
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org 418

Software Architecture, Scenario and Patterns
R.V. Siva Balan1, Dr. M. Punithavalli2

1Department of Computer Applications,
Narayanaguru College of Engineering, kanyakumari, India.

2Director & Head Department of Computer Applications,

Sri Ramakrishna College of Arts and Science for women, Coimbatore, India.

Abstract

The software engineering projects [22, 23] reveals
that a large number of usability related change
requests are made after its deployment. Fixing
usability problems during the later stages of
development often proves to be costly, since many of
the necessary changes require changes to the system
that cannot be easily accommodated by its software
architectural design. This costs high for the
practitioners and prevents the developers from
finding all the usability requirements, resulting in
systems with less than ideal usability. The successful
development of a usable software system therefore
must include creating a software architecture that
supports the optimal level of usability. Unfortunately,
no architectural design usability assessment
techniques exist. To support software architects in
creating a software architecture that supports
usability, practicing a scenario based assessment
technique that leads to successful application of
pattern specification is undergone. Explicit
evaluation of usability during architectural design
may reduce the risk of building a system that fails to
meet its usability requirements and may prevent high
costs incurring adaptive maintenance activities once
the system has been implemented.

Keywords: use-case, patterns, usability, scenarios,
patterns specifications

1. Introduction

Scenarios have been gaining increasing popularity in
both Human Computer Interaction (HCI) and
Software Engineering (SE) as ‘engines of design’. In
HCI scenarios are used to focus discussion on
usability [3] issues .They support discussion to gain
an understanding of the goals of the design and help
to set overall design objectives. In contrast, scenarios
play a more direct role in SE, particularly as a front
end to object oriented design. Use case driven
approaches have proved useful for requirements
elicitation and validation. The aim of use cases in
Requirements Engineering is to capture systems
requirements. This is done through the exploration
and selection of system user interactions to provide

the needed facilities. A use case is a description of
one or more end to end transactions involving the
required system and its environment. The basic idea
is to specify use cases [8] that cover all possible
pathways through the system functions. The concept
of use case was originally proposed in Objectory [8]
but has recently been integrated in a number of other
approaches including the Fusion method and the
Unified Modeling Language [7].

In the software design area, the concept of design
patterns has been receiving considerable attention.
The basic idea is to offer a body of empirical design
information that has proven itself and that can be
used during new design efforts. In order to aid in
communicating design information, design patterns
focus on descriptions that communicate the reasons
for design decisions, not just the results. It includes
descriptions of not only ‘what’ but also ‘why’. Given
the attractiveness and popularity of the patterns
approach, a natural question for RE is: How can
requirements guide a patterns-based approach to
design? A systematic approach to organizing,
analyzing, and refining nonfunctional requirements
can provide much support for the structuring,
understanding, and applying of design patterns during
design.

2. Software architecture

The challenge in software development is to develop
software with the right quality levels. The problem is
not so much to know if a project is technically
feasible concerning functions required, but instead if
a solution exists that meets the software quality
requirements, such as throughput and maintainability.

Traditionally the qualities of the developed software
have, at best, been evaluated on the finished system
before delivering to the customer. The obvious risks
of having spent much effort on developing a system
that eventually did not meet the quality requirements
have been hard to manage. Changing the design of
the system would likely mean rebuilding the system
from scratch to the same cost. The result from the
software architecture design activity is a software

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org 419

architecture. But, the description of that software
architecture is far from trivial. A reason is that it is
hard to decide what information is needed to describe
software architecture, and hence, it is very hard to
find an optimal description technique.

In the paper by Perry and Wolf [2] the foundations
for the study of software architecture define software
architecture as follows:

Software Architecture = {Elements, Form, Rationale}

Thus, software architecture is a triplet of (1) the
elements present in the construction of the software
system, (2) the form of these elements as rules for
how the elements may be related, and (3) the
rationale for why elements and the form were chosen.
This definition has been the basis for other
researchers, but it has also received some critique for
the third item in the triplet. In [15] the authors
acknowledge that the rationale is indeed important,
but is in no way part of the software architecture. The
basis for their objection is that when we accept that
all software systems have inherent software
architecture, even though it has not been explicitly
designed to have one, the architecture can be
recovered. However, the rationale is the line of
reasoning and motivations for the design decisions
made by the design, and to recover the rationale we
would have to seek information not coded into
software.

Software system design consists of the activities
needed to specify a solution to one or more problems,
such that a balance in fulfillment of the requirements
is achieved. A software architecture design method
implies the definition of two things. (i) A process or
procedure for going about the included tasks. (ii) A
description of the results or type of results to be
reached when employing the method. From the
software architecture point-of-view, the first of the
aforementioned two, includes the activities of
specifying the components and their interfaces, the
relationships between components, and making
design decisions and document the results to be used
in detail design and implementation. The second is
concerned with the definition of the results, i.e. what
is a component and how is it described.

