
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

231

SMA and Mobile Agents Actors for Distributed Testing

Salma Azzouzi1 ,Mohammed Benattou 2 , My El Hassan Charaf3, Jaafar Abouchabaka4

 1 Laboratory Of Mathematics and Computer, University Ibn Tofail
Kenitra , 14 000, Morocco

2 Laboratory Of Mathematics and Computer, University Ibn Tofail
Kenitra , 14 000, Morocco

3 Laboratory Of Mathematics and Computer, University Ibn Tofail
Kenitra , 14 000, Morocco

4 Laboratory Of Mathematics and Computer, University Ibn Tofail
Kenitra , 14 000, Morocco

Abstract
The Multi Agent Systems are a paradigm of the most promising
technology in the development of distributed software systems.
They include the mechanisms and functions required to support
interaction, communication and coordination between the various
components of such a system. In the context of distributed test
the activity of the test is performed by a set of parallel testers
called PTCs (Parallel Test Components). The difficulty is in
writing communication procedures of coordination and
cooperation between the PTCS. In this context, we combine in
this paper adaptable mobile agent with multi-agent systems
technology to enhance the distributed test. The objective of this
work is to eventually have a platform for compliance testing of
distributed applications.
Keywords: Distributed Testing, SMA, Mobile Agent, Actor,
Mobile Actor.

1. Introduction

Agent-based software engineering has become the key
issues in modern system design. It provides a high-level
abstraction and services for developing, integrating and
system managing of distributed system applications. The
component-based software engineering has promised, and
indeed delivered significant improvements in software
development.

Last years, products, models, architecture and frameworks
suggest several key issues that will contribute to the
success of open distributed systems. However, in practice,
the development of distributed systems is more complex.
The design process must take into account: the

mechanisms and functions required to support interaction,
communication and coordination between distributed
components. Examples of such applications are systems
comprising a set of components that broadcast commands
among themselves, multicast controllers that coordinate
messages between components, the systems using the
alarm signals in non deterministic order, network and
application systems, event queues, etc. The typical
reaction of such systems is the generation of errors sets:
time-outs, locks, channels and network failures.

Our preliminary experience, in the design and the
implementation of the distributed testing application [1] of
the broadcast and multicast channels. The basic idea of the
proposed work [2] is to coordinate the testers by using a
communication service parallel to the IUT through a
multicast channel. Each tester interacts with the
Implementation under Test (IUT) only through the
attached port and communicates with the other testers
through the multicast channel. The implementation of the
proposed model has shown that the execution of
distributed testers arise many time-outs problems
influencing fault detection during the testing process.
Object-oriented based, the development of such
applications using the ``classical" objects is very difficult,
like many possible ways of activating or deactivating
event sources and to dispatch the call-backs. Others
proposed research work based on the temporal Finite State
Machine define the timing constraint, which the
distributed testing application must be respected in real-
time execution [3]. However, the implementation of these
models generates a great number of synchronized

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

232

exchange messages. We have proposed different ways to
design and implement distributed testing systems using
CORBA event services, active objects, and mobile agents.

In this paper, we show how to use the concept of agent
and actor of the Javact platform gives a number of
advantages, besides using a mobile agent include
overcoming network latency, reducing network load,
performing autonomous and asynchronous execution, and
adapting to dynamic environments ([4], [5])

We envision a model of adaptive mobile agent, able to
dynamically reconfigure to adapt to variations in its
execution context (For example, If one of the testers
crashes. what should the mobile agent do?).

 Indeed in proposed prototype our testers are agent actors
([6], [7]) which integrate the concepts of agent and the
concept of appointment for the communication. Each
agent tester must create other agents to send messages to
the actors whom it knows and to dynamically change
behaviour by defining its behaviour for the next treatment.

The paper is structured as follows. Section 2 describes the
architecture and modelling concept of distributed testing
application and raises some synchronization problems in
distributed testing implementation. Section 3 describes
how JavAct agent actors are used in our model. Section 4
gives some conclusions and identifies future works

2. Distributed Test

The principle of the test is to apply input events to the
IUT 1 and compare the observed outputs with expected
results. A set of input events and planned outputs is
commonly called a test case and it is generated from the
specification of the IUT. We consider a test as a conform
test if its execution is conform to its specification.

2.1 Architecture

The basic idea of the proposed architecture is to
coordinate parallel testers called PTCS (Parallel Test
Components) using a communication service in
conjunction with the IUT. Each tester interacts with the
IUT through a port PCO2, and communicates with other
testers through a multicast channel (Figure1).

