
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

89

Experimental Evaluation of Memory Effects on TCP Traffic in
Congested Networks

Kulvinder Singh1, Anil Kumar2

1Assistant Professor, Department of Comp. Sc. & Engg. Vaish College of Engineering,
Rohtak(Haryana), India

2Assistant Professor, Department of Comp. Sc. & Engg. Vaish College of Engineering,

Rohtak(Haryana), India

Abstract
Today the Internet is a worldwide-interconnected computer
network that transmits data by packet switching based on the
TCP/IP protocol suite. Internet has TCP as the main protocol of
the transport layer. The performance of TCP is studied by many
researchers. They are trying to analytically characterizing the
throughput of TCP’s congestion control mechanism. Internet
routers were widely believed to need big memory spaces.
Commercial routers today have huge packet memory spaces,
often storing millions of packets, under the assumption that big
memory spaces lead to good statistical multiplexing and hence
efficient use of expensive long-haul links.
In this paper, we summarize the works and present the
experimental study result with big memory space size and give a
qualitative analysis of the result. Our conclusion is that the,
round-trip time (RTT) is not increased by linear, but by quadric
when the memory space size of the bottleneck is big enough. Our
goal is to estimate the average queue length of the memory space
size and develop a TCP model based on RTT and the average
queue length.

Keywords: Traffic management, Congestion control, congestion
mechanism, congestion model, memory size.

1. Introduction

 The traffic across internet is increasing so congestion is
becoming an important issue in network applications.
When congestion is occurred the packet round trip time is
increased and probability is lost and decreased in the
throughput. Transport protocol must deal with this traffic
congestion in order to make best use of the capacity of
network. TCP adopt a window based congestion control
mechanism. Traditionally experimental study and
measurement have been the tools of choice for checking
the performance of various aspects of TCP. But the
amount of non-TCP traffic flows (such as multimedia
traffic) keep increasing in today’s Internet, non-TCP flows
should share the bandwidth with TCP flows “friendly”,

which means the throughout of the non-TCP flows
transport protocol should be approximately the same as the
TCP. In order to do that, we must analytically model the
TCP behavior and characterize the throughput of TCP’s
congestion control mechanism.

In this paper, we investigate is the behaviour of a single
TCP flow when using memory spaces with different size.
We summarize the TCP congestion control mechanism
and the method of analytically characterize the throughput
of TCP’s congestion control mechanism. We present the
experimental study result with big memory space size and
give a qualitative analysis of the result.

2. An overview of Different mechanisms of
TCP congestion control

We can distinguish two major kinds of congestion control
window-based such as TCP (Transmission Control
Protocol), and rate-based that for example regulates ATM-
ABR [2] (Available Bit Rate service of an Asynchronous
Transfer Mode network) traffic. The window-based
congestion control model in the Internet attempts to solve
an optimization problem by decoupling the network
problem to that of individual source utility maximization
by assigning bit-marks.

We have a reliable protocol TCP window-based
acknowledgment clocked flow control protocol. The
sender control the sending rate by increasing or decreasing
the size of its congestion window according to the
acknowledgement received. The strategy used for
congestion window size adjustment is known as AIMD
(Additive Increase Multiplicative Decrease).

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

90

2.1. Slow Start and Congestion Avoidance

The slow start[8] and congestion avoidance algorithms
must be used by a TCP sender to control the amount of
outstanding data being injected into the network.
The congestion window (cwnd) is a sender-side limit on
the amount of data the sender can transmit into the
network before receiving an acknowledgment (ACK),
while the receiver's advertised window (rwnd) is a
receiver-side limit on the amount of outstanding data. The
minimum of cwnd and rwnd governs data transmission.
The variables threshold (ssthresh) is used to determine
whether the slow start or congestion avoidance algorithm
is used to control data transmission.
The slow start algorithm is used at the beginning of a
transfer, or after repairing loss detected by the
retransmission timer.

2.2. Congestion Avoidance

In congestion avoidance we deal with lost packets due to
traffic congestion. It is described in [4]. The assumption of
the algorithm is that packet loss caused by damage is very
small; therefore the loss of a packet signals congestion
somewhere in the network between the source and
destination. There are two indications of packet loss: a
timeout occurring and the receipt of duplicate ACKs.
Congestion avoidance and slow start are independent
algorithms with different objectives.
But when congestion occurs TCP must slow down its
transmission rate of packets into the network, and then
invoke slow start to get things going again.

