
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

64

Study of algorithms to optimize frequency assignment for
autonomous IEEE 802.11 access points

Michael Finsterbusch and Patrick Schmidt

Dept. of Communication and Computer Science, Hochschule für Telekommunikation Leipzig (FH),
University of Applied Sciences (HfTL)

 Leipzig, Saxony, Germany

Abstract

This study points to an automatic channel assignment for
unadministrated, chaotic WLANs to take advantage on the given
capacity of the IEEE 802.11 frequency spectrum and to enhance
the quality of the entire WLAN sphere.
This paper determines four public channel assignment algorithms
for IEEE 802.11 networks. We show the problem of channel
assignment in unadministrated WLANs and describe each
algorithms functional principles. We implemented each one and
simulated them on a huge amount of random topologies. The
results show the timing behavior, the used iterations and the error
statistics. Based on these data we determined problems in each
algorithm and found graphs were they failed to find a collision
free solution. We also implemented some improvements and
finally a modified algorithm is presented that shows best results.
Keywords: Wireless LAN, Channel Selection, Heuristic,
Optimization.

1. Introduction

The use of IEEE 802.11 wireless LANs (WLAN) has
been grown rapidly for the last ten years, promoted by
inexpensive IEEE 802.11 capable PDAs, mobile phones,
laptops and WLAN routers. WLAN is used for business
and private networks. In the early days of 802.11 WLANs
were mainly installed and administrated by experts.
Today's WLANs are often operated by end users
regardless of their possible influence on other wireless
networks in immediate vicinity. In urban areas often exist
up to 30 WLANs in a place. Mostly they use factory
default settings with the same channel and maximum
transmit power. That results in a bunch of badly working
wireless networks.

To increase the performance of WLANs in such an
environment, automatic lerning and self organized
algorithms are needed to optimize the channel load and
take action on changing network topologies.

This study deals with two kinds of algorithms, that
we classify into distributed and centralized algorithms. A
distributed algorithm runs on any single Access Point (AP),

gathering information from its environment and choosing
its channel configuration with respect to other APs within
reach. A centralized algorithm collects information about
the whole network topology and the disturbing
environment from all APs in its domain. Then one node in
the domain calculates the best channel assignment for the
whole topology and distributes the results to all APs in its
domain.
This paper is organized as follows. First we shortly
describe the problematic nature of channel use and
channel access in 802.11. Then we describe the aims of
automatic channel assignment. In section four the different
channel assignment algorithms are presented, in section
five the performance of the several algorithms is compared.
We summarize our research findings in section six.

2. Principles of IEEE 802.11 data exchange

The air interface in IEEE 802.11 networks is a shared
medium. Both data- and control-frames and up- and down-
link share the same channel, in contrast to other wireless
networks like GSM, EDGE or UMTS. Furthermore the
IEEE 802.11 frequencies are license free, so everyone can
provide its own WLAN network.

The next paragraphs show in short the channel
division and the channel access method.

2.1 Channels in IEEE 802.11

IEEE 802.11 wireless LANs can use two different
frequency ranges in 2.4GHz (IEEE 802.11b/g) and 5GHz
(IEEE 802.11a/h) [1]. The frequency ranges are split into
different channels. Every channel has a bandwidth of
20MHz. Between the center frequencies of neighboring
channels is a frequency gap of 5MHz. Channels 1 to 11 in
the 2.4GHz range may be used in the USA, whereas in
most parts of Europe channels 1 to 13 are available. This
means there are only three non-overlapping channels
within 2.4GHz range. The 5GHz band ranges from

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

65

5.0GHz to 5.725GHz. The first available channel in
Europe is channel 36 (5180MHz), the last is channel 140.
In 5GHz range only channel numbers that are a multiple of
four (e.g. 36, 40, 44) may be used. This means all
available channels in 5GHz band are non-overlapping.
Nevertheless the 2.4GHz range (IEEE 802.11b/g) is used
mostly.