The traditional object-oriented design methods, e.g.
(OMT [12], Booch [6], Objectory [8]) has been
successful in their adoption by companies worldwide.
Over the past few years the three aforementioned
have jointly produced a unified modeling language
(UML) [7] that has been adopted as de facto standard
for documenting object-oriented designs.

3. Scenarios

Scenarios serve as abstractions of the most important
requirements on the system. Scenarios play two
critical roles, i.e. design driver, and
validation/illustration. Scenarios are used to find key
abstractions and conceptual entities for the different
views, or to validate the architecture against the
predicted usage. The scenario view should be made
up of a small subset of important scenarios. The
scenarios should be selected based on criticality and
risk. Each scenario has an associated script, i.e.
sequence of interactions between objects and
between processes [13]. Scripts are used for the
validation of the other views and failure to define a
script for a scenario discloses an insufficient
architecture.

Fig. 1 4+1 View model design method

The 4+1 View Model presented in [17] was
developed to rid the problem of software architecture
representation. Five concurrent views (Fig. 1) are
used; each view addresses concerns of interest to
different stakeholders. On each view, the Perry/Wolf
definition [2] is applied independently. Each view is
described using its own representation, a so called
blueprint. The fifth view (+1) is a list of scenarios
that drives the design method.

4. Usability concerns

The work in this paper is motivated by the fact that
this also applies to usability. Usability is increasingly
recognized as an important consideration during
software development; however, many well-known
software products suffer from usability issues that
cannot be repaired without major changes to the
software architecture of these products. This is a
problem for software development because it is very
expensive to ensure a particular level of usability
after the system has been implemented. Studies [21,
22] confirm that a significant large part of the
maintenance costs of software systems is spent on
dealing with usability issues. These high costs can be
explained because some usability requirements will

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org 420

not be discovered until the software has been
implemented or deployed.

5. Patterns

Software engineers have a tendency to repeat their
successful designs in new projects and avoid using
the less successful designs again. In fact, these
different styles of designing software systems could
be common for several different unrelated software
engineers. This has been observed in [18] where a
number of systems were studied and common
solutions to similar design problems were
documented as design patterns.

Fig. 2 Usability Framework

The concept has been successful and today most
software engineers in are aware of design patterns.
The concept has been used for software architecture
as well. First by describing software architecture
styles [16] and then by describing software
architecture patterns [5] in a form similar to the
design patterns. The difference between software
architecture styles and software architecture patterns
have been extensively debated. Two major
viewpoints are; styles and patterns are equivalent, i.e.
either could easily be written as the other, and the
other view point is, they are significantly different
since styles are a categorization of systems and
patterns are general solutions to common problems.

Either way styles/patterns make up a common
vocabulary. It also gives software engineers support
in finding a well-proven solution in certain design
situations.

The design and use of explicitly defined software
architecture has received increasing amounts of
attention during the last decade. Generally, three
arguments for defining an architecture are used [14].
First, it provides an artifact that allows discussion by
the stakeholders very early in the design process.
Second, it allows for early assessment of quality
attributes [29,25]. Finally, the design decisions
captured in the software architecture can be
transferred to other systems.

Our work focuses on the second aspect: early
assessment of usability. Most engineering disciplines
provide techniques and methods that allow one to
assess and test quality attributes of the system under
design. For example for maintainability assessment
code metrics [23] have been developed. In [3] an
overview is provided of usability evaluation
techniques that can be used during software
development. Some of the more popular techniques
such as user testing [9], heuristic evaluation [10] and
cognitive walkthroughs [1] can be used during
several stages of development. Unfortunately, no
usability assessment techniques exist that focus on
assessment of software architectures. Without such
techniques, architects may run the risk of designing a
software architecture that fails to meet its usability
requirements. To address to this problem we have
defined a scenario based assessment technique
(SALUTA).

The Software Architecture Analysis Method (SAAM)
[20] was among the first to address the assessment of
software architectures using scenarios. SAAM is
stakeholder centric and does not focus on a specific
quality attribute. From SAAM, ATAM [19] has
evolved. ATAM also uses scenarios for identifying
important quality attribute requirements for the
system. Like SAAM, ATAM does not focus on a
single quality attribute but rather on identifying
tradeoffs between quality attributes. SALUTA can be
integrated into these existing techniques.

