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Abstract 
Today the Internet is a worldwide-interconnected computer 
network that transmits data by packet switching based on the 
TCP/IP protocol suite. Internet has TCP as the main protocol of 
the transport layer. The performance of TCP is studied by many 
researchers. They are trying to analytically characterizing the 
throughput of TCP’s congestion control mechanism. Internet 
routers were widely believed to need big memory spaces. 
Commercial routers today have huge packet memory spaces, 
often storing millions of packets, under the assumption that big 
memory spaces lead to good statistical multiplexing and hence 
efficient use of expensive long-haul links. 
In this paper, we summarize the works and present the 
experimental study result with big memory space size and give a 
qualitative analysis of the result. Our conclusion is that the, 
round-trip time (RTT) is not increased by linear, but by quadric 
when the memory space size of the bottleneck is big enough. Our 
goal is to estimate the average queue length of the memory space 
size and develop a TCP model based on RTT and the average 
queue length. 
 
Keywords: Traffic management, Congestion control, congestion 
mechanism, congestion model, memory size. 

1. Introduction 

 The traffic across internet is increasing so congestion is 
becoming an important issue in network applications. 
When congestion is occurred the packet round trip time is 
increased and probability is lost and decreased in the 
throughput. Transport protocol must deal with this traffic 
congestion in order to make best use of the capacity of 
network. TCP adopt a window based congestion control 
mechanism. Traditionally experimental study and 
measurement have been the tools of choice for checking 
the performance of various aspects of TCP. But the 
amount of non-TCP traffic flows (such as multimedia 
traffic) keep increasing in today’s Internet, non-TCP flows 
should share the bandwidth with TCP flows “friendly”, 

which means the throughout of the non-TCP flows 
transport protocol should be approximately the same as the 
TCP. In order to do that, we must analytically model the 
TCP behavior and characterize the throughput of TCP’s 
congestion control mechanism. 
 
In this paper, we investigate is the behaviour of a single 
TCP flow when using memory spaces with different size. 
We summarize the TCP congestion control mechanism 
and the method of analytically characterize the throughput 
of TCP’s congestion control mechanism. We present the 
experimental study result with big memory space size and 
give a qualitative analysis of the result. 

2. An overview of Different mechanisms of 
TCP congestion control 

We can distinguish two major kinds of congestion control 
window-based such as TCP (Transmission Control 
Protocol), and rate-based that for example regulates ATM- 
ABR [2] (Available Bit Rate service of an Asynchronous 
Transfer Mode network) traffic. The window-based 
congestion control model in the Internet attempts to solve 
an optimization problem by decoupling the network 
problem to that of individual source utility maximization 
by assigning bit-marks. 
 
We have a reliable protocol TCP window-based 
acknowledgment clocked flow control protocol. The 
sender control the sending rate by increasing or decreasing 
the size of its congestion window according to the 
acknowledgement received. The strategy used for 
congestion window size adjustment is known as AIMD 
(Additive Increase Multiplicative Decrease). 
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2.1. Slow Start and Congestion Avoidance 

The slow start[8] and congestion avoidance algorithms 
must be used by a TCP sender to control the amount of 
outstanding data being injected into the network.   
The congestion window (cwnd) is a sender-side limit on 
the amount of data the sender can transmit into the 
network before receiving an acknowledgment (ACK), 
while the receiver's advertised window (rwnd) is a 
receiver-side limit on the amount of outstanding data.  The 
minimum of cwnd and rwnd governs data transmission. 
The variables threshold (ssthresh) is used to determine 
whether the slow start or congestion avoidance algorithm 
is used to control data transmission. 
The slow start algorithm is used at the beginning of a 
transfer, or after repairing loss detected by the 
retransmission timer. 

2.2. Congestion Avoidance 

In congestion avoidance we deal with lost packets due to 
traffic congestion. It is described in [4]. The assumption of 
the algorithm is that packet loss caused by damage is very 
small; therefore the loss of a packet signals congestion 
somewhere in the network between the source and 
destination. There are two indications of packet loss: a 
timeout occurring and the receipt of duplicate ACKs. 
Congestion avoidance and slow start are independent 
algorithms with different objectives.  
But when congestion occurs TCP must slow down its 
transmission rate of packets into the network, and then 
invoke slow start to get things going again.  