2.2 Access to the wireless network

The access to the wireless interface in IEEE 802.11 is
coordinated by the Carrier Sense Multiple Access with
Collision Avoidance (CSMA/CA) protocol. Any
transceiver must sense for some microseconds (backoff
time) for a free channel. This avoids simultaneous access
to a channel. The backoff time is calculate before a frame
will be sent. The backoff time is a multiple of a time slot
and a random number within the range of 0 to Contention
Window (CW). The contention window ranges from

 maxmin CWCWCW (1)

At startup, CW is initialized with minCW . After

collision CW will be increased by a power of 2, but with

maximum of maxCW :

),12min(maxCWCW collisionsinit (2)

If a frame was send successfully CW is reset to

minCW . Default values for minCW and maxCW are 31

and 1023. A time slot is 9µs or 20µs long, depending on
modulation used [1]. Overall the CSMA/CA algorithm
shares the medium fair between all transmitting stations.

Therefore high channel load, collisions and
interferences decrease the throughput per channel and
increase the latency.

3. Aims of optimized frequency assignment

An optimized frequency assignment improves the
exploitation of the air interface. This decreases the
interference, between neighboring wireless stations,
channel load and collisions. So the overall quality
(throughput, delay and packet loss) of the entire IEEE
802.11 environment will increase. An automatic frequency
assignment has the additional advantage that it can be used
also in non-administrative domains ('chaotic' networks).

Therefore, an optimal channel assignment algorithm
for 802.11 networks will find a channel configuration for
each node and each radio device of each node in such a

way that a minimum of radio interference occurs during
communication.

4. Algorithms

4.1 Channel selection in chaotic wireless networks

Matthias Ihmig and Peter Steenkiste have published a
channel selection method [7] discussed in this section.
Their method tends to optimize the channel selection in
chaotic wireless networks. Chaotic wireless networks are a
group of single WLAN Access Points including its clients
(wireless stations), within different administration
domains and without coordination between those. Due to
this scenario this method depends only on locally
measurements and without communication. We will call
this method CHAOTIC afterwards.

The CHAOTIC channel selection procedure is
divided in three modules: monitoring module, evaluation
module and channel switching module.

The monitoring module permanently collects
information about the channel load on a single dedicated

channel. The AP collects data for at least holdt seconds.

Then it switches to the next channel if it is necessary. For

holdt Ihmig et al proposed a 10 seconds interval. To

determine the channel load the so called MAC delay is
used as metric in [7]. During the measurement the channel
load can fluctuate significantly, so they use an
exponentially weighted moving average to smooth the
measured load value:

,1)1(kkk xxx
1

n

n (3)

For each channel the weighted channel load value is

saved in the load table.
The evaluation module takes the decision of channel

switching. This is done by comparing the current channel

load against a threshold currentthresh . On startup

currentthresh is set to minimum threshold minthresh .

Ihmig et al used a value of 50% channel load for

minthresh . In the case the channel load is higher than the

threshold determined for that channel

(currentcurrent threshchannel), the channel switch is

triggered. The flow chart in figure 1 shows the algorithm
of the evaluation module.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

66

current
>

current

y

current

Trigger Channel Switch

Stay for t
hold

seconds

current min
=

thresh

all table entries up-to-date?
Select channel with
 smallest entry

y n Select channel with
 oldest entry

thresh threshthresh

n channel

= second
 smallest
 entry

Fig. 1 Program flow chart of channel selection [7].

The channel switching module's job is to switch to
the assigned channel together with all connected wireless
stations.

Rating of the CHAOTIC algorithm
The CHAOTIC algorithm seems easy to implement. The
simulation results in the paper of Matthias Ihmig and Peter
Steenkiste showed that at least 95% of the throughput
compared to hand-optimized can be reached.

However the CHAOTIC algorithm has a
disadvantage that we have pointed out during
implementation and testing. There exist topology scenarios
for that the algorithm fails. Demonstrating that behavior
on a minimal setting (figure 2), assume 4 APs that use the
same channel (channel 0) on

1

2

3

0

Channel 2

Channel 1

init ial state step 1

1

2

3

0

Fig. 2 Example graph on error condition.