1 Implementation Under Test
2 Point of Control and Observation

Fig. 1 :Test Architecture

An IUT (implementation under test) is the implementation
of the distributed application to test. It can be considered
as a "black-box", its behavior is known only by
interactions through its interfaces with the environment or
other systems. Each tester sends some stimulus to the IUT
via their interfaces called PCOs (Points of Control and
Observations) and observes the reactions. The external
behavior of the IUT is observable via another interface
type called IAP (Implementation Access Points). The
difference between the PCO and the IAP is that PCOs are
the logical points where communications are made, but the
IAPs are the physical access points of the IUT. To
synchronize the execution of testers, PTCS exchange
coordination message. These messages encapsulate
information that allows the test system to solve the
problems of controllability and observability in order to
obtain an optimal test. An example illustrating these
problems is well detailed in [2].

2.2 Modeling by automaton

To approach the testing process in a formal way, the
specification and the IUT must be modeled using the same
concepts. The specification of the behavior of a distributed
application is described by an automaton with n-port [8]
(FSM Finite State Machine) defining inputs and the results
expected for each PCO.

We denote Σk the input alphabet of the port k (PCO
number k) and Γk the output alphabet of the port k. Figure
2 gives an example of 3p-FSM with set state FSM) with
Q = {q0, q1, q2, q3, q4, q5}, q0 initial state, Σ1 = {a}, Σ2
= {b}, Σ3 = {c}, and Γ1 = {w, x}, Γ2 = {y}, Γ3 = {z}.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

233

Fig. 2 An example of 3p-FSM

A test sequence of an np-FSM automaton is a sequence in
the form:!x1? y1!x2? y2…! xt?yt that for i = 1,..,t : xi א ,

yi 1 ؿ
n

k Γk and for each port k |yi ∩Γk| ≤ 1.

-!xi :Denotes sending the message xi to IUT.
-?yi :Denotes the reception of messages belonging to

the yi from the IUT.

An example of a test sequence of 3p-FSM illustrated in
figure 2 is:

!a?{x.y}!b?{x.y}!c?{z}!a?{x.z}!b?{x.y}!c?{w.z}!a?{x.z}
!c?{y.z} (1)

Generally, test sequences are generated from the
specification of the IUT and characterized by fault
coverage. The faults covered by the FSMs methods are:
output faults, transfer faults or combination of both of
them [9].

2.3The test procedure

The works ([2],[10]) allow generating local test sequences
for each tester, thus defining the behavior of the test
application in a PCO. In fact, each tester executes a local
test sequence, built from the global test sequence of the
IUT. A local test sequence has the form α 1α2 α n, where
each αi is either:

- !x : message sent (xא Σk de IUT)
- ?y : message received (y א Γk de IUT)
- !Ch1,...,hr : coordination message C sent to testers

h1,..hr.
- ?Ch: coordination message received from the tester h

For each message αi to send to the IUT or a coordination
message, the tester supports the process of sending this
message. If αi is a expected message from the IUT or a
coordination message, the tester waits for this message. If
no message is received, or if the received message is not
expected, the tester returns a verdict Fail (fail). If the
tester reaches the end of its local test sequence, then it
gives a verdict Accept (accepted). Thus, if all testers
return a verdict Accept, then the test system ends the test
with a global verdict Accept.

2.4 Synchronization Problem

In the distributed test, each tester (PTC) is running its
local test sequence produced from the global test sequence
of the IUT. Thus, the PTCs are working together but
independently, which leads us to manage the problem of
synchronization of testers. We will run the first part of
each local test sequence w f1, w f2, w f3 from w1, w2,
w3, as follows:

(3)
Running wf1, wf2 and wf3 should give the result shown in
Figure 3(a) but the execution of our prototype provides an
incorrect result given in Figure 3 (b).

 Fig. 3 Example of the synchronization problem

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

234

Indeed, in the last diagram the second tester sends the
message b the IUT before the first tester receives the
message x from the IUT.

So, the execution of local testing is not conform with the
specification in (1), where the message ‘b’ must be sent
only if all messages due to the sending of ‘a’ by the tester-
1 are received by the IUT. In [10] the problem is solved by
blocking the sending of the message ‘b’ until the reception
of all messages due to the sending of ‘a’ by the concerned
testers. The algorithm [2] applied to the global test
sequence (1) generates the local test sequences
synchronized for each tester (Figure 2).

Fig. 2 Local test sequences

The solution proposed in this article integrates mobile
agent technology with multi-agent systems for the
verification of the receipt of expected messages on
different (PCO).

