
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

350

Automated Test Data Generation Based On Individual
Constraints and Boundary Value

Hitesh Tahbildar1, and Bichitra Kalita2

 1 Computer Engineering and Application Department, Assam Engineering institute
Guwahati, Assam 781003, India

2 Computer Application Department, Assam Engineering College
Guwahati, Assam 781013, India

Abstract
Testing is an important activity in software development.
Unfortunately till today testing is done manually by most of
the industry due to high cost and complexity of automation.
Automated testing can reduce the cost of software
significantly. Automated Software Test Data Generation is
an activity that in the course of software testing
automatically generates test data for the software under
test. Most of the automated test data generation uses
constraint solver to generate test data. But it cannot
generate test data when the constraints are not solvable.
Although method can be found to generate test data even if
the constraints are unsolvable, but it is poor in terms of
code coverage.
In this paper, we propose a test data generation method to
improve test coverage and to avoid the unsolvable
constraints problem. Our method is based on the individual
constraints and same or dependent variable to create the
path table which holds the information about the path
traversed by various input test data. For generating unique
test data for all the linearly independent feasible path we
created equivalence class from the path table on the basis
of path traversed by the various input test data. The input
data is taken based on individual constraints or boundary
value. Our results are compared with cyclomatic
complexity and number of possible infeasible paths. The
comparison shows the effectiveness of our method.
Keywords: Independent feasible path, scalability,
 equivalence class.

1. Introduction

Automated testing is a good way to cut down time and cost
of software development. It is seen that for large software
projects 40% to 70% of development time is spent on
testing. Therefore automation is very much necessary. Test
automation is a process of writing computer programs that

can generate test cases, or else test cases need to be
generated manually. Automated testing save time, money

and increase test coverage. Software testing tools and
technique usually lack in portability, reliability,
applicability, and scalability. Till today, there are four
approaches of automatic test data generation. They are
Random [18, 19, 14], Goal oriented, Intelligent approach,
and Path oriented [8, 16, 9]. Random testing is quick and
simple but not reliable. Goal oriented approach do not
require path selection step but there is difficulty in selecting
goal and adequate data. Intelligent approach might face the
problems of high computation. The reason behind
popularity of path oriented testing is its strongest path
coverage criteria. Main problem of path oriented test data
generation is infeasible path and complexity of data types
[1]. Path oriented testing can be implemented by symbolic
execution [20], actual value [16], and combined method
[12, 21, 11]. Conventional method of test data generation
using symbolic execution collect the path predicate and
then solve it with a constraint solver[17]. There are many
issues of symbolic execution. Some of them are unsolvable
constraint, aliasing, solving for infinite loops, and size of
symbolic expression etc. [9]. We cannot generate test data
when constraints are not solvable. Another major problem
of symbolic execution is detection of path feasibility.
There are programs where more than 50% of paths are
infeasible.[9]. Avoidance of infeasible path can expedite
test data generation process significantly. Xio [5] proposes
a constraint prioritization method to generate test data using
data sampling score. The method solves prioritized
constraints to generate test data for longest feasible path.
The method considers longest feasible path i.e. it does not
consider any unsolvable constraints as the constraints are
collected based on some inputs. But it cannot give the
guarantee of better or full coverage. Xio method had
chosen the orthogonal data selection method for the input
test data. Orthogonal data selection is to select data at the

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

351

opposite ends of the range of values [5]. The method
overcomes the situation of infeasible path which is one
major problem of automated software testing. It gives us
guarantee for only one test data as any data satisfies either
of the complementary constraints. The major problem of
the conventional method of symbolic execution is
constraint solver. It removes the difficulties of conventional
method of symbolic execution using prioritized constraint
instead of using constraint solver. It provides a solution for
infeasible path problem but the method is weak in terms of
code coverage. The orthogonal selection have some
drawbacks. The orthogonal test data selection will not be
applicable for those sample programs having single input
variable constraint. The path covered by the test data
generated by this method covers only one path or a few
paths. We propose a method to improve the test coverage
and also to avoid constraint solving. The detection of path
feasibility [17] is also taken care. Our method is based on
the variables involved in the constraints. We are grouping
the constraints in such a way that the constraints belongs to
the same groups or equivalent class of variables are
solvable for all possibilities. That is unsolvable constraints
are not put to the same equivalence class of variables. For
each equivalent class we generate path based on individual
constraints or boundary value.