2.3. Fast Retransmit

A TCP receiver should send an immediate duplicate ACK
when an out-of-order segment arrives. The purpose of this
ACK is to inform the sender that a segment was received
out-of-order and which sequence number is expected.
From the sender's perspective, duplicate ACKs can be
caused by a number of network problems. First, they can
be caused by dropped segments. In this case, all segments
after the dropped segment will trigger duplicate ACKs.
Second, duplicate ACKs can be caused by the re-ordering
of data segments by the network. Finally, duplicate ACKs
can be caused by replication of ACK or data segments by
the network.
The TCP sender should use the "fast retransmit" algorithm
to detect and repair loss, based on incoming duplicate
ACKs. The fast retransmit algorithm uses the arrival of 3
duplicate ACKs as an indication that a segment has been
lost. After receiving 3 duplicate ACKs, TCP performs a
retransmission of what appears to be the missing segment,
without waiting for the retransmission timer to expire.

2.4. Fast Recovery

A TCP receiver should send an immediate duplicate ACK
when an out-of-order segment arrives. The purpose of this
ACK is to inform the sender that a segment was received
out-of-order and which sequence number is expected.
From the sender's perspective, duplicate ACKs can be
caused by a number of network problems. First, they can
be caused by dropped segments. In this case, all segments
after the dropped segment will trigger duplicate ACKs.
Second, duplicate ACKs can be caused by the re-ordering
of data segments by the network. Finally, duplicate ACKs
can be caused by replication of ACK or data segments by
the network. In addition, a TCP receiver should send an
immediate ACK when the incoming segment fills in all or
part of a gap in the sequence space. This will generate
more timely information for a sender recovering from a
loss through a retransmission timeout, a fast retransmit, or
an experimental loss recovery algorithm.

3. Congestion Control and Sizing Router
Memory spaces

The goal of this research is to investigate the memory
space size that is required in order to provide full link
utilization given a used TCP congestion control algorithm.
We start by considering the case of a single TCP
connection.
We have seen that the standard TCP congestion control
algorithm is made of a probing phase that increases the
input rate up to fill the memory space and hit network
capacity [10]. At that point packets start to be lost and the
receiver sends duplicate acknowledgments. After the
reception of three duplicate acknowledgments, the sender
infers network congestion and reduces the congestion
window by half. TCP does not modify TCP behavior in
environments with high to mild congestion (typical of low
speed networks) [5]. In high bandwidth-delay networks in
which HighSpeed TCP sends bursts of large number of
packets, the amount of buffer available in the bottleneck
router is an important issue to keep the router highly
utilized during congestion periods. A large buffer
increases delay and delay variance which adversely affects
real-time applications (e.g., video games, device control
and video over IP applications.) It is therefore important to
investigate the effects of buffering on TCP performance
such as throughput, convergence to fairness and
interaction.

4. The Model for TCP Congestion Control

Traditionally, experimental study and implementation or
measurements have been the tools of choice for examining

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

91

the performance of various aspects of TCP. Recently,
there is a great interest in analyzing the performance of
TCP and TCP-like algorithms to quantify the notion of
"TCP-friendliness", which means connections that use
non-TCP transport protocol, should get a similar share of
bandwidth as TCP connections that share the same link
under the same conditions of loss, RTT etc.
In this model, the throughput of TCP's congestion control
mechanism is characterized as a function of packet loss
and round trip delay. [7]Consider a TCP flow starting at
time t=0. For any given time t, define Nt to be the number
of packets transmitted in the interval [0, t], and Bt = Nt/t,
the throughput on that interval. The steady state TCP
throughput B should be:

t

N
BB t

t
t

t
 limlim

A sample path of the evolution of congestion window size
is given in figure 1.

Figure 1 Triple Duplicate Period.