2.5 State of the art

Last years, the rapid growth of distributed systems has led
to a need for its coordination. Many frameworks suggest
several key issues that will contribute to the success of
open distributed systems. The most well known are:

• The Open Group’s Distributed Computing Environment
(DCE), [11], [12], [13] provides a communication network
and middleware platform independent platform for
distributed processing systems. It is based on a client
/server architecture and does not support object-oriented
technologies.

• [14] The OMG Common Object Request Broker
Architecture (CORBA) provides an object-oriented
framework for distributed computing and mechanisms that
support the transparent interaction of objects in a
distributed environment. The basis of the architecture is an
object request broker (ORB) which provides mechanisms
by which objects transparently invoke operations and
receive results.

• [15] provides a framework by describing a generic
object-oriented architecture that is based on five different

viewpoints that enable the description of distributed
systems from various perspectives: Enterprise,
Information, Computation, Engineering, and Technology
viewpoint.

The two last standards integrate the concept of object-
oriented architecture The Object-oriented based
development of such applications using the “classical”
objects is very difficult, like many possible ways of
activating or deactivating event sources and to dispatch the
call-backs.

• [16] proposes an architecture for fault detection of web
services through web services based on passive testing
.they proposes an observer (mobile agent) that can be
invoked by interested parties when developed and
published as a web service. In this model, they have not
integrated the concept of Multi-Agent Systems.

• [10] solve the problem of synchronisation by introducing
the concept of Mobile Agent but any implementation of
the system has be given.

However, in practice, the development of distributed
systems is more complex. The environments that support
their implementation are unstable and applications must
cope with the volatility of resources and services. They
must be flexible and be able to adapt dynamically.

While a number of agent-based distributed testing systems
have been proposed and the multi-agent systems have
been studied, to the best of our knowledge, combining
these two technologies has not been applied to this field.

Our approach consists to integrate adaptable mobile agent
technology with multi-agent systems to enhance the
distributed testing.

3. Mobile Agent Model

3.1 Why the actor model?

Agent technologies are a potentially promising approach
for building complex systems that require intelligent
behavior from a collection of collaborating, autonomous
software components [17]. The architecture that we
propose is based on the actor model.

An agent’s actors ([6], [7]) integrate the concept of agent
and the concept of appointment for the communication.
Indeed each agent must create other agents to send
messages to the actors whom it knows and to change

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

235

dynamically behavior by defining its behavior for the next
treatment.

The idea of using actors for implementation of distributed
systems is not new. However, it seems particularly
interesting in the context of distributed systems to large
scale by the properties that distinguish the model of actors
to the classical object model ([18] ,[19]).

• First, communication by asynchronous messages is well
suited to large networks
or wireless, where synchronous communications are too
difficult and expensive to establish,

• Other, the autonomy of execution and behavioral
autonomy promote the integration of the mobility and
ensure integrity.

The mobility of actor can be defined based on the
treatment of messages in series and behavior change, as
well as the dynamic creation and sending messages [7]

3.2 JavAct

JavAct [20] is an environment allowing the development
of programs Java competitors and distributed according to
the model of the actors. Compared with the traditional
mechanisms of low level like the sockets, the RMI and
services Web or SOAP, it has a high level of abstraction.
It provides primitives of creation of actors, of change of
their behaviors, localization, and communication by
sending of messages. JavAct has been designed in order to
be minimal in terms of code and so maintainable at low
cost. Applications run on a domain constituted by a set of
places which can dynamically change. A place is a Java
virtual machine (Figure 4).
JavAct library provides tools for creating actors, changing
their own interface, and also for distribution and mobility,
static and dynamic (self-) adaptation, and (local or distant)
communications.

Fig. 4–Illustration of the concept of mobility and

Communication on JavAct

3.3 Agent Based Architecture

This section presents our Multi-Agent architecture of
distributed testing application. It is made up of a whole of
entities (testers) which interact and/or cooperate
collectively to give a satisfactory answer to the preset
criteria of test. We represent each entity by an agent able
to communicate, having knowledge and private behavior
as well as its own capacity of execution. Each agent tester
must be able not only to store information but also to be
able to communicate with other agents testers to confirm
the reception of one or more outputs on the PCO where
they are attached.

Due to the complex analyzing tasks made by tester for
detecting output faults on related IUT PCO, we delegate
performed tasks to well defined agents as shown in
figure3.

In fact, each Tester Agent has its local test sequence
deduced from the global test sequence by the algorithm
[2].