The paper is organized as follows: Section 2 presents a
survey of related works of test data generation methods.
Section 3 explains our approach with sample programs.
Section 4 explains our experimental results and advantages
of our approach of test data generation. Finally in Section
5 we conclude with some observation and future work to be
done in test data generation.

2. Survey of related works

The literature of test data generation methods says that the
main problem of symbolic execution [10, 9, 20] is
constraint solving [22]. Either constraint solving may take
more time or some constraints are not solvable. Test case
prioritization is used to improve the rate of fault detection
specially for regression testing [7, 13, 2]. In [5], constraint
prioritization technique with sampling scores method is
used to deal with problem of constraint solving. The steps
of the Xio methods are construction of control flow graph,
finding edge priority, finding complementary pairs, and
sample table and sample scores. But this method [5] works
only for specific programming constructs. In [19, 18]
random testing is cleverly implemented to generate test
data. In conventional testing we believe that number of test
case should be equal to cyclomatic complexity. McCABE
in [23] showed that when actual number of paths tested is
compared with cyclomatic complexity, several additional
paths are discovered that would normally be overlooked.

Ngo and Tan proposed an approach to detect infeasible
paths using actual value execution [15]. The method
combines empirical properties of infeasible paths with
dynamic information collected during test data generation
process. Antonia emphasizes on research for improvement
of scalability of test data generation algorithms [4].

3. Our Approach

3.1 Steps of Our Approach

To improve the coverage of the sample program which is
the major drawback in the method as suggested by [5], we
propose a method based on the variables involved in the
constraint. The flow graph of our method is shown in
figure 1.

 Source Program

 Constraints

 Dependent Variables

 Equivalence Class of Variables

 Input Data

 Path for Test Data

 Test Data

Fig. 1 Steps of our approach.

3.1.1 Constraint Finder

The constraints in the program are found out with the
help of this tool.

3.1.2 Dependent Variable Finder

The variables which are either same or dependent on each
other are found out with the help of this tool.

Constraint Collector

Dependent Variable Collector

Variables Equivalence Classs Generator

Input Data Generator

Path Table Algorithm

Equivalence Path Generator

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

352

3.1.3 Equivalence Class of Variables

Initially the equivalence class is blank. The first constraint
is added to the equivalence class. Next the second
constraint is checked with the first constraint and if the
variable in the second constraint is either same or
dependent on the variable of the first constraint then the
second constraint is added to the same class or else the
second constraint is added to a new class. Similarly for all
the constraints the variables are checked with the variables
of the constraint already in the equivalence class, to find
out if they are either equal or dependent. Then they are
added to the same class on which the dependent/same
variable constraint is located or else they are added to a
new class.

3.1.4 Input Test Data Generator

The input test data is generated on the basis of the
equivalence class of variables. Here 3 cases may arise.
They are discussed below:-

CASE 1: NOT ALL BUT SOME VARIABLES
INVOLVED IN THE CONSTRAINT ARE SAME OR
DEPENDENT Some but not all variables involved in the
constraint are same or dependent on the variables involved
in other constraint. In this case we will at least get more
than one equivalence class of variables. As for example the
sample program1, the constraints in the sample program are
w1 == 5, w1 > 5, w1 + w2 >= 8, w1 + w2 + w3 >= 12.
Here the two constraint w1 == 5 and w1 > 5 involves the
same variable w1 and hence they are included in the same
equivalence class and the other two constraints are added in
a new class respectively. The control flow graph of sample
program 1 is shown in figure 2.