2.3. Fast Retransmit 

A TCP receiver should send an immediate duplicate ACK 
when an out-of-order segment arrives.  The purpose of this 
ACK is to inform the sender that a segment was received 
out-of-order and which sequence number is expected.  
From the sender's perspective, duplicate ACKs can be 
caused by a number of network problems.  First, they can 
be caused by dropped segments.  In this case, all segments 
after the dropped segment will trigger duplicate ACKs.  
Second, duplicate ACKs can be caused by the re-ordering 
of data segments by the network. Finally, duplicate ACKs 
can be caused by replication of ACK or data segments by 
the network. 
The TCP sender should use the "fast retransmit" algorithm 
to detect and repair loss, based on incoming duplicate 
ACKs.  The fast retransmit algorithm uses the arrival of 3 
duplicate ACKs as an indication that a segment has been 
lost.  After receiving 3 duplicate ACKs, TCP performs a 
retransmission of what appears to be the missing segment, 
without waiting for the retransmission timer to expire. 

2.4. Fast Recovery 

A TCP receiver should send an immediate duplicate ACK 
when an out-of-order segment arrives. The purpose of this 
ACK is to inform the sender that a segment was received 
out-of-order and which sequence number is expected.  
From the sender's perspective, duplicate ACKs can be 
caused by a number of network problems.  First, they can 
be caused by dropped segments.  In this case, all segments 
after the dropped segment will trigger duplicate ACKs.  
Second, duplicate ACKs can be caused by the re-ordering 
of data segments by the network. Finally, duplicate ACKs 
can be caused by replication of ACK or data segments by 
the network.  In addition, a TCP receiver should send an 
immediate ACK when the incoming segment fills in all or 
part of a gap in the sequence space.  This will generate 
more timely information for a sender recovering from a 
loss through a retransmission timeout, a fast retransmit, or 
an experimental loss recovery algorithm. 

3. Congestion Control and Sizing Router 
Memory spaces 

The goal of this research is to investigate the memory 
space size that is required in order to provide full link 
utilization given a used TCP congestion control algorithm. 
We start by considering the case of a single TCP 
connection.  
We have seen that the standard TCP congestion control 
algorithm is made of a probing phase that increases the 
input rate up to fill the memory space and hit network 
capacity [10]. At that point packets start to be lost and the 
receiver sends duplicate acknowledgments. After the 
reception of three duplicate acknowledgments, the sender 
infers network congestion and reduces the congestion 
window by half. TCP does not modify TCP behavior in 
environments with high to mild congestion (typical of low 
speed networks) [5]. In high bandwidth-delay networks in 
which HighSpeed TCP sends bursts of large number of 
packets, the amount of buffer available in the bottleneck 
router is an important issue to keep the router highly 
utilized during congestion periods. A large buffer 
increases delay and delay variance which adversely affects 
real-time applications (e.g., video games, device control 
and video over IP applications.) It is therefore important to 
investigate the effects of buffering on TCP performance 
such as throughput, convergence to fairness and 
interaction. 

4. The Model for TCP Congestion Control 

Traditionally, experimental study and implementation or 
measurements have been the tools of choice for examining 
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the performance of various aspects of TCP. Recently, 
there is a great interest in analyzing the performance of 
TCP and TCP-like algorithms to quantify the notion of 
"TCP-friendliness", which means connections that use 
non-TCP transport protocol, should get a similar share of 
bandwidth as TCP connections that share the same link 
under the same conditions of loss, RTT etc. 
In this model, the throughput of TCP's congestion control 
mechanism is characterized as a function of packet loss 
and round trip delay. [7]Consider a TCP flow starting at 
time t=0. For any given time t, define Nt to be the number 
of packets transmitted in the interval [0, t], and Bt = Nt/t, 
the throughput on that interval. The steady state TCP 
throughput B should be: 

t
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A sample path of the evolution of congestion window size 
is given in figure 1. 
 

 

Figure 1 Triple Duplicate Period. 

Between two triple duplicate ACKs loss indications, the 
sender is in congestion avoidance phase. Define a TD 
period (TDP) to be a period between two triple duplicate 
ACKs loss indications. For the i-th TDP, define Yi to be 
the number of packets sent in the period, Ai the duration 
of the period, and Wi the window size at the end of the 
period. Considering {Wi}i to be a Markov regenerative 
process with rewards{Yi}i, it can be shown that 
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It can be derived that 

E[Y] = l/p + E[W] - 1 
         =E[W]*(E[W]*3/2 - 1)*b/4 + E[W]/2         (2) 

 
E[A] =(b*E[W]/2+1)*RTT                                   (3) 
 

Where: p - loss probability, b – window increases by l/b 
packets per ACK, RTT – round trip time. 
From (I) (2) (3), we can get  
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Extends this model to include the case where the TCP 
sender times-out and the impact of window limitation of 
receiver advertised window size, it can be derived that: 
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where To - interval waiting for time out, Wmin - receiver 
advertised window size. 