6. Pattern Specifications

Pattern Specifications (PSs) [25, 26] are a way of
formalizing the structural and behavioral features of a
pattern. The notation for PSs is based on the Unified
Modeling Language (UML) [26]. A Pattern
Specification describes a pattern of structure or
behavior and is defined in terms of roles. A PS can be
instantiated by assigning modeling elements to play
these roles. The abstract syntax of UML is defined by
a UML metamodel. A role is a UML metaclass
specialized by additional properties that any element
fulfilling the role must possess. Hence, a role

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org 421

specifies a subset of the instances of the UML
metaclass. A PS can be instantiated by assigning
UMLmodel elements to the roles in the PS. A model
conforms to a pattern specification if its model
elements that play the roles of the pattern
specification satisfy the properties defined by the
roles. Pattern specifications can be defined to show
static structure or dynamic behavior. Here we
concern with specifications of behavior but it should
be noted that any class roles participating in pattern
specifications must be defined in a Static Pattern
Specification (SPS), which is the PS equivalent of a
class diagram.

An Interaction Pattern Specification defines a pattern
of interactions between its participants. It consists of
a number of lifeline roles and message roles which
are specializations of the UML metaclasses Lifeline
and Message respectively. The IPS in Fig. 4
formalizes the Observer pattern. Role names are
preceded by a vertical bar to denote that they are
roles.

Fig. 3 Pattern Specification Process Model

Each lifeline role is associated with a classifier role, a
specialization of a UML classifier. Fig. 4 shows an
example of an IPS and a conforming sequence
diagram.

The separation of specification concerns are
maintained at the state machine level with
composition of the functional need and non-
functional need of requirements from the scenario
level, the state machines need never be seen by the
requirements engineer. Composition is specified
purely in terms of scenario relationships and the
composed state machine of the execution of the
requirement and cancellation that are generated can

be hidden. This has advantages for requirements
engineers not trained in state-based techniques.

Fig. 4 Conforming Sequence Diagram

An IPS can be instantiated by assigning concrete
modeling elements to the roles.

7. Functional and non-functional patterns

Non-functional requirements (NFRs) are pervasive in
descriptions of design patterns. They play a crucial
role in understanding the problem being addressed,
the tradeoffs discussed, and the design solution
proposed. However, since design patterns are mostly
expressed as informal text, the structure of the design
reasoning is not systematically organized. In
particular, during the design phase, much of the
quality aspects of a system are determined. Systems
qualities are often expressed as non-functional
requirements, also called quality attributes e.g.
[28,29]. These are requirements such as reliability,
usability, maintainability, cost, development time,
and are crucial for system success. Yet they are
difficult to deal with since they are hard to quantify,
and often interact in competing, or synergistic ways.

Fig. 5 Non-functional patterns as Requirements

During design such quality requirements appear in
design tradeoffs when designers need to decide upon
particular structural or behavioral aspects of the
system. Applying a design pattern may be understood
as transforming the system from one stage of

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org 422

development to the next. A good design needs the
identification of architectural design decisions that
improve usability, such as identification of usability
patterns [29].

8. Conclusion

Use cases are a popular requirements modeling
technique, yet people often struggle when writing
them. They understand the basic concepts of use
cases, but find that actually writing useful ones turns
out to be harder than one would expect. One factor
contributing to this difficulty is that we lack objective
criteria to help judge their quality. Many people find
it difficult to articulate the qualities of an effective
use case. We have identified approximately three-
dozen patterns that people can use to evaluate their
use cases. We have based these patterns on the
observable signs of quality that successful projects
tend to exhibit. Construction guidance is based on use
case model knowledge and takes the form of rules
which encapsulate knowledge about types of action
dependency, relationships between actions and flow
conditions, properties of objects and agents, etc.
Based on this knowledge rules, help discovering
incomplete expressions, missing elements,
exceptional cases and episodes in the use case
specification through pattern specification. They
support the progressive integration of scenarios into a
complete use case specification.

References
[1] C. Wharton, J. Rieman, C. H. Lewis,

and P. G. Polson, The Cognitive
Walkthrough: A practitioner's guide.,
in Usability Inspection Methods,
Nielsen, Jacob and Mack, R. L., John
Wiley and Sons, New York, NY., 1994.

[2] D.E. Perry, A.L.Wolf, ‘Foundations
for the Study of Software
Architecture’, Software Engineering
Notes, Vol. 17, No. 4, pp. 40-52,
October 1992.

[3] E. Folmer and J. Bosch,
Architecting for usability; a survey,
Journal of systems and software,
Elsevier, 2002, pp. 61-78.

 [4] F. Buschmann, R. Meunier, H.
Rohnert, M.Stahl, Pattern-Oriented
Software Architecture - A System of
Patterns, John Wiley & Sons, 1996.