The equivalence class for this sample program 1 is shown
in table 1.

 Table 1: Equivalence class for sample program 1

The test data generated for various possibilities of sample
program 1 constraints are shown in table 2 and table 3

CASE 2: ALL VARIABLES INVOLVED IN THE
CONSTRAINT ARE SAME OR DEPENDENT The

control flow graph of sample program 2 and program 3

is shown in figure 5 and 3 respectively.

The variables involved in each of the constraint may

same/

 w1! =5 w1==5

 w1<5 w1>5

 w1+w2>=8

w1+w2<8

 w1+w2+w3<12

 w1+w2+w3>=12

 n>=30 n<30

Class

Constraint

1 w1 == 5 , w1 > 5

2 w1 + w2 >= 8

3 w1 + w2 + w3 >= 12

2
c

11
n

10
m

9
l8

j

3
d

7
i

4
e

6
k

5
g

1
a, b

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

353

 Fig 2: Control flow graph of program 1

Table 2: possible combination of constraints

w1==5

w1+w2>=8

w1+w2+w3>=12

TRUE TRUE TRUE
TRUE TRUE FALSE
TRUE FALSE FALSE
TRUE FALSE TRUE
FALSE TRUE TRUE
FALSE TRUE FALSE
FALSE FALSE TRUE
FALSE FALSE FALSE

dependent on each other. In this case only one class will

be generated in the table of the equivalence class of

variables. For this condition the input test data is taken

by the boundary value analysis of each of the constraint

individually. For example the sample program 3. The
constraints in the sample program are marks > 100, marks
>= 50 and grade! = "”. Here the first two constraints
consist of the same variable marks and the variable grade
involved in the third constraint depends on the variable
marks. The equivalence class of variables for this sample
program is shown in table 4.

Thus the input test data will be taken by the boundary
analysis of the constraint marks > 100, marks >= 50 and
grade! = "” but the variable grade is the output hence the
input test is taken considering the boundary analysis of the
first two constraint.

CASE 3: INDIVIDUALLY THE VARIABLES INVOLVED
IN THE CONSTRAINT ARE NOT SAME OR DEPENDENT
BUT COMBINATION OF TWO OR MORE CONSTRAINT
MAY MAKE A VARIABLE INVOLVED IN A
CONSTRAINT DEPENDENT ON THE COMBINATION

Table 3: possible combination of constraints

 Marks<=100

 Marks>100

 Marks>=50

 Marks<50

grade!=’ ’ ’ ’

grade=’ ’ ’ ’

Fig 3: Control flow graph of program 3

This case can be explained with the help of the sample
program 4.The control flow graph of sample program 4 is
shown in figure 4.
The constraints in the sample program are:- a > b; a > c; b
>c; a == b; b == c The constraint a > b and a == b
involves the same variable a & b and the constraint b > c
and b == c also involves the same variable b and c. But the
combination of the constraint a > b & a > c makes the
constraint b > c & b == c dependent on the combination.
Similarly But the combination of the constraint a > b & a
> c makes the constraint a > c dependent on the
combination and also the combination of the constraint b >
c & a > c makes the constraint a > b & a == b dependent
on the combination. Hence the input test data is taken by

w1 > 5 w1 + w2 >= 8 w1 + w2 w3 >=12
TRUE TRUE TRUE
TRUE TRUE FALSE
TRUE FALSE FALSE
TRUE FALSE TRUE
FALSE TRUE TRUE
FALSE TRUE FALSE
FALSE FALSE TRUE
FALSE FALSE FALSE