Between two triple duplicate ACKs loss indications, the
sender is in congestion avoidance phase. Define a TD
period (TDP) to be a period between two triple duplicate
ACKs loss indications. For the i-th TDP, define Yi to be
the number of packets sent in the period, Ai the duration
of the period, and Wi the window size at the end of the
period. Considering {Wi}i to be a Markov regenerative
process with rewards{Yi}i, it can be shown that

][

][

AE

YE
B

 (1)
It can be derived that

E[Y] = l/p + E[W] - 1
 =E[W]*(E[W]*3/2 - 1)*b/4 + E[W]/2 (2)

E[A] =(b*E[W]/2+1)*RTT (3)

Where: p - loss probability, b – window increases by l/b
packets per ACK, RTT – round trip time.
From (I) (2) (3), we can get

1
6

2

3

)1(2

6

2

3

2

3

)1(8

3

21

)(
2

2

b

p

pbb
RTT

b

b

bp

p

b

b

p

p

pB

which can be expressed as:

p
o

bpRTT
pB

1

2

31
)(

Extends this model to include the case where the TCP
sender times-out and the impact of window limitation of
receiver advertised window size, it can be derived that:

)321(
8

3
3min

3

2

1
min)(

2

2
min

pp
bp

T
bp

RTT
RTT

W
pB

o

where To - interval waiting for time out, Wmin - receiver
advertised window size.

5. Experimental Work

We are using here rate based congestion control protocols,
one of which is TFRC (TCP Friendly Rate Control
Protocol)[3]. The model assumes that the congestion
window size increase is linear during congestion
avoidance, which is not always true. When the memory
space size of the bottle-neck node is big enough, the
increase is sub-linear, which lead to the analytical result
will be higher than the actual result. We use QualNet
network simulator [6] to verify the assumption.

Table 1: Parameters used in the simulation.

Queue Size between R0 & R1 40~900

Delay between R0 & R1 35 ms

Bandwidth between R0 & R1 15 Mb

TCP window size 1000

Queue Algorithm Drop Tail

Bandwidth of Branch 128 Mb

Delay of Branch 2 ms

We perform 4 experimental tests. Table 2 list the number
of connections in each simulation.

Table 2: Number of connections in each simulation.

t

W

TDP 1 TDP 2 TDP 3

W1 W2 W3

A1 A2 A3

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

92

Experiment No. 1 2 3 4
TCP Connections 16 24 32 64

TFRC Connections 16 24 32 64

In each simulation, we increase the memory space size of
RO and RI from 50 to 850 step by 100 and the result is
shown in figure 2 - figure 5. In each bar diagram, X axis is
memory space size and Y axis is the mean of bandwidth of
TCP connections and TFRC connections.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

50 150 250 350 450 550 650 750 850

TCP

TFRC

Figure 2 16 TCP & 16 TFRC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

50 150 250 350 450 550 650 750 850

TCP

TFRC

Figure 3 24 TCP & 24 TFRC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

50 150 250 350 450 550 650 750 850

TCP

TFRC

Figure 4 32 TCP & 32 TFRC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

50 150 250 350 450 550 650 750 850

TCP

TFRC

Figure 5 64 TCP & 64 TFRC

6. Analysis

From the result of the experiments, we can find that when
the memory space size is much less than the
Bandwidth*Delay, the model result is quite close to the
actual result. However, as the memory space size
increases, the experimental study result show that the
TFRC connections get more bandwidth than the TCP
connections, which means the analytical result, is higher
than the actual result. We think it is because when the
memory space size is big enough, the congestion window
size increase is by sub-linear, not by linear.
Considering equation (3), this implies that the increase of
RTT is by linear in a TDP. In fact the increase of RTT is
not by linear.
We can find that the RTT will increase much more when
the congestion window is big than that when the
congestion window is small. When the memory space size
of the bottleneck node is small, the congestion window
can not be very big, so the RTT can be approximately
viewed as increases by linear. But when the memory space

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

93

size is big enough, the error between linear and quadric
curve can not be neglected. The actual time of TDP is
longer than the time estimated in the model when the
memory space size is big, so the actual throughput is
lower than the throughput estimated in the model.

7. Related Work

A survey on TCP performance in a heterogeneous network
is given in [1]. It considers the different characteristics of
a path crossed by TCP traffic, focusing on bandwidth
delay product, round trip time (RTT), on congestion
losses, and bandwidth asymmetry.
It presents the problems and the different proposed
solutions. The model used in this paper was proposed in
[7]. TFRC [3] use it to calculate the sending rate of the
sender. But only the experimental study result with small
memory size was given.