5. Experimental Work 

We are using here rate based congestion control protocols, 
one of which is TFRC (TCP Friendly Rate Control 
Protocol)[3]. The model assumes that the congestion 
window size increase is linear during congestion 
avoidance, which is not always true. When the memory 
space size of the bottle-neck node is big enough, the 
increase is sub-linear, which lead to the analytical result 
will be higher than the actual result. We use QualNet 
network simulator [6] to verify the assumption.  

Table 1: Parameters used in the simulation. 
 

Queue Size between R0 & R1 40~900

Delay between R0 & R1 35 ms

Bandwidth between R0 & R1 15 Mb

TCP window size 1000

Queue Algorithm Drop Tail

Bandwidth of Branch 128 Mb

Delay of Branch 2 ms

 
We perform 4 experimental tests. Table 2 list the number 
of connections in each simulation. 
 

Table 2: Number of connections in each simulation. 
 

t 

W 

TDP 1 TDP 2 TDP 3 

W1 W2 W3 

A1 A2 A3 
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Experiment No. 1 2 3 4 
TCP Connections 16 24 32 64

TFRC Connections 16 24 32 64

 
 
In each simulation, we increase the memory space size of 
RO and RI from 50 to 850 step by 100 and the result is 
shown in figure 2 - figure 5. In each bar diagram, X axis is 
memory space size and Y axis is the mean of bandwidth of 
TCP connections and TFRC connections. 
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Figure 2      16 TCP & 16 TFRC 
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Figure 3     24 TCP & 24 TFRC 
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Figure 4    32 TCP & 32 TFRC 
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Figure 5    64 TCP & 64 TFRC 

6. Analysis   

From the result of the experiments, we can find that when 
the memory space size is much less than the 
Bandwidth*Delay, the model result is quite close to the 
actual result. However, as the memory space size 
increases, the experimental study result show that the 
TFRC connections get more bandwidth than the TCP 
connections, which means the analytical result, is higher 
than the actual result. We think it is because when the 
memory space size is big enough, the congestion window 
size increase is by sub-linear, not by linear.  
Considering equation (3), this implies that the increase of 
RTT is by linear in a TDP. In fact the increase of RTT is 
not by linear. 
We can find that the RTT will increase much more when 
the congestion window is big than that when the 
congestion window is small. When the memory space size 
of the bottleneck node is small, the congestion window 
can not be very big, so the RTT can be approximately 
viewed as increases by linear. But when the memory space 
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size is big enough, the error between linear and quadric 
curve can not be neglected. The actual time of TDP is 
longer than the time estimated in the model when the 
memory space size is big, so the actual throughput is 
lower than the throughput estimated in the model. 

7. Related Work 

A survey on TCP performance in a heterogeneous network 
is given in [1]. It considers the different characteristics of 
a path crossed by TCP traffic, focusing on bandwidth 
delay product, round trip time (RTT), on congestion 
losses, and bandwidth asymmetry. 
It presents the problems and the different proposed 
solutions. The model used in this paper was proposed in 
[7]. TFRC [3] use it to calculate the sending rate of the 
sender. But only the experimental study result with small 
memory size was given. 

8. Conclusion and Future Work 

In this paper, we summarize the TCP congestion control 
mechanism and the analytical model. The model proposed 
in [7] captures not only the behavior of TCP’s fast 
retransmit mechanism, but also the effect of TCP’s 
timeout mechanism on throughput. But with the big 
memory space size, the model result does not fit the actual 
result well. We suppose that it is because the increase of 
RTT is not by linear when the congestion window is big. 
We present the experimental study result and give a 
qualitative analysis. There are a lot of work remain to do. 
First, a quantitative analysis will help us to make the 
model more precise. Second, the loss probability of the 
packet plays an important role in the model. However, in 
practice, it is hard to measure the loss probability 
accurately. So, if we get the relation of memory space size 
and the RTT, we can infer the queue length of the memory 
space at the bottleneck node from RTT. In our future 
work, we would also like to investigate the effects of 
buffer size on the performance of other recently proposed 
high-speed TCP variants, e.g. FAST TCP [9] which 
changes its window according to buffer delay. 
In this way, we can model the TCP congestion control 
mechanism mainly based on the queue length of the 
memory space and the RTT, which can be measured more 
accurately than packet loss probability. 
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