 1
a,b,c,d

 2
 e

 5
 i,j

3
f

4
g,h

 8
m

 7
 l

 6
k

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

354

solving the constraint combination as follows: - a > b & a
> c

a > b&b > c

a > c&b > c

a > c&b == c

a > c&a == b

a > b&b == c

b > c&a == b

 Table 4: Equivalence class of sample program 3

Class Constraint
1 Marks>100, marks >=50 and grade! = “ “

 a>b
 a<=b

 a>c
 a<=c

 b>c
 b<=c

 b<=

 a==b
 a!=b

 b=c
 b=c b! =c

 b!=c

Fig 4: Control flow graph of program 3

3.2 Path Table Algorithm

1. Path = NULL
2. Current node = start
3. If Current node!= End
4. go to step 6

5. else go to step 13
6. Path = Path + Current node
7. if Current node has only one child node then
8. Current node = Child node
9. Otherwise, if constraint at the node is true then
10. Current node = Left Child node
11. Else Current node = Right child node
12. go to step 3
13. Path = Path + End

3.3 Equivalence Path Generation Algorithm

1. For all path generated do the steps from 2 to 7
2. If Equivalence path table is empty then
3. Add the path to Equivalence path table
4. Otherwise, do the steps from 5 to 7
5. Compare the path with all paths in equivalence path
table.
6. As soon as a match is found simply discard the path.
7. If no match is found add the path to Equivalence path
table.

 x!=y

 x>y x<y

 x=y

 Fig 5: Control flow graph of program 2

3.4 Input Test Data

The input test data is taken based on feasible individual
constraints or boundary value of the constraints variables.

4. Experimental Results

 a
1

 c
3

 h
8

 f
6

 d
4

 b
2

 n
13

 m
12

 l
11

 g
7

 e
5

j,k
10

 i
9

 1
a-e

2
f

 3
 g

 4
h,i

 5
J,k

 6
l

 7
m

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

355

4.1 Result of Sample Program 1

The path table for sample program 1 is shown in table 5

4.1. 1 Path Table and equivalence class

The equivalence class and path table for sample program 1
of control flow graph figure 1 is shown in table 6.

The unique feasible paths and test data are shown in table 6

4.2 Experimental Result of Sample Program 2

4.2.1 Path Table and equivalence class

Path table for sample program 2 of control flow graph
figure 5 is shown in table 7. Three different paths are
generated by our input algorithm. The unique feasible
paths and test data are shown in table 8

Table 5: Path Table for sample program 1
w1 w2 w3 Path covered
5 3 4 a,b,e,l,n
5 3 3 a,b,e,l,n
5 2 6 a,b,e,l,n
5 2 3 a,b,e,l,n
4 4 4 a,b,d,g,k,l,m,n
4 4 3 a,b,d,g,k,l,m,n
4 3 6 a,b,d,g,i,j,l,m,n
4 3 4 a,b,d,g,i,l,m,n
6 2 4 a,b,d,e,l,m,n
6 2 3 a,b,d,e,l,m,n
6 1 5 a,b,d,e,l,m,n
6 1 4 a,b,d,e,l,m,n
4 4 4 a,b,d,g,k,l,m,n
4 4 3 a,b,d,g,k,l,m,n
4 3 6 a,b,d,g,i,l,m,n
4 3 4 a,b,d,g,l,m,n

 Table 6: Equivalence class and test data

Class Path covered value
1 a,b,c,d,e,l,n w1=5, w2=3, w3=4
2 a,b,c,d,g,k,l,m,n w1=4, w2=4, w3=4
3 a,b,d,g,i,j,l,m,n w1=4, w2=3, w3=6
4 a,b,d,g,i,l,n w1=4, w2=3, w3=4
5 a,b,d,e,l,m,n w1=6, w2=2, w3=4

4.3 Experimental Result of Sample Pro-gram 3
4.3.1 Path Table and equivalence class

Path table for sample program of control flow graph figure
3 is shown in table 9. The unique feasible paths and test
data are shown in table 10

Thus the final test data's are the data taken from each
equivalence class

4.4 Experimental Result of Sample Program 4

The path table of sample program 4 has 32 paths and by
forming equivalence class we get 11 unique feasible paths.