The Tester Agent plays the role of moderator in the same
tester, and according to its local test sequence, it expresses
its needs in terms of synchronization, coordination and of
execution to other agents. Taking into consideration the
complexity of different tasks to perform, we divided the
tasks between three specialized agents:

1. AMRI(Synchronization Agent): It is a Mobile

Agent for Searching Information to ensure
synchronization in the transmission and reception of
messages of the test sequences;

2. AGCTi: It is a Coordination Agent in Tester ‘i’ for
sending and receiving coordination messages;

3. AETi: It is a Execution Agent in Tester ‘i’ to Control
and observation of events on each PCO.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

236

Fig. 5– Structure of a tester

4. Distributed Test Model

In this section, we define the behavior agents of our
testing distributed testing platform:

1. AETs : allows tester to apply input event actions to

IUT and to receive output results from the IUT.

2. AGCTs : They make it possible to the testers to

exchange messages of coordination. According to the
local test sequence of the tester on whom the AGCT is
generated, this AGCT will send messages of
coordination to the testers concerned while
communicating with their AGCTj for i ≠ j. After the
reception of a message of coordination, AGCTi will
inform tester i to block or continue its execution.

3. AMRI: It is the only mobile agent of the system. It will
be generated by the tester who must make the first
sending in the test. Its role is to traverse the testers to
observe and collect the messages ?yi received by
testers, after each sending of a message !xi. A collected
message is put in a box of collection of the AMRI.
Once the turn is finished, the AMRI will migrate
towards the next tester who has the row of sending of
the message !xi+1. It must be provided with List-of-
Senders to be able to know the tester who has the row
of sending and to migrate towards this tester. The
algorithm [2] was generalized to be able to generate
the local test sequences and List-Of-Senders.

Algorithm 1.Generating Local test sequences Senders by
order of sending

 Input w=!x1? y1!x2…..!xt? yt :
 a complete test sequence
 Output : List of senders by order of sending: List-
Of-Senders
 Local test sequences: (w1 ,…,wn)
for k=1,…,n do wk ֚ ε end for
 List-Of-Senders֚ ε
for i=1,…,t do
 k֚ Port(xi)
 if i >1 then
 Send-To ֚ (Ports(yi) ∆ Ports(yi-1))\{k}
 if sender≠0 then
 Send-To ֚ Send-To\{sender}
 end if
 if sender≠ then
 wk ֚ wk .C send-To

 List-Of-Sender <= List-Of-Senders. Tk
OSend-To

 For all h א Send-To do
 wh ֚ wh . +Ck

 end for
 end if
 end if
1 : wk ֚ wk . !xi
 2 : List-Of-Sender ֚ List-Of-Senders.Tk

xi

 3 : for all a € yi do
 wPort(a) ֚ wPort(a).a?
 end for
 if i <t then
 h ֚ Port(xi+1)
 Sender ֚ 0
 if h ב Ports(yi) {k} then
 select
 4 : case yi= Ø :
 wk ֚ wk . –Ch

 wh ֚ wh . –Ck
 List-Of-Sender ֚List-Of-Senders.Tk

Ch

 Sender ֚ h
 5: case Ports(yi)\Ports(yi+1) ≠ Ø:
 Choose l € Ports(yi)\Ports(yi+1)
 wl ֚ wl . –Ch

 wh ֚ wh . –Cl
 List-Of-Sender ֚ List-Of-Sender.Tl

Ch
 Sender ֚ l
 6: Otherwise :
 Choose l € Ports(yi)
 wl ֚ wl . –Ch

 wh ֚ wh . –Cl
 List-Of-Sender ֚List-Of-Senders.Tl

Ch
 Sender ֚ l
 end select
 end if
 end if
end for

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

237

end Algorithm 1

If IUT has n ports, Algorithm 1 is dedicated to compute
the n related local test sequences and List-Of-Sender by
order of send of n testers from a complete test sequence of
IUT. Function Port give the port corresponding to a given
message. Function Ports is defined by : Ports(y) = {k/�a
�y s.t.k=Port(a))} for a set y of messages .

The local test sequences are basically projections of the
complete test sequence over the port alphabets. In fact,
Line 1 and 2 adds respectively !xi to the sequence
wport(xi) and tester port(xi) to Liste-of-Sender..The Loop
of Line 3 adds the reception of messages belonging to yi
to the appropriate sequences.

Coordination messages are added to the projections to get
the same controllability and observability when using the
complete test sequence in centralized method. In this case,
we added ?C et !C to the appropriate local test
sequences.?C is added to wh and List-of-sender, where h
is the tester sending xi+1.!C is added to the sequence of a
tester receiving a message belonging to yi,if yi≠ Ø(Lines 5
and 6),if not !C is added to the sequence