and authorization
strategy. It allows us to plug an external authentication
mechanism into message queue.

The package aspect.instrumentation contains aspects
definition for remote observation of mobile agent and
agent hosts. These definitions are written by the use of
JMX framework as remote protocol, and Java Platform
Debugger Architecture (JPDA) [22]. It is a programming
interface used by development and monitoring tools. It
provides both a way to inspect the state and to control the
execution of applications running in the Java virtual
machine.

3.2. Design modeling

In previous section, declarative description of our
approach is explained. Now, we focus on precise
definition of one mobile aspect. This aspect encapsulates
technical facet of agent: migration via a specific protocol.
It allows us to layer, rather than embed, functionality so
that code is more readable and easier to maintain. When
our migration mechanism will change, modification will
be clearly identified.

Figure 4: Class diagram for instrumentation of an agent host

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

8

The point cut called MobilePointcut, defines an event

linked to MobileAgent constructor call. So, at the
construction, the central mechanism of a Jini system (the
lookup service) is called and mobile agent is registered.
Then this mobile agent is a mobile service available on the
network. While registering, the mobile agent provides a
callable interface to access its functionality and attributes
those may be useful while querying the lookup from an
agent host. Now, mobile agent is waiting until a mission is
available. A new available mission is also an event which
can be described by a point cut expression language. Also,
it is a trigger for the preparation of migration.

A mobile agent is just a temporary worker and its
behavior is intrinsically asynchronous. We use another
skill of JBoss server: it is a message queue server. Also,
we defined a queue per group of mobile agents. The server
notifies a MissionAdapter instance (Fig6), then this
instance assigns mission to mobile agent.

To add this filtering functionality, we modify
MobileAspect and inject a pre statement; this is
"Preparation migration" state (Fig2). The actions of
mobile agent are basic: first, the access to agent host list. It
involves discovering lookup, querying it for the specific
agent host service (called acceptance) and invoking the
callable interface of the service required. The callable
interfaces are exposed and accessed

There is symmetry with aspect HostAspect. When an
agent host is plugged into the network, it locates the
lookup service (by multi cast discovery) and registers its
acceptance service there.

Easily, Jini framework allows building up clusters of
agents that know about one another and cooperate,
creating a "federation" of agents.

4. Distributed audit

Based on previous aspect approach of mobile agents,
we defined a distributed monitoring application called
DMA. Its main objective is the observation of agent host
and mobile agent traffic. Main concept is a centralized log
about distributed observations.

4.1 Mobility as a principle

Data collection is a reference example for mobile
agent system. In our context, we need not only to collect
data but also to configure local collect algorithm. As
mentioned previously, we use JMX framework for
management of the distributed collection, but JPDA for
local observation. The scheduling of our application has
two main phases. First, there is a transient step where
observer agents are deployed over network. Then, during a
stable step, data are collected and consolidated on server;

Figure 5: Class diagram of first subset of aspect definition

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

9

Transient step consists in two waves. A first wave

exports a mobile agent, called Observer, on each agent
host where data have to be collected. This kind of agent is
just a mobile agent which executes an Observation
mission. A second wave is configuration of all the
observers. Several features can be set: data format, kind of
observations (memory, cpu or network). Each value
represents a set of events, for instance network is a filter
for observing incoming agent and out coming agent.

By the end of this wave, the stable step starts. This
means that data collection starts by the use of mobile agent
also (called Messenger). This kind of agent is just a
mobile agent which executes an Messenger mission. This
step is also structure as a loop where local data are first
recorded on the agent host (into XML file) and then
exported by a Messenger agent towards AgentServer.
Messenger agent is able to encode and decode data via a
specific format. AgentServer receives all Messenger
agents, reads their data and consolidate all information
into a single log file. Because the size of such file is
limited, log file is sampled; each part is identified by a
timestamp.

4.2 Monitoring information

Because data format can be distinct, Messenger agent
are essential to transform data into intermediate format of
Agent Server. There are three kind of message depending
on the previous configuration. If "network" is selected,
migration information is sent. This is result of negotiation,
duration of the presence of each mobile agent

When memory is chosen, heap memory information
is saved; the format follows the generation structure of the
memory. Information about garbage collector is also saved
(algorithm, frequency, etc).

The option cpu is about local activities of mobile
agents. This contains all resource access, but also the place
where a security manager checks permissions during
execution. Moreover, for each resource access, there is
trace of mobile agent responsible and also local time
stamp.