4.5 Discussions and Comparison

According to Ngo and Tan [15] the main cause of
infeasible program paths is the correlation between some
conditional statements along the path. Two conditional
statements are correlated if along some paths, the outcome
of the latter can be implied from the outcome of the earlier.
We compare our results for minimum number of paths
covered by our method with cyclomatic complexity and
number of infeasible paths generated for programs with the
infeasible path detection method proposed by [15].

Table 7: PATH Table for sample program 2
x y Path covered
4 4 a,b,c,d,e,f,m
4 8 a,b,c,d,e,f,g,h,i,l,f
8 4 a,b,c,d,e,f,g,j,k,l,f
10 5 a,b,c,d,e,f,g,h,i,l,f
5 10 a,b,c,d,e,f,g,j,k,l,f
10 10 a,b,c,d,e,f,m

Table 8: Equivalence class and test data

Class Path covered Value
1 a,b,c,d,e,f,m x=4, y=4
2 a,b,c,d,e,f,g,h,i,l,f x=8, y=4
3 a,b,c,d,e,f,g,j,k,l,f x=4, y=8

For the sample program 1
Node1 and Node9 are empirically correlated because
(a) There exist a path from node1 to node9 for the
conditional statement w1 == 5 and also for the conditional
statement w1! = 5.
(b) node1 which has the statement n = 10 and w1 = = 5 and
the node9 has the statement n >= 30. The two nodes are not
transitively dependent.
(c) δ(node1) = δ(node9) because the conditional statement
w1 == 5 depends on the variable w1 and the conditional
statement n>= 30 in node9 depends on n and n depends on
w1.

Thus either true (node1) and true (node9) is feasible and
false (node1) and false (node9) is feasible, or true (node1)
and false (node9) is feasible and false (node1) and true
(node9) is feasible

Similarly,

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

356

node3 and node9 are empirically correlated.
node5 and node9 are empirically correlated
node7 and node9 are empirically correlated

The table 11 shows all the linearly independent paths along
with the constraint involved in the path

But according to the infeasibility condition the feasible
paths are:-

1) Class A or Class B
2) Class C or Class D
3) Class E or Class F
4) Class G or Class H
5) Class I or Class J

Using [15] we find that in sample program 1 there are 5 in-

Table 9: PATH Table for sample program 3
Marks Path Covered
99 a,b,c,d,e,f,i,j,l,m

100
100 a,b,c,d,e,f,i,j,k,l,m
101 a,b,c,d,e,k,m
49 a,b,c,d,e,f,g,h,k,l,m
50 a,b,c,d,e,f,i,j,l,m
51 a,b,c,d,e,f,i,j,k,l,m

Table 10: Equivalence class and test data
Class Path covered Value
1 a,b,c,d,e,f,i,j,k,l,m 99
2 a,b,c,d,e,k,m 101
3 a,b,c,d,e,f,g,h,k,l,

m
49

feasible paths. Again the number of equivalence class of
the sample program 1 is 5. Hence, our method covers all
the linearly independent feasible path of the sample
program 1.The cyclomatic complexity of the sample
program 1 is 6, and our approach has generated 5 test data.

For the sample program 2 there are no empirically
correlated as no pair of nodes satisfy the empirically
correlated condition. The table 12 shows all the linearly
independent paths along with the constraint involved in the
path.

From the table 12 it is seen that there are 3 linearly
independent feasible paths and our approach also generates
3 equivalence classes. Hence, our method covers all the
linearly independent feasible paths of the sample program
2. The cyclomatic complexity of the sample program 2 is 3,

and our approach has generated 3 test data. In sample
program 2 there are no infeasible path.

For the sample program 3 node3 and node6 are empirically
correlated. Thus either true(node3) and true(node6) is
feasible and false(node3) and false(node6) is feasible, or
true(node3) and false(node6) is feasible and false(node3)
and true(node6) is feasible.

Similarly, there will be three linearly independent feasible
path in the program and the number of equivalence classes
are also 3. Hence, our method covers all the linearly
independent feasible paths of the sample program 3. In
sample program 3 there are 50% infeasible paths.

