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Abstract 
Testing is an important activity in software development. 
Unfortunately till today testing is done manually by most of 
the industry due to high cost and complexity of automation. 
Automated testing can reduce the cost of software 
significantly. Automated Software Test Data Generation is 
an activity that in the course of software testing 
automatically generates test data for the software under 
test. Most of the automated test data generation uses 
constraint solver to generate test data. But it cannot 
generate test data when the constraints are not solvable. 
Although method can be found to generate test data even if 
the constraints are unsolvable, but it is poor in terms of 
code coverage.  
In this paper, we propose a test data generation method to 
improve test coverage and to avoid the unsolvable 
constraints problem. Our method is based on the individual 
constraints and same or dependent variable to create the 
path table which holds the information about the path 
traversed by various input test data. For generating unique 
test data for all the linearly independent feasible path we 
created equivalence class from the path table on the basis 
of path traversed by the various input test data. The input 
data is taken based on individual constraints or boundary 
value. Our results are compared with cyclomatic 
complexity and number of possible infeasible paths. The 
comparison shows the effectiveness of our method. 
Keywords: Independent feasible path, scalability,  
 equivalence class. 
 

1. Introduction 
 
Automated testing is a good way to cut down time and cost 
of software development. It is seen that for large software 
projects 40% to 70% of development time is spent on 
testing. Therefore automation is very much necessary. Test 
automation is a process of writing computer programs that 

can generate test cases, or else test cases need to be 
generated manually.  Automated testing save time, money  
 
and increase test coverage. Software testing tools and 
technique usually lack in portability, reliability, 
applicability, and scalability. Till today, there are four 
approaches of automatic test data generation. They are 
Random [18, 19, 14], Goal oriented, Intelligent approach, 
and Path oriented [8, 16, 9]. Random testing is quick and 
simple but not reliable. Goal oriented approach do not 
require path selection step but there is difficulty in selecting 
goal and adequate data. Intelligent approach might face the 
problems of high computation. The reason behind 
popularity of path oriented testing is its strongest path 
coverage criteria. Main problem of path oriented test data 
generation is infeasible path and complexity of data types 
[1]. Path oriented testing can be implemented by symbolic 
execution [20], actual value [16], and combined method 
[12, 21, 11]. Conventional method of test data generation 
using symbolic execution collect the path predicate and 
then solve it with a constraint solver[17]. There are many 
issues of symbolic execution. Some of them are unsolvable 
constraint, aliasing, solving for infinite loops, and size of 
symbolic expression etc. [9].  We cannot generate test data 
when constraints are not solvable.  Another major problem 
of symbolic execution is detection of path feasibility.  
There are programs where more than 50% of paths are 
infeasible.[9]. Avoidance of infeasible path can expedite 
test data generation process significantly.  Xio [5] proposes 
a constraint prioritization method to generate test data using 
data sampling score. The method solves prioritized 
constraints to generate test data for longest feasible path. 
The method considers longest feasible path i.e. it does not 
consider any unsolvable constraints as the constraints are 
collected based on some inputs.  But it cannot give the 
guarantee of better or full coverage.  Xio method had 
chosen the orthogonal data selection method for the input 
test data. Orthogonal data selection is to select data at the 
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opposite ends of the range of values [5]. The method 
overcomes the situation of infeasible path which is one 
major problem of automated software testing. It gives us 
guarantee for only one test data as any data satisfies either 
of the complementary constraints.  The major problem of 
the conventional method of symbolic execution is 
constraint solver. It removes the difficulties of conventional 
method of symbolic execution using prioritized constraint 
instead of using constraint solver. It provides a solution for 
infeasible path problem but the method is weak in terms of 
code coverage. The orthogonal selection have some 
drawbacks. The orthogonal test data selection will not be 
applicable for those sample programs having single input 
variable constraint. The path covered by the test data 
generated by this method covers only one path or a few 
paths. We propose a method to improve the test coverage 
and also to avoid constraint solving. The detection of path 
feasibility [17] is also taken care. Our method is based on 
the variables involved in the constraints. We are grouping 
the constraints in such a way that the constraints belongs to 
the same groups or equivalent class of variables are 
solvable for all possibilities. That is unsolvable constraints 
are not put to the same equivalence class of variables. For 
each equivalent class we generate path based on individual 
constraints or boundary value.  
 
The paper is organized as follows: Section 2 presents a 
survey of related works of test data generation methods. 
Section 3 explains our approach with sample programs. 
Section 4 explains our experimental results and advantages 
of our approach of test data generation.  Finally in Section 
5 we conclude with some observation and future work to be 
done in test data generation. 
 