startup. AP1 is able to detect all other AP's, whereas AP0,
AP2 and AP3 just detect the load of AP1. We assume all
APs generate equal channel load, that is higher than

minthresh . After startup AP0 scans its environment. Due

to detected to high load, AP0 switches to channel 1 and

sets its 0min,APthresh to 0, APcurrentthresh . In the same

way AP1 detects AP2's and AP3's high channel load (and
maybe of AP0 also, when AP1 and AP0 startup
simultaneously) and switches to channel 1. The updated

currentAP threshthresh 1min, is up to two or three times

higher than threshold 0min,APthresh of AP0. After that the

CHAOTIC algorithm remains in a deadlock situation. This
is not the optimal channel assignment (figure 2), but AP0
and AP1 will not switch to another channel any more.
Both AP's have an threshold value that will not be

overcalled from currentchannel . The evaluation algorithm

just loop in the comparison of the current channel load and
the threshold (see figure 3), but it will never break the
loop to switch to another channel.

current
>

current

y

current

Trigger Channel Switch

Stay for t
hold

seconds

current min
=

thresh

all table entries up-to-date?
Select channel with
 smallest entry

y n Select channel with
 oldest entry

thresh threshthresh

n channel

= second
 smallest
 entry

Fig. 3 Program flow chart of channel selection [7] in error condition - the
algorithm locks in a loop.

Modified CHAOTIC algorithm
We modified the CHAOTIC algorithm to overcome its
disadvantages. The modified CHAOTIC at startup scans
all channels to update the whole load table. So the AP can
choose its best channel. Additionally we add a channel
aging. In case of an outdated current channel and
interferences with other APs, channel switching is forced.
This way reaction to changes in the topology is better and
it breaks possible deadlock constellations.

Our simulation results of the CHAOTIC algorithm
and the modified CHAOTIC algorithm are given in
section 5.

4.2 Channel assignment with a central heuristic

K. Leung and B. Kim published a centralized
heuristic to optimize channel load with a better channel
assignment in [6]. The heuristic uses a greedy step to
speed up the algorithm. Greedy algorithms generate good
results, step by step, by splitting the whole problem in

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

67

many particular problems to generate a good solution
(local minima/maxima) for the partial problems. But it is
not guaranteed that they produce the optimal solution for
the whole problem. Often greedy algorithms generate
good results in a comparatively short time.

The aim of this heuristic is to minimize the channel
load of the 'bottleneck'. The bottleneck means the AP with
the most neighbor APs using the same channel. By
optimizing the bottleneck, the flow in the whole set is
optimized.

The heuristic algorithm contains of 6 steps [6]:

1) Generate a random, initial channel assignment.

2) Choose the bottleneck (with channel utilization V). If
there are several bottlenecks choose one randomly.

3) Identify bottleneck's assigned channel k. For each
available channel n from 1 to N with kn and
neighbor AP j, temporarily modify the channel
assignment by reassigning only AP j with channel
n. Save the minimum channel utilization W of all
iterations.

4)
a) If VW , then replace V by W – a greedy step.

Continue with step 2.
b) If VW , then with a pre-defined probability δ

replace, V by W. Continue with step 2.
c) If VW , a local optimum has been reached.

Continue with step 5.

5) Repeat steps 1 to 4 with a number of random, initial
assignments. The final solution is chosen to be the
best according to (4), among the local suboptimal
assignments.

6) Test if condition (5) for all APs is satisfied for the
final assignment. If so, the final assignment is
feasible. Otherwise, it is considered that no feasible
solution exists for the network under consideration.

This heuristic was used by Leung and Kim [6] to

calculate the channel assignment for two different
networks, one with 21 APs and one with 111 APs. The
optimized channel assignment was known in advance. The
heuristic was not able to produce the optimal channel
assignment for the second network with 111 APs.

Rating of the central heuristic
This heuristic is only useful for offline network design,
because it is too slow or needs to much computing power,
respectively. Steps 3 and 5 of the algorithm use brute-

force to find a better channel assignment. This algorithm
scales exponential. So it is not applicable on huge
networks with normal APs that consists usually of low
power embedded devices. The unsuccessful test by Leung
and Kim with the network consist of 111 APs, took about
9 minutes on a SUN Sparc workstation. Therefore it can
not take action to changes in the environment or the
network topology in an adequate time.