The cyclomatic complexity of the sample program 3 is 4,
and our approach has generated 3 test data.

For the sample program 4
There are 32 linearly independent paths. There are 21
infeasible paths. Hence the number of feasible paths are 11
and the number of equivalence classes of our implemented
method is also 11. Hence, our method covers all the
linearly independent feasible paths of the sample program
11. In

 Table 11: Linearly independent path table for sample program 1

Class Constraints Path covered
A w1==5 n>=30 a,b,d,e,l,m,n
B w1==5 n<30 a,b,d,e,l,n
C w1>5 n>=30 a,b,d,e,l,m,n
D w1>5 n<30 a,b,d,e,l,,n
E w1! =5 w1<5

w1+w2>=8,
n>=30

a,b,d,g,k,l,m,n

F w1! =5 w1<5
w1+w2>=8, n<30

a,b,d,g,k,l,,n

G w1! =5 w1<5
w1+w2<8,
w1+w2+w3>=12,
n>=30

a,b,d,g,i,j,l,m,n

H w1+w2<8,
w1+w2+w3>=12,
n<30

a,b,d,g,i,j,l,,n

I w1! =5 w1<5
w1+w2<8,
w1+w2+w3<12,
n>=30

a,b,d,g,i,l,m,n

J w1! =5 w1<5
w1+w2<8,
w1+w2+w3<12,
n<30

a,b,d,g,i,l,n

 Table 12: Linearly independent path table for sample program 2

Class Condition Path covered
A x=y a,b,c,d,e,f,m

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

357

B x! =y x>y a,b,c,d,e,f,g,h,i,l,f

C x! =y x<y a,b,c,d,e,f,g,j,k,l,f

sample program 4 there are 66% infeasible paths. The
cyclomatic complexity of the sample program 4 is 7, and
our approach has generated 11 test data.

4.5.1 Advantages of Our Approach

Our approach of dividing the input test data into the
equivalence classes gives data for all the linearly
independent feasible path. The time and memory
complexity is much lower than the [5] method as we have
generated the test data without considering the priority
table. Thus we have generated reliable test data at a lower
cost. The path table does not include the infeasible path and
so we have left the infeasible path at the beginning and
have not tried to find the test data from the beginning.

5. Conclusions and Future Work

The proposed method has generated test data almost for all
the feasible independent paths. As for example for the
sample program1, the proposed method has covered the
path involving the constraint w1==5 & n < 730, w1>5 &
n>=30 , w1+w2>=8 & n>=30, w1+w2+w3>=12 & n>=30
but could not provide test data covering the constraint
w1==5 & n>=30, w1>5 & n<30, w1+w2>=8 & n<30,
w1+w2+w3>=12 & n<30. But those path which have not
been covered by the proposed method are infeasible paths
if we go through the body of the program. Similarly, the
proposed method covers all the feasible paths of the other
sample programs also. For the sample program 3 we have
seen that according to Ngo and Tan [15] there are three
infeasible paths and the total number of linearly
independent path is 6, hence there are three feasible paths
and our method also generated three test data for three
independent paths. For those types of sample program
which do not have infeasible path the proposed method
covers all the linearly independent paths as the sample
program 2. Coverage is inversely proportional to the
number of infeasible paths. Thus the proposed method
generates all the feasible linearly independent paths of any
program and the presence of infeasible path does not create
any problem in generating the test data for testing a
program. Though the test data generated by the
implemented method is less than the cyclomatic complexity
for the sample program 1 and the sample program 3 but the
cyclomatic complexity includes both the feasible and
infeasible path. Again the cyclomatic complexity gives
only the value of minimum number of linearly independent

path. But our method generates test data for all the feasible
linearly independent path. Hence our method gives more
accurate result in compare to the cyclomatic complexity.
We describe an approach for test data generation with
lower computation cost. The main issue of test data
generation using this method is how to take input for
finding the paths. We tested our input test data algorithm
with 5 different types of programs. Our experimental
results shows that this method can generate reliable test
data at a lower cost but it is not optimum. The disadvantage
of our method is reliability of input while extracting the
paths. Since a program may have many numbers of
infeasible paths therefore we cannot determine whether
number of equivalence class cover minimum number of test
to be covered like cyclomatic complexity. Our algorithm
for solving path constraints is encouraging. Because the
number of equivalence class is less than equal to number of
paths. In future we will further research for finding
methods of input selection so that it covers every feasible
paths of our program. The method should be tested with
more examples for accuracy. The method should improve
the scalability by including more data types like dynamic data
structure and string.