5 Results

Our approach was validated with a small group of ten
nodes. It allows us to gather data for improving
administration. Format of exchanged data is XML, but
each agent host lays its own format, expressed an XML
schema descriptor (XSD). Because, server format is
unique, it transforms all input message into its server
through an XSL transformation.

5.1 Data collection

Each message is a single XML block of text with an
associated namespace and a set of data. Main tag has a
"facility" attribute. The facility can be thought of as a
category that depends upon the mobile agent from which
the message originates.

A short example is given below; this message is
exported by the end of configuration of an Observer agent:
<?xml version="1.0" encoding="UTF-8" ?>
<ns:Message id="th1" facility="obs1"
mnemonic="cpu" severity="2" time="2010-08-
08T12:10:21">
 <ns:Text value="End configuration"/>
</ns:Message>

This message is a part of a larger discussion, called
"th1" between observer and agent server. It marks the
starter of data collection about local activities of agent
host ("cpu" collection). During stable phase, a lot of
packets can be received and it is necessary to filter input
data and provide a time interval for collection. For
instance, the given period is 20 ms and only trace of
"allocate" events. These changes are done from the server
to the observer by the use of JMX service. Then, the data
format evolves to transmit only useful information.

Figure6: class diagram for mission reception

Fig7: transient step of DMA

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

10

<?xml version="1.0" encoding="UTF-8" ?>
<ns:Message id="th1" facility="obs1"
mnemonic="cpu" severity="2" time="2010-08-
08T14:15:56">
 <ns:Cpu rank="1" self="81.17"
accum="81.17" count="221010" trace="101152"
method="DataAccessReader"/>
</ns:Message>

In that case, the information is a snapshot of the
current observation. The trace number seen above is
related to stack traces in the file itself. This printout shows
the rank, the amount of CPU consumed by that method
call and total across the application execution, and then
finally how many times that individual method was
invoked. Then, it references back to a trace for that
method invocation. Because this message is a member of a
global thread of message, it is possible to rebuild its
evolution over a period of time.

5.2 Benefits

Upon initial setup of a new agent host, an observer is
exported and messages are stored locally at the beginning.
Then, automatically messages are routed via "Messenger"
to a centralized location. The benefits are facilities to
analyze what may have happened (normal behavior versus
strange event) and simplification to archive collected logs
off-line to removable media.

Because cross format is XML, it is easy to filter a part
of its contain to extract anomalies for instance, or to filter
event that cost much more time than the others (the top 10
for instance). One of the main benefits of XML is that it
separates data from its presentation. However, because we
combine XML data with an XSL Transformations (XSLT)
style sheet, we then have a powerful way to dynamically
transform and present information in any format we want.
Furthermore, often the structure of our XML stream
created by our application does not match the structure
required by other application parts to process that XML

data. To transform the existing XML data structure into
one that can be processed, we need to use XSLT.
Moreover, transformation can provide SVG or GraphML
representations that highlight cpu ratio or call numbers.

Since the mechanics of applying XSLT style sheets to
XML in Java code are generally the same, the process can
be refactored out of the business-specific code into
something more reusable. The chain starts with a source
XML stream (though not necessarily a file), and applies a
series of XSLT style sheets to it until it produces the final
stream used to observe local activities. For instance, an
XML stream describes memory management. It is the
result of data collection (done by a mobile agent) about
garbage collector activity on agent host. The Java runtime
uses a garbage collector that reclaims the memory
occupied by an object once it determines that object is no
longer accessible. This automatic process makes it safe to
throw away unneeded object references because the
garbage collector does not collect the object if it is still
needed elsewhere. Therefore, in agent host, the act of
letting go of unneeded references never runs the risk of
deallocating memory prematurely. This event is serialized
into XML stream when mobile agent is physically on this
agent host.

At the end of its trip, a mobile agent contains a large
data set and XSLT transformations are used to extract into
specific order memory information. Transformations are
about size of collected data or collection time or agent host
address. It is also a strategy to compute memory amount
used at a given time of a distributed computation.

4. Conclusions

Aspect-oriented programming is a powerful new tool
for software development especially mobile agent system.
With JBoss AOP, we can implement your own
interceptors, metadata, to make our mobile agent
development process more dynamic and fluid.

According to our experience, there was a number of
crosscutting mobile agent system concerns which aspect-
oriented abstractions succeeded to cope with their
modularization. This was often the case for mobility. For
these agent properties, the design and implementation
have shown expressive improvements in terms of
separation of concerns. By the end, our objective of
mobile agent instrumentation is achieved, especially for
information collection for monitoring.