2. Survey of related works 
 
The literature of test data generation methods says that the 
main problem of symbolic execution [10, 9, 20] is 
constraint solving [22].  Either constraint solving may take 
more time or some constraints are not solvable. Test case 
prioritization is used to improve the rate of fault detection 
specially for regression testing [7, 13, 2]. In [5], constraint 
prioritization technique with sampling scores method is 
used to deal with problem of constraint solving. The steps 
of the Xio methods are construction of control flow graph, 
finding edge priority, finding complementary pairs, and 
sample table and sample scores. But this method [5] works 
only for specific programming constructs. In [19, 18] 
random testing is cleverly implemented to generate test 
data. In conventional testing we believe that number of test 
case should be equal to cyclomatic complexity. McCABE 
in [23] showed that when actual number of paths tested is 
compared with cyclomatic complexity, several additional 
paths are discovered that would normally be overlooked. 

Ngo and Tan proposed an approach to detect infeasible 
paths using actual value execution [15]. The method 
combines empirical properties of infeasible paths with 
dynamic information collected during test data generation 
process. Antonia emphasizes on research for improvement 
of scalability of test data generation algorithms [4]. 
 
3.  Our Approach 
 
3.1 Steps of Our Approach 
 
To improve the coverage of the sample program which is 
the major drawback in the method as suggested by [5], we 
propose a method based on the variables involved in the 
constraint.  The flow graph of our method is shown in 
figure 1. 

   Source Program 

 
 
      Constraints 
 
 
    Dependent Variables 
 
 
    Equivalence Class of Variables 
 
 
                    Input Data 
    
 
     Path for Test Data 
 
 
 
 
 
         Test Data 

Fig. 1 Steps of our approach. 

3.1.1 Constraint Finder 
 
The constraints in the program are found out with the 
help of this tool. 
 
3.1.2 Dependent Variable Finder 
 
The variables which are either same or dependent on each 
other are found out with the help of this tool. 
 

Constraint Collector

Dependent Variable Collector

Variables Equivalence Classs Generator 

Input Data Generator

Path Table Algorithm 

Equivalence Path Generator 
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3.1.3 Equivalence Class of Variables 
 
Initially the equivalence class is blank. The first constraint 
is added to the equivalence class. Next the second 
constraint is checked with the first constraint and if the 
variable in the second constraint is either same or 
dependent on the variable of the first constraint then the 
second constraint is added to the same class or else the 
second constraint is added to a new class. Similarly for all 
the constraints the variables are checked with the variables 
of the constraint already in the equivalence class, to find 
out if they are either equal or dependent. Then they are 
added to the same class on which the dependent/same 
variable constraint is located or else they are added to a 
new class. 
 
3.1.4    Input Test Data Generator 
 
The input test data is generated on the basis of the 
equivalence class of variables.  Here 3 cases may arise. 
They are discussed below:- 
 
CASE 1: NOT ALL BUT SOME VARIABLES 
INVOLVED IN THE CONSTRAINT ARE SAME OR 
DEPENDENT  Some but not all variables involved in the 
constraint are same or dependent on the variables involved 
in other constraint. In this case we will at least get more 
than one equivalence class of variables. As for example the 
sample program1, the constraints in the sample program are 
w1 == 5, w1 > 5, w1 + w2 >= 8, w1 + w2 + w3 >= 12. 
Here the two constraint w1 == 5 and w1 > 5 involves the 
same variable w1 and hence they are included in the same 
equivalence class and the other two constraints are added in 
a new class respectively. The control flow graph of sample 
program 1 is shown in figure 2.  
 
The equivalence class for this sample program 1 is shown 
in table 1. 

              Table 1: Equivalence class for sample program 1 

 
 
 
 
 
 
 
 
 
The test data generated for various possibilities of sample 
program 1 constraints are shown in table 2 and table 3 
 
CASE 2:  ALL VARIABLES INVOLVED IN THE 
CONSTRAINT ARE SAME OR DEPENDENT The 

control flow graph of sample program 2 and program 3 

is shown in figure 5 and 3 respectively. 
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             Fig 2: Control flow graph of program 1 
 

 

Table 2: possible combination of constraints 
 
w1==5 

 
w1+w2>=8 

 
w1+w2+w3>=12 

TRUE TRUE TRUE 
TRUE TRUE FALSE 
TRUE FALSE FALSE 
TRUE FALSE TRUE 
FALSE TRUE TRUE 
FALSE TRUE FALSE 
FALSE FALSE TRUE 
FALSE FALSE FALSE 
 

dependent on each other. In this case only one class will 

be generated in the table of the equivalence class of 

variables. For this condition the input test data is taken 

by the boundary value analysis of each of the constraint 

individually. For example the sample program 3. The 
constraints in the sample program are marks > 100, marks 
>= 50 and grade! = "”. Here the first two constraints 
consist of the same variable marks and the variable grade 
involved in the third constraint depends on the variable 
marks. The equivalence class of variables for this sample 
program is shown in table 4.  
 