References

[1] Shahid Mahmood,"A Systematic Review of
Automated Test Data Generation Techniques", School of
Engineering, Blekinge Institute of Technology Box 520
SE-372 25 Ronneby, Sweden, October 2007.

[2] David Godwin Jason Racicot Mechelle Gittens, Keri
Romanufa.. “All code coverage is not created equal” A
case study in prioritized code coverage." Technical report,
IBM Toronto Lab, 2006.

[3] J. Edvardsson,, “Survey on Automatic Test Data
Generation," In Proceedings of the Second Conference On
Computer Science and Systems Engineering
(CCSSE'99),Linkoping, pp. 21-28 10/1999.

[4] Antonia Bertolino, “Software testing research: Achive-
ments, challenges, dreams," In Future of software
Engineering, 2007.
[5] J. Jenny Li Xio Ma and David m. Weiss., “Pri- oritized
constraints with data sampling scores for automatic test
data generation." In Eight ACIS In- ternational Confe ence
on Software Engineering, articial Intelligence, Network,
2007.

[6] Jon Edvardsson, “A survey on automatic test data gen-
eration," In In Proceedings of the Second Con- ference on
Computer Science and Engineering in Linkoping, pages
21-28, October 1999.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

358

[7] Chengyum Chu Mary Jean Harrold Gregg Rother- mel,
Roland H. Untech., “Test case prioritization: An empiri cal
study," In Proceedings of the International Conference on
Software Manitenance, Ox- ford, U. K., September 1999.

[8] Tsong Yueh Chen, Fei-Ching Kuo and Zhi Quan Zhou
“Teaching Automated test Case Generation," In In Pro-
ceedings of the Fifth International Con ference on Quality
Software(QSIC'05, IEEE, 2005.

[9] Chen Xu Jian Zhang and Xiaoliang Wang., “Path- ori-
ented test data generation using symbolic execution and
constraint solving techniques," In Proceedings of the
Interna- tional Conference on Software Engineering and
Formal Meth- ods, 2004.

[10] Jian Zhang.”Symbolic Exection of Program Paths
Involving Pointer and Stucture Variables" Proceedings of
the Fourth International Conference on Quality
Software(QSIC'04) IEEE ,2004.

[11] H.Tahbildar and B. Kalita. “Automated test data gen-
eration for programs having array of variable length and loops
with variable number of iteration." In Proceedings of International
MultiConference of Engineers and Computer Scientists 2010
VOL I, IMECS 2010, March 17 - 19, 2010, Hong Kong.

[12] Bruno Marre Nicky Williams, Patricia Mouy. “On-the fly
generation of k-path tests for c functions. " In Proceedings of the
19th International Conference on Automated Software
Engineering, 2004.

[13] J. Jenny Li. "Prioritize code for testing to improve code
coverage of complex software." ,2005.

[14] Arnaud Gotlieb and Matthieu Petit “Path-oriented ran-dom
testing" Proceeding of the first international Work shop on

Random Testing(RT06),July 20,Portland, ME, USA 2006.

[15] Minh Ngoc Ngo *, Hee Beng Kuan Tan, “Heuristics-
based infeasible path detection for dynamic test data
generation," International Journal Information and
Software Technology , ELSEVIER, Page 641655, 2008.

[16] BOGDAN KOREL., ‘ ‘ Automated software test data

generation," IEEE Trans. on Software Engineering,

(9036267), March 1990.