References
1. Ivan Kiselev, Aspect-Oriented Programming with AspectJ,

2001, Sams, ISBN: 0-672-32410-5
2. Pavel Vrba, E.Cortese, F. Quarta, G. Vitaglione, Scalability

and Performance of the JADE Message Transport System.
Analysis of suitability for Holonic Manufacturing Systems.

Fig8: data collection with mobile messengers.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

11

this number of EXP. LNCS, vol. 4128, pp. 1148--1158.
Springer, Heidelberg (2006)

3. Mobile agents, a.k.a distributed agents, according to Tryllian,
doi:10.1049/ic:20010004, IEE Seminar Mobile Agents -
Where Are They Going (2001/150) London, UK, 11 April
2001,

4. A. Corradi, R. Montanari, C. Stefanelli, Mobile Agents
Protection in the Internet Environment, Proceedings of the
COMPSAC'99, IEEE Computer Society Press, Phoenix,
October '99.

5. Jean-Paul Arcangeli, Vincent Hennebert, Sébastien Leriche,
Frédéric Migeon, Marc Pantel. JavAct 0.5.0 : principes,
installation, utilisation et développement d'applications.
Rapport de recherche, IRIT/2004-5-R, IRIT, février 2004

6. E. Spafford and D. Zamboni. A framework and prototype for
a distributed intrusion detection system. Technical Report 98-
06, COAST Laboratory, Purdue University, West Lafayette,
IN 47907-1398, May 1998.

7. Cyril Dumont, Fabrice Mourlin: Space Based Architecture for
Numerical Solving. CIMCA/IAWTIC/ISE 2008: 309-314

8. Cyril Dumont, Fabrice Mourlin: A Mobile Computing
Architecture for Numerical Simulation CoRR abs/0711.1786:
(2007)

9. Cyril Dumont, Fabrice Mourlin: Adaptive runtime for
numerical code, 8th ENIM IFAC International Conference of
Modeling and Simulation Evaluation and optimization of
innovative production systems of goods and services (2010)
pp310-320

10 Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren,
Sascha Kuzins, Jennifer Lhot´ak, Ond¡rej Lhot´ak, Oege de
Moor, Damien Sereni, Ganesh Sittampalam, and Julian
Tibble. abc: An extensible AspectJ compiler. In AOSD, mar
2005, pages 87–98. ACM Press.

11.Chitchyan, R. et al. “Survey of Aspect-Oriented Analysis and
Design”. AOSD-Europe Project Deliverable No: AOSD-
Europe-ULANC-9. www.aosd-europe.net

12.Garcia, A., Chavez, C., Kulesza, U., Lucena, C. “The Role
Aspect Pattern”. Proc. of the 10th European Conf. on Pattern
Languages of Programs (EuroPLoP’05), July 2005, Irsee,
Germany.

13.Griswold, W. et al, "Modular Software Design with
Crosscutting Interfaces", IEEE Software, 2006

14.Filman, R. et al. “Aspect-Oriented Software Development”.
Addison-Wesley, 2005.

15.Tom Marrs, Scott Davis, JBoss at Work: A Practical Guide,
O'Reilly (2004)

16.Benjamin G. Sullins and Mark B. Whipple, JMX in Action,
2002 | 424 pages, ISBN: 1930110561

17.Kendall, E. "Role Model Designs and Implementations with
Aspect-oriented Programming". OOPSLA 1999, pp. 353-369.

18. Extending UML with Aspects: Aspect Support in the Design
Phase. 3er Aspect-Oriented Programming (AOP) Workshop at
ECOOP ´99. Junichi Suzuki, Yoshikazu Yamamoto.

19. Scott Oaks, Henry Wong, Jini in a Nutshell, O'Reilly Media,
March 2000

20.David Hook, Beginning Cryptography with Java, ISBN13:
978-0-7645-9633-9, ed. Wrox, 2005-08-19

21. Michael Cote, Java Authentication and Authorization Service
(JAAS) in Action, ed Wiley, 2005

22.Harbourne-Thomas A., Bell J., Brown S., "online:
Professional Java Servlets 2. 3", ISBN: 186100561X, 2003

Youssef Hannad is PhD student at Paris 12 University. His
position is set by Team Up corporate. His subject is on aspect for
mobile agent management.

Fabrice Mourlin. Is associated professor at Paris 12 University
since 1992. He manages a working group on mobile agent and
space computing. He obtained HDR habilitation in 2008 at Paris 12
university. Current projects are network monitoring and numerical
computing.