But aside from the bad scaling, the central heuristic
fails on a number of network topologies. We determined
during implementation and testing that the algorithms fails
on ring topologies (see figure 4). The main problem is that

channel 2

channel 1

step 1

bottleneck

V=2, W =2

random (4.b)

1

3

0

initial state

2

V=2

step 2

.........

min

V=2, W =1min

bottleneck

1

3

0

2

1

3

0

2

Fig. 4 Central heuristic on error condition.

in step 3 of the algorithm, only one neighbor AP will be
changed. Afterwards will be the next bottleneck chosen to
optimize. In the ring topology, all APs have an utilization
Vector V of 2 - the direct neighbors in the ring. The
reduction of utilization Vector V optimize the local
utilization, but the overall utilization vector W stays at 2.
This failure occurs on ring topologies with even-numbered
amount of nodes and with odd-numbered nodes in line
topology.

Furthermore the algorithm has another problem, it
can not handle incoherent topologies.

Our simulation results for the centralized heuristic are
shown in section 5.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

68

 4.3 Distributed heuristic for multi radio mesh
networks

The channel selection algorithm discussed in this
section was published by Bong-Ju Ko et. al. in [2]. It is a
full distributed online greedy algorithm which optimizes
the channel constellation based on local node information.
They developed and tested the algorithm in an
experimental multi radio mesh environment to improve the
overall throughput performance. In our experiments we
used it to optimize the channel constellation in chaotic
networks. For shorter naming we call this algorithm DH in
this paper.

The algorithm is based on two basic facts. At first an
interference cost function),(baf which measures the

spectral overlapping between channels a and b. The
function is defined in such a way that 0),(baf and

),(),(abfbaf . If the value goes to 0

(0),(baf) channels a and b don't overlap and a

higher value means they overlap. The algorithm works
with every cost function which reflects these requirements
and in our study we simply use 0),(baf which

means that different channels don't overlap. The second

basic fact is the interference set S. The interference set jS

of node j is a list of all nodes whose transmissions will
interfered by transmissions of j. A accurate determining of
the interference sets is very complex in real life
environments and therefore we assumed the interference
set contains all neighbors of node j.

The algorithm itself is defined by the following
pseudo code:

procedure ChannelSelection(node i)

Input: iS : interference list of i

 jc : actual channel list for each iSj

 ic : i's current channel

begin

iSj

jii ccfcF),(:)(

 for k:=1 to K do
 begin

iSj

jckfkF),(:)(

 if)()(kFcF i then

 begin

)(:)(kFcF i

 kci :

 end
 end

end
As we could see the algorithm minimizes the sum of

channel interferences in each iteration. At first step the
actual interference sum is calculated. To do this the actual

channel ic is combined with every channel jc and the

each calculated cost),(ji ccf is added up to the sum

)(icF . In the next step the loop calculates the cost sum

kF in each iteration and compares it to)(icF . If kF is

smaller than)(icF a better channel is found because the

interference costs are decreasing when using this channel.

Rating of the DH algorithm
The algorithm in [2] is very small, very fast and easy to
implement. Because of the very greedy sequence it
converges to a stable solution in only a few steps but also
comes to many incorrect solutions. One example graph
were the algorithm fails to find a collision free solution is
presented in figure5.

1

2 3

0

channel 2

channel 1

2 3

0 1

initial state step1

Fig. 5 Example graph where DH fails to find optimal solution.

The graph shows four nodes with two available
channels at all. The node numbers show the order in which
each AP runs the DH algorithm. At first node 0 changes it's
channel to 1 because this one is free of interferences. After
that AP 1 does the same thing and causes the locking
situation. Because the nodes 0 and 1 doesn't interfere each
other they will never change their channel anymore and
nodes 2 and 3 can't find the optimal result.

Optimizing of the DH algorithm
To optimize the algorithm we tried to use two different
strategies of changing this behavior. At first we tried to
run the algorithm in a randomized node order and we also
sorted the nodes based on node weight to determine the
right running order, but we couldn't optimize the fault
rates significantly.

4.4 Communication Free Learning algorithm

The Communication Free Learning algorithm (CFL)
was published by D.J. Leith, P. Clifford and D.W.Malone
in [4] and [5]. It is a node coloring instruction which was

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

69

developed and tested by the authors for automatic channel
configuration of unadministrated AP's. It is very simple
and doesn't need any communication or synchronization
between the AP's. The algorithm's channel selection is

based on vector ip , which contains a selection probability

for each available channel. The algorithm updates ip for

each channel i following this description:

1) Initialize]/1,...,/1,/1[cccp

2) Toss a weighted coin to select a channel i with a

probability of ip . Sense channel i's quality. If it is

acceptable hop to this channel and goto step 3, if not
goto step 4.