Thus the input test data will be taken by the boundary 
analysis of the constraint marks > 100, marks >= 50 and 
grade! = "” but the variable grade is the output hence the 
input test is taken considering the boundary analysis of the 
first two constraint.  
 
CASE 3: INDIVIDUALLY THE VARIABLES INVOLVED 
IN THE CONSTRAINT ARE NOT SAME OR DEPENDENT 
BUT COMBINATION OF TWO OR MORE CONSTRAINT 
MAY MAKE A VARIABLE INVOLVED IN A 
CONSTRAINT DEPENDENT ON THE COMBINATION 
 

Table 3: possible combination of constraints 
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grade!=’ ’ ’ ’          

grade=’ ’ ’ ’  

 

 

 

 

 
Fig 3: Control flow graph of program 3 

 
This case can be explained with the help of the sample 
program 4.The control flow graph of sample program 4 is 
shown in figure 4.  
The constraints in the sample program are:- a > b; a > c; b 
>c; a == b; b == c The constraint a > b and a == b 
involves the same variable a & b and the constraint b > c 
and b == c also involves the same variable b and c. But the 
combination of the constraint a > b & a > c makes the 
constraint b > c & b == c dependent on the combination. 
Similarly But the combination of the constraint a > b & a 
> c makes the constraint a > c dependent on the 
combination and also the combination of the constraint b > 
c & a > c makes the constraint a > b & a == b dependent 
on the combination. Hence the input test data is taken by 

w1 > 5  w1 + w2 >= 8 w1 + w2 w3 >=12 
TRUE TRUE TRUE 
TRUE TRUE FALSE 
TRUE FALSE FALSE 
TRUE FALSE TRUE 
FALSE TRUE TRUE 
FALSE TRUE FALSE 
FALSE FALSE TRUE 
FALSE FALSE FALSE 
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solving the constraint combination as follows: - a > b & a 
> c 

a > b&b > c 

a > c&b > c 

a > c&b == c 

a > c&a == b 

a > b&b == c 

b > c&a == b 

 
      Table 4: Equivalence class of sample program 3 

Class Constraint 
1 Marks>100, marks >=50 and grade! = “ “ 

 
      
 
 
  a>b 
        a<=b 
         
 
 
         a>c 
        a<=c 
         
 
 
      b>c 
             b<=c 
 
         b<= 
 
     a==b 
          a!=b 
        
          
 
    b=c 
            b=c b! =c 
 
          b!=c           
           
 
 
      
      
 

Fig  4: Control flow graph of program 3 
 

 
3.2   Path Table Algorithm 
 
1. Path = NULL 
2. Current node = start 
3. If Current node!= End 
4. go to step 6 

5. else go to step 13 
6. Path = Path + Current node 
7. if Current node has only one child node then 
8. Current node = Child node 
9. Otherwise, if constraint at the node is true then 
10. Current node = Left Child node 
11. Else Current node = Right child node 
12. go to step 3 
13. Path = Path + End 
 
3.3 Equivalence Path Generation Algorithm 
 
1. For all path generated do the steps from 2 to 7 
2. If Equivalence path table is empty then 
3. Add the path to Equivalence path table 
4. Otherwise, do the steps from 5 to 7 
5. Compare the path with all paths in equivalence path 
table. 
6. As soon as a match is found simply discard the path. 
7. If no match is found add the path to Equivalence path 
table. 
 
 
 
 
 
 
 
 
 
   x!=y 
 
 
 
     x>y          x<y 
 
 
     x=y 
 
 
 
 
 
 
 
 
 
     Fig  5: Control flow graph of program 2 

3.4   Input Test Data 
 
The input test data is taken based on feasible individual 
constraints or boundary value of the constraints variables. 
 
4.   Experimental Results 
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4.1   Result of Sample Program 1  
 
The path table for sample program 1 is shown in table 5 
 
4.1. 1   Path Table and equivalence class 
 
The equivalence class and path table for sample program 1 
of control flow graph figure 1 is shown in table 6. 
 