[17] J. Zhang, Xiaoxu Wang., “A Constraint Solver and its
Application to Path Feasibility Analysis," International
Journal of Software Engineering and Knowledge
Engineering, 11(2): pp. 139-156, 2001.

[18] Koushik Sen.,Darko Marinov, Gul Agha, “CUTE: A
Concolic Unit Testing Engine for C" ACM , pp. 5-9, 09
2005.

[19] Patrice Godefroid, Nils Klarlund and Koushik Sen.,
“DART: Directed Automated Random Testing," PLDI05,
June 12-15 2005.

[20] Lori A. Clarke. , “A system to generate test data and
symbolically execute programs.," IEEE Trans. On Software
Engineering, SE-2(3), Septem-ber 1976.

[21] Bruno Marre Nicky Williams, Patricia Mouy, and
Murie Roger. “Pathcrawler: Automatic generation of Path
tests by combining static and dynamic analysis." 2005.

[22] Richard A. DeMillo “Constraint-Based Automatic
Test Data Generation" IEEE Trans. on Software
Engineering, 17(9):900{910, September, 1991.

[23] THOMAS J. McCABE “A Complexity measure"
IEEE Trans. on Software Engineering, VOL. SE-2, No-4,
DECEMBER 1976.

Annexure I

Sample Program - 1

public void monitor (int w1, int w2, int w2)
{
a. int n=10;
b. if(w1==5)
c. n=n*2;
d. elseif(w1>5)
e. n=n*3;
f. else{
g. if(w1+w2>=8)
h. n=n*4;
i. elseif(w1+w2+w3>=12)
j. n=n*5;
k.}
l. if(n>=30)
m. raiseAlarm;
n.}
}

Sample Program – 2
{
void main()
a. int m, n, x, gcd;
b. scanf("%d”, &m);
c.scanf(“%d”,&n);
d.x=m;
e. y=n;

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

359

f. while(x! =y){
g. if(x>y)
h. {
i. x=x-y;
j. else
k. y=y-x;
l.}
m. gcd=x;
}

Sample Program-3
{
void main()
a.int marks;
b.char grade[4];
c.scanf("%d”, &marks);
d.grad=” ”;
e.if(marks<=100)
f.if(marks<50)
g.{
h.grade="Fail";
i.else
j. grade="Pass";
k. if (grade!="")
l.UPDATE THE STUDENT WITH STUDENT ID
RECORD;
m.printf("%s”, grade);
}

Sample Program-4

int tritype (int a, int b, int c)
{
a. if (a > b)
b. swap (a , b);
c. if (a > c)
d. swap (a , c);
e. if (b > c)
f. swap (b , c);
g. if (a = = b)
h. if (b = = c)
i. type = EQUILATERAL;
j. else
k. type = ISOSCELES;
l. else if (b = = c)
m. type = ISOSCELES;
n. return type;
}

H. Tahbildar Received his B. E. degree in Computer science and
Engineering from Jorhat Engineering College, Dibrugarh university
in 1993 and M. Tech degree in Computer and Information
Technology from Indian Institute of Technology, Kharagpur in 2000.
Presently he is doing Phd and his current research interest is
Automated Software Test data generation, Program Analysis. He is

working as HOD, Computer Engineering Department, Assam Engineering
Institute , Guwahati, INDIA

B. Kalita: Ph.d degree awarded in 2003 in Graph Theory. At present
holding the post of Associate Professor, Deptt of Computer
Application, Twenty research papers have got published in national
and international level related with graph theory, Application graph
theory in VLSI design, software testing and theoretical computer
science. Field of interest: Graph theory, VLSI Design, Automata
theory,, network theory test data generation etc. Associated with the
professional bodies, such as Life member of Indian Science
Congress association, Life member of Assam Science Society, Life
member of Assam Academy of Mathematics, Life member of
Shrimanta Sankar deva sangha (a cultural and religious society).
Delivered lecture and invited lectures fourteen times in national and
international level.

.