3) On successful change to channel i, update ip as

follows:

a) 1ip

b) ijpi ,0

4) If no channel change, update ip like this:

a) ii pbp)1(

b) ij
c

b
pbp ii

 ,

1
)1(

5) Go back to step 2.

The parameter b is called Learning Parameter and

influences the speed of channel changes. In our simulation
we always used 1.0b according to statements in [5].
Leith et. al. used a measurement of MAC-
Acknowledgements to measure the channel quality, we
used a simple binary decision. A channel is always good if
no other neighbor is using the same one.

Rating of CFL-Algorithm
The CFL is also very easy to implement and always
converges to a stable solution. On the other hand it deals
with a lot more iterations than a greedy algorithm e.g. the
one presented in section 4.3. This is because the selection
decision is based on probabilities which are updated in
every step in dependence to b (Learning Parameter).

Another thing we found out is that there are some
general graphs or subgraphs which cannot be handled
correctly by the CFL under special circumstances.

Figure 6 shows one general graph with two available
channels where the CFL fails to calculate a correct
solution. If the edge nodes are using the same channel i the

probability ip is set to 1ip according to step 3a and

will never change again. The nodes in the middle therefore

0

n

channel 1

channel 2

Fig. 6 General graph where CFL doesn't find optimal solution.

cannot choose this channel and we got a lock situation
where the optimal solution cannot be found anymore.
Figure 6 corresponds to figure 5 and is the generalized
graph of this.

5. Comparison of algorithms

To compare the channel assignment algorithms
described in section 4 objectively, we implemented all
algorithms in the C programming language. To determine
accuracy, disadvantages and performance of this
algorithms, we let they compute channel assignments for
various random generated graphs.

To generate the test graphs, we use an algorithm that
use a weighted random metric. In fact this means that at
startup an empty adjacency matrix for n nodes is created.
With a probability of δ the edge between two nodes is set
in the adjacency matrix. That means this nodes can
interfere with each other. Additionally, it prohibits single,
isolated nodes.

The algorithm test is performed in the following way.
At startup of every test run, a random graph is generated.
Overall we tested the algorithms with graphs of 4 to 24
nodes and 100.000 random graphs for every amount of
nodes. The probability of interferences between two nodes
δ was set to 20%. After graph generation, we determined
the minimal needed amount of channels for a interference
free channel assignment with the DSATUR algorithm. The
well known algorithm DSATUR (Degree of Saturation)
was developed and published by Brèlaz in [3].

Then the graph is initialized with a random channel
assignment. If the random channel assignment is already a
collision free (valid) assignment the graph is reinitialized
until the assignment is not valid. With this setting, every
algorithm described in section 4 had to compute the
channel assignment. Then the result was checked for
validity and additionally we saved the runtime and
iterations needed. The minimal needed amount of channels
- calculated with DSATUR algorithm - was the maximal
number of channels to use. The test run was performed on

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

70

a desktop workstation (Intel® Pentium® 4 CPU 3.00GHz
with 512MB RAM, Linux Kernel 2.6.22).

5.1 Measurement results

The figures 7 and 9 shows the time needed by the
CHAOTIC and the modified CHAOTIC algorithm,
respectively. The better timing behavior of the modified
CHAOTIC algorithm is perfectly clear. The modified
CHAOTIC needs also distinctly fewer iterations (figures 8
and 10), as well. But the root square mean execution time
in figure 10 shows that the modified CHAOTIC algorithm
needs also many iterations for some graphs, but overall it
is much faster.

Fig. 7 Runtime of CHAOTIC algorithm.

Fig. 8 Iterations of CHAOTIC algorithm.

Figure 11 shows the worst, exponential time
consumption of the central heuristic. The reasons for that
was explained in section 4.2. The bad scaling of the
algorithm reflects also in the iteration diagram (figure 12)
and in the comparison of all algorithms in figure 17.

Figure 13 shows the timing behavior of the
distributed heuristic algorithm. It is approximately equal to

that of the CHAOTIC algorithm. A particular feature of
this algorithm is that it needs just one or two iterations
(figure 14). This algorithm is relative fast, but it has a very
high error rate (see figure 18).