The unique feasible paths and test data are shown in table 6 
 
4.2 Experimental Result of Sample Program 2 
 
4.2.1 Path Table and equivalence class 
 
Path table for sample program 2 of control flow graph 
figure 5 is shown in table 7. Three different paths are 
generated by our input algorithm.  The unique feasible 
paths and test data are shown in table 8 
 

Table 5: Path Table for sample program 1 
w1 w2 w3 Path covered 
5 3 4 a,b,e,l,n 
5 3 3 a,b,e,l,n 
5 2 6 a,b,e,l,n 
5 2 3 a,b,e,l,n 
4 4 4 a,b,d,g,k,l,m,n 
4 4 3 a,b,d,g,k,l,m,n 
4 3 6 a,b,d,g,i,j,l,m,n 
4 3 4 a,b,d,g,i,l,m,n 
6 2 4 a,b,d,e,l,m,n 
6 2 3 a,b,d,e,l,m,n 
6 1 5 a,b,d,e,l,m,n 
6 1 4 a,b,d,e,l,m,n 
4 4 4 a,b,d,g,k,l,m,n 
4 4 3 a,b,d,g,k,l,m,n 
4 3 6 a,b,d,g,i,l,m,n 
4 3 4 a,b,d,g,l,m,n 

 
   Table 6: Equivalence class and test data 

Class Path covered  value 
1 a,b,c,d,e,l,n w1=5, w2=3, w3=4 
2 a,b,c,d,g,k,l,m,n w1=4, w2=4, w3=4 
3 a,b,d,g,i,j,l,m,n w1=4, w2=3, w3=6 
4 a,b,d,g,i,l,n w1=4, w2=3, w3=4 
5 a,b,d,e,l,m,n w1=6, w2=2, w3=4 

 

4.3 Experimental Result of Sample Pro-gram 3 
4.3.1 Path Table and equivalence class 
 
Path table for sample program of control flow graph  figure 
3 is shown in table 9. The unique feasible paths and test 
data are shown in table 10 
 

Thus the final test data's are the data taken from each 
equivalence class 
 
4.4 Experimental Result of Sample Program 4 
 
The path table of sample program 4 has 32 paths and by 
forming equivalence class we get 11 unique feasible paths. 
 
4.5 Discussions and Comparison 
 
According to Ngo and Tan [15] the main cause of 
infeasible program paths is the correlation between some 
conditional statements along the path. Two conditional 
statements are correlated if along some paths, the outcome 
of the latter can be implied from the outcome of the earlier. 
We compare our results for minimum number of paths 
covered by our method with cyclomatic complexity and 
number of infeasible paths generated for programs with the 
infeasible path detection method proposed by [15]. 
 

Table 7: PATH Table for sample program 2 
x y Path covered 
4 4 a,b,c,d,e,f,m 
4 8 a,b,c,d,e,f,g,h,i,l,f 
8 4 a,b,c,d,e,f,g,j,k,l,f 
10 5 a,b,c,d,e,f,g,h,i,l,f 
5 10 a,b,c,d,e,f,g,j,k,l,f 
10 10 a,b,c,d,e,f,m 
 
 
Table 8: Equivalence class and test data 

Class Path covered  Value 
1 a,b,c,d,e,f,m x=4, y=4 
2 a,b,c,d,e,f,g,h,i,l,f x=8, y=4 
3 a,b,c,d,e,f,g,j,k,l,f x=4, y=8 

 
For the sample program 1 
Node1 and Node9 are empirically correlated because 
(a) There exist a path from node1 to node9 for the 
conditional statement w1 == 5 and also for the conditional 
statement w1! = 5. 
(b) node1 which has the statement n = 10 and w1 = = 5 and 
the node9 has the statement n >= 30. The two nodes are not 
transitively dependent. 
(c) δ(node1) = δ(node9) because the conditional statement 
w1 == 5 depends on the variable w1 and the conditional 
statement n>= 30 in node9 depends on n and n depends on 
w1. 
 