8. Conclusion and Future Work

In this paper, we summarize the TCP congestion control
mechanism and the analytical model. The model proposed
in [7] captures not only the behavior of TCP’s fast
retransmit mechanism, but also the effect of TCP’s
timeout mechanism on throughput. But with the big
memory space size, the model result does not fit the actual
result well. We suppose that it is because the increase of
RTT is not by linear when the congestion window is big.
We present the experimental study result and give a
qualitative analysis. There are a lot of work remain to do.
First, a quantitative analysis will help us to make the
model more precise. Second, the loss probability of the
packet plays an important role in the model. However, in
practice, it is hard to measure the loss probability
accurately. So, if we get the relation of memory space size
and the RTT, we can infer the queue length of the memory
space at the bottleneck node from RTT. In our future
work, we would also like to investigate the effects of
buffer size on the performance of other recently proposed
high-speed TCP variants, e.g. FAST TCP [9] which
changes its window according to buffer delay.
In this way, we can model the TCP congestion control
mechanism mainly based on the queue length of the
memory space and the RTT, which can be measured more
accurately than packet loss probability.

References

[l] Chadi Barakat, Eitan Altman, and Walid Dabbous, “On TCP
Performance in a Heterogeneous Network: A Survey”, IEEE
Communications Magazine, January 2000.

[2] D. M. Chiu and R. Jain, “Analysis of the increase and
decrease algorithms for congestion avoidance in computer
networks”, Computer Networks and ISDN Systems, Vol 17, pp.
1 - 14, June 1989.
[3] S.Floyd, M.Handley, J.Padhye, and J.Widmer. “Equation-
Based Congestion Control for Unicast Applications: the
Extended Version”, ICSI Technical Report TR-00-03, March
2000.
[4] V. Jacobson, “Congestion Avoidance and Control”,
Computer Communication Review, vol. 18, no. 4, pp. 314-329,
Aug. 1988.
[5] S. Floyd, “HighSpeed TCP for Large Congestion Windows,”
in RFC 3649, Experimental, December 2003.
 [6] “The Network Simulator––QualNet”, Tech. rep., WebPage:
http://www.scalable-networks.com Version 5.02, July 2010.
[7] J.Padhye, V.Firoiu, D.Towsley, and J.Kurose, “Modeling
TCP throughput: A simple model and its empirical validation”,
Proceedings of SIGCOMM’98, 1998.
[8] W. Stevens. “TCP Slow Start, Congestion Avoidance, Fast
Retransmit, and Fast Recovery Algorithms”. RFC 2001, Jan
1997.
[9] C. Jin, D. X. Wei, and S. H. Low, “FAST TCP: Motivation,
Architecture, Algorithms, Performance,” in Proceedings of IEEE
INFOCOM’04, March 2004.
[10] Saverio Mascolo and Francesco Vacirca, ”TCP Congestion
Control & Memory Space Requirements” in Proceedings of the
44th IEEE Conference on Decision and Control, and the
European Control Conference 2005 Seville, Spain, December 12-
15, 2005.

Kulvinder Singh received the M.Tech.(CSE) degree in 2006 and
the M.Phil.(CS) degree in 2008 from Ch. Devi Lal University
Sirsa(Haryana), India. At present he is working as a Assistant
Professor in Vaish College of Engineering, Rohtak, India. He is a
member of IEC. He presents many research papers in national
and international conferences. His interest areas are Networking,
Web Security, Internet Congestion and Fuzzy Database.

Anil Kumar received his bachelor degree from Delhi University,
Delhi, India and Master degree from IGNOU, India and M.Tech in
Computer Science & Eng. From Kurukshetra University,
Kurukshetra, India in year 2002 and 2006. Currently he is pursuing
Ph.D in Computer Science from the Department of Computer
Science & Application – Kurukshetra University, Kurukshetra,
India. Currently is Asst. Professor in Computer Science &
Engineering Department in Vaish Engineering College, Rohtak,
Haryana, India since September, 2006. He had also worked in
software industries more than three years & being a lecture in
other engineering college more than two years. His research areas
include Software engineering, Reengineering, Software Metrics,
Object Oriented analysis and design, Reusability, Reliability.