Fig. 9 Runtime of modified CHAOTIC alogrithm.

Fig. 10 Iterations of modified CHAOTIC algorithm.

Fig. 11 Runtime of central heuristic algorithm.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

71

Fig. 12 Iterations of central heuristic algorithm.

Fig. 13 Runtime of distributed heuristic algorithm.

Fig. 14 Iterations of distributed heuristic algorithm.

Figure 15 shows the timing behavior of CFL

algorithm. We see, the time consumption increases rapidly.
It needs already a half second average to calculate a
channel assignment for 24 nodes. Test runs with invalid
results were not counted.

Fig. 15 Runtime of CFL algorithm.

Figure 16 shows the iterations needed to compute a
valid channel assignment.

Fig. 16 Iterations of CFL algorithm.

Figure 17 summarizes our findings of the time
consumption for all algorithms, including DSATUR. It
shows that CFL and central heuristic scale badly for
networks with more nodes. The modified CHAOTIC
scales at best of all determined algorithms. But DSATUR
seems to be the fastest algorithm in our simulation. But the
DSATUR algorithm has an exponential scale as a last
resort and also needs the complete topology for calculation
(centralized).

Figure 18 shows the amount of invalid channel
assignments for the entire algorithms. Only the modified
CHAOTIC is free of errors. All other algorithms can not

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

72

be used in real world applications because of their high
error rate.

Fig. 17 Runtime comparison of all algorithms.

Fig. 18 Comparison of invalid assignments.

6. Conclusion

In this paper we compared four different algorithms
for channel assignment in IEEE 802.11 networks. These
algorithms are from different publications and are using
different strategies to solve the problem. We implemented
them in C programming language and simulated all
algorithms on a huge amount of random graphs. We
determined weaknesses/problems in every single one and
could therefore not recommend to use one of these in real
world networks with a higher amount of nodes.

The best results achieved the modified CHAOTIC
algorithm. For practical usage this one would be the best
when regarding its performance and robustness.

Or future goal is to develop a WLAN backbone
architecture with a self organizing channel assignment for

all used radio interfaces. We could use our simulation
results to choose the right algorithm for channel
configuration of the backbone's ingress access points.

References
[1] IEEE Standard for Information technology –

Telecommunications and information exchange between
systems – Local and metropolitan area networks – Specific
requirements — Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications.
IEEE Std 802.11TM-2007.

[2] B.J.Ko, V.Misra, J.Padhye, and D.Rubenstein. Distributed
channel assignment in multi-radio 802.11 mesh networks.
Columbia University, Technical Report, 2005.

[3] Brèlaz. New methods to color the vertices of a graph.
Communications of the Assoc. of Comput. Machinery 22,
1979.

[4] D.J.Leith and P.Clifford. Channel dependent interference and
decentralized colouring. Proc. International Conference on
Network Control and Optimization, Avignon, 2007.

[5] D.J.Leith, P.Clifford, and D.W.Malone. Wlan channel
selection without communication. Proc. IEEE Dyspan, 2007.

[6] K. Leung and B. Kim. Frequency assignment for ieee 802.11
wireless networks. Proc. 58th IEEE Vehicular Technology
Conference, 2003.

[7] M.Ihmig and P.Steenkiste. Distributed dynamic channel
selection in chaotic wireless networks. 13th European
Wireless Conference, Paris, 2007.

Patrick Schmidt studied computer science in Leipzig at Telekom
University of Applied Sciences (HfTL) and received his Diploma in
2006 for inventing a secure and mobile architecture for mobile
vehicles. His Master of Engineering at Telekom University of
Applied Sciences in Leipzig in 2009 was on research for WLAN
backbone optimization. His current projects cover WLAN and
WLAN backbone optimization, network traffic management, deep
packet inspection and high availability.

Michael Finsterbusch studied computer science in Leipzig at
Telekom University of Applied Sciences (HfTL) and received his
Diploma in 2006 for implementing a Diameter server and client to
gain a AAA-infrastructure for a secure and mobile architecture for
mobile vehicles. His Master of Engineering at Telekom University
of Applied Sciences in Leipzig in 2009 was on research for WLAN
mobility. His current projects cover WLAN optimization, WLAN
mobility, network traffic management, deep packet inspection and
high availability.