Thus either true (node1) and true (node9) is feasible and 
false (node1) and false (node9) is feasible, or true (node1) 
and false (node9) is feasible and false (node1) and true 
(node9) is feasible 
 
Similarly, 
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node3 and node9 are empirically correlated. 
node5 and node9 are empirically correlated 
node7 and node9 are empirically correlated 
 
 
The table 11 shows all the linearly independent paths along 
with the constraint involved in the path 
 
But according to the infeasibility condition the feasible 
paths are:- 
 
 
1) Class A or Class B 
2) Class C or Class D 
3) Class E or Class F 
4) Class G or Class H 
5) Class I or Class J 
 
 
Using [15] we find that in sample program 1 there are 5 in- 
 

Table 9: PATH Table for sample program 3 
Marks  Path Covered 
99 a,b,c,d,e,f,i,j,l,m 

100 
100 a,b,c,d,e,f,i,j,k,l,m 
101 a,b,c,d,e,k,m 
49 a,b,c,d,e,f,g,h,k,l,m 
50 a,b,c,d,e,f,i,j,l,m 
51 a,b,c,d,e,f,i,j,k,l,m 
 
Table 10: Equivalence class and test data 
Class Path covered Value 
1 a,b,c,d,e,f,i,j,k,l,m 99 
2 a,b,c,d,e,k,m 101 
3 a,b,c,d,e,f,g,h,k,l,

m 
49 

 
feasible paths. Again the number of equivalence class of 
the sample program 1 is 5. Hence, our method covers all 
the linearly independent feasible path of the sample 
program 1.The cyclomatic complexity of the sample 
program 1 is 6, and our approach has generated 5 test data. 
 
For the sample program 2 there are no empirically 
correlated as no pair of nodes satisfy the empirically 
correlated condition. The table 12 shows all the linearly 
independent paths along with the constraint involved in the 
path. 
 
From the table 12 it is seen that there are 3 linearly 
independent feasible paths and our approach also generates 
3 equivalence classes. Hence, our method covers all the 
linearly independent feasible paths of the sample program 
2. The cyclomatic complexity of the sample program 2 is 3, 

and our approach has generated 3 test data. In sample 
program 2 there are no infeasible path. 
 
For the sample program 3 node3 and node6 are empirically 
correlated. Thus either true(node3) and true(node6) is 
feasible and false(node3) and false(node6) is feasible, or 
true(node3) and false(node6) is feasible and false(node3) 
and true(node6) is feasible. 
 
Similarly, there will be three linearly independent feasible 
path in the program and the number of equivalence classes 
are also 3. Hence, our method covers all the linearly 
independent feasible paths of the sample program 3. In 
sample program 3 there are 50% infeasible paths. 
 
The cyclomatic complexity of the sample program 3 is 4, 
and our approach has generated 3 test data. 
 
For the sample program 4 
There are 32 linearly independent paths. There are 21 
infeasible paths. Hence the number of feasible paths are 11 
and the number of equivalence classes of our implemented 
method is also 11. Hence, our method covers all the 
linearly independent feasible paths of the sample program 
11. In  
 
     Table 11: Linearly independent path table for sample program 1 

Class Constraints Path covered 
A w1==5 n>=30 a,b,d,e,l,m,n 
B w1==5 n<30 a,b,d,e,l,n 
C w1>5 n>=30 a,b,d,e,l,m,n 
D w1>5 n<30 a,b,d,e,l,,n 
E w1! =5 w1<5 

w1+w2>=8, 
n>=30 

a,b,d,g,k,l,m,n 

F w1! =5 w1<5 
w1+w2>=8, n<30 

a,b,d,g,k,l,,n 

G w1! =5 w1<5 
w1+w2<8, 
w1+w2+w3>=12, 
n>=30 

a,b,d,g,i,j,l,m,n 

H w1+w2<8, 
w1+w2+w3>=12, 
n<30 

a,b,d,g,i,j,l,,n 

I w1! =5 w1<5 
w1+w2<8, 
w1+w2+w3<12, 
n>=30 

a,b,d,g,i,l,m,n 

J w1! =5 w1<5 
w1+w2<8, 
w1+w2+w3<12, 
n<30 

a,b,d,g,i,l,n 

 
 
       Table 12: Linearly independent path table for sample program 2 

Class Condition Path covered 
A x=y a,b,c,d,e,f,m 
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B x! =y   x>y a,b,c,d,e,f,g,h,i,l,f 

C x! =y   x<y a,b,c,d,e,f,g,j,k,l,f 

 
 
sample program 4 there are 66% infeasible paths. The 
cyclomatic complexity of the sample program 4 is 7, and 
our approach has generated 11 test data. 
 
 
4.5.1 Advantages of Our Approach 
 
Our approach of dividing the input test data into the 
equivalence classes gives data for all the linearly 
independent feasible path. The time and memory 
complexity is much lower than the [5] method as we have 
generated the test data without considering the priority 
table. Thus we have generated reliable test data at a lower 
cost. The path table does not include the infeasible path and 
so we have left the infeasible path at the beginning and 
have not tried to find the test data from the beginning. 
 