[5] F. Buschmann, R. Meunier, H.
Rohnert, M.Stahl, Pattern-Oriented
Software Architecture - A System of
Patterns, John Wiley & Sons, 1996.

[6] G. Booch, Object-Oriented Analysis
and Design with Applications (2nd
edition), Benjamin/Cummings
Publishing Company, 1994.

[7] G. Booch, J. Rumbaugh, I. Jacobson,
The Unified Modeling Language User
Guide, Object Technology Series,
Addison-Wesley, October 1998.

[8] I. Jacobson, et. al., Object-
oriented software engineering. A use
case approach, Addison- Wesley, 1992.

[9] J. Nielsen, Heuristic Evaluation.,
in Usability Inspection Methods.,
Nielsen, J. and Mack, R. L., John
Wiley and Sons, New York, NY., 1994.

[10] J. Nielsen, Usability Engineering,
Academic Press, Inc, Boston, MA.,
1993.

[11] J. Bosch, Design and use of
Software Architectures: Adopting and
evolving a product line approach,
Pearson Education (Addison-Wesley and
ACM Press), Harlow, 2000.

[12] J. Rumbaugh, M. Blaha, W.
Premerlani, F. Eddy, W. Lorensen,
Object-oriented modeling and design,
Prentice Hall, 1991.

[13] K. Rubin, A. Goldberg, “Object
Behaviour Analysis”, Communications
of ACM, September 1992, pp. 48-62.

[14] L. Bass, P. Clements, and R.
Kazman, Software Architecture in
Practice, Addison Wesley Longman,
Reading MA, 1998.

[15] L. Bass, P. Clements, R. Kazman,
Software Architecture in Practice,
Addison Wesley,1998.

[16] M. Shaw, D. Garlan, Software
Architecture - Perspectives on an
Emerging Discipline, Prentice Hall,
1996.

[17] P.B. Kruchten, ‘The 4+1 View Model
of Architecture,’ IEEE Software, pp.
42-50, November 1995.

[18] R. Gamma et. al., Design Patterns
Elements of Reusable Design,
Addison.Wesley, 1995.

[19] R. Kazman, M. Klein, M. Barbacci,
T. Longstaff, H. Lipson, and J.
Carriere, The Architecture Tradeoff
Analysis Method, Proceedings of
ICECCS'98, 8-1-1998.

[20] R. Kazman, G. Abowd, and M. Webb,
SAAM: A Method for Analyzing the
Properties of Software Architectures,
Proceedings of the 16th International
Conference on Software Engineering,
1994.

[21] R. S. Pressman, Software
Engineering: A Practitioner's
Approach, McGraw-Hill, NY,1992.

[22] T. K. Landauer, The Trouble with
Computers: Usefulness, Usability and
Productivity., MIT Press., Cambridge,
1995.

[23] W. Li and S. Henry, OO Metrics
that Predict Maintainability, Journal

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org 423

of systems and software, Elsevier,
1993, pp. 111-122.

[24] R. France, D. Kim, S. Ghosh and E.
Song, “A UMLBased Pattern
Specification Technique”, IEEE
Transactions on Software Engineering,
Vol. 30(3), 2004.

 [25] D. Kim, R. France, S. Ghosh and
E. Song, “A UMLBased Metamodeling
Language to Specify Design Patterns”,
Proceedings of Workshop on Software
Model Engineering (WiSME), at UML
2003, San Francisco, 2003.

 [26] Unified Modeling Language
Specification, version 2.0 January
2004, In OMG, http://www.omg.org [15]
J. Warmer and A. Kleppe, The Object
Constraint Language: Getting Your
Models Ready for MDA, 2nd Edition,
Addison-Wesley, 2003.

[27]Boehm BW. Characteristics of
software quality. North-Holland Pub.
Co., Amsterdam New York 1978.

[28]Bowen TP. Wigle GB. Tsai JT.
Specification of software quality
attributes (Report RADC-TR-85-37).
Rome Air Development Center, Griffiss
Air Force Base NY 1985.

[29] Architecting for usability; a
survey, http://segroup.cs.rug.nl.

Prof. Dr.M.Punithavalli is currently the Director &
Head of Department of Computer Applications, Sri
Ramakrishna College of Arts and Science for
women, Coimbatore, India. She is actively working
as the Adjunct Professor in the department of
Computer Applications of Ramakrishna Engineering
College, India.

Lect. R.V.SivaBalan is currently working as the
Lecturer in the Department of Computer
Applications, Narayanaguru College of Engineering,
India. He is a research scholar in Anna University
Coimbatore, India.