 
5. Conclusions and Future Work 
 
The proposed method has generated test data almost for all 
the feasible independent paths. As for example for the 
sample program1, the proposed method has covered the 
path involving the constraint w1==5 & n < 730, w1>5 & 
n>=30 , w1+w2>=8 & n>=30, w1+w2+w3>=12 & n>=30 
but could not provide test data covering the constraint 
w1==5 & n>=30, w1>5 & n<30, w1+w2>=8 & n<30, 
w1+w2+w3>=12 & n<30. But those path which have not 
been covered by the proposed method are infeasible paths 
if we go through the body of the program. Similarly, the 
proposed method covers all the feasible paths of the other 
sample programs also. For the sample program 3 we have 
seen that according to Ngo and Tan [15] there are three 
infeasible paths and the total number of linearly 
independent path is 6, hence there are three feasible paths 
and our method also generated three test data for three 
independent paths. For those types of sample program 
which do not have infeasible path the proposed method 
covers all the linearly independent paths as the sample 
program 2. Coverage is inversely proportional to the 
number of infeasible paths. Thus the proposed method 
generates all the feasible linearly independent paths of any 
program and the presence of infeasible path does not create 
any problem in generating the test data for testing a 
program. Though the test data generated by the 
implemented method is less than the cyclomatic complexity 
for the sample program 1 and the sample program 3 but the 
cyclomatic complexity includes both the feasible and 
infeasible path. Again the cyclomatic complexity gives 
only the value of minimum number of linearly independent 

path. But our method generates test data for all the feasible 
linearly independent path. Hence our method gives more 
accurate result in compare to the cyclomatic complexity. 
We describe an approach for test data generation with 
lower computation cost. The main issue of test data 
generation using this method is how to take input for 
finding the paths. We tested our input test data algorithm 
with 5 different types of programs. Our experimental 
results shows that this method can generate reliable test 
data at a lower cost but it is not optimum. The disadvantage 
of our method is reliability of input while extracting the 
paths. Since a program may have many numbers of 
infeasible paths therefore we cannot determine whether 
number of equivalence class cover minimum number of test 
to be covered like cyclomatic complexity. Our algorithm 
for solving path constraints is encouraging. Because the 
number of equivalence class is less than equal to number of 
paths. In future we will further research for finding 
methods of input selection so that it covers every feasible 
paths of our program. The method should be tested with 
more examples for accuracy. The method should improve 
the scalability by including more data types like dynamic data 
structure and string. 
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Annexure I 
 
Sample Program - 1 
 
public void monitor (int w1, int w2, int w2) 
{ 
a. int n=10; 
b. if(w1==5) 
c. n=n*2; 
d. elseif(w1>5) 
e. n=n*3; 
f. else{ 
g. if(w1+w2>=8) 
h. n=n*4; 
i. elseif(w1+w2+w3>=12) 
j. n=n*5; 
k.} 
l. if(n>=30) 
m. raiseAlarm; 
n.} 
} 
 
Sample Program – 2 
{ 
void main() 
a. int m, n, x, gcd; 
b. scanf("%d”, &m); 
c.scanf(“%d”,&n); 
d.x=m; 
e. y=n; 
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f. while(x! =y){ 
g. if(x>y) 
h. { 
i. x=x-y; 
j. else 
k. y=y-x; 
l.} 
m. gcd=x; 
} 
 
Sample Program-3 
{ 
void main() 
a.int marks; 
b.char grade[4]; 
c.scanf("%d”, &marks); 
d.grad=” ”; 
e.if(marks<=100) 
f.if(marks<50) 
g.{ 
h.grade="Fail"; 
i.else 
j. grade="Pass"; 
k. if (grade!="") 
l.UPDATE THE STUDENT WITH STUDENT ID 
RECORD; 
m.printf("%s”, grade); 
} 
 
Sample Program-4  
 
int tritype (int a, int b, int c) 
{ 
a. if (a > b) 
b. swap (a , b); 
c. if (a > c) 
d. swap (a , c); 
e. if (b > c) 
f. swap (b , c); 
g. if (a = = b) 
h. if (b = = c) 
i. type = EQUILATERAL; 
j. else 
k. type = ISOSCELES; 
l. else if (b = = c) 
m. type = ISOSCELES; 
n. return type; 
} 
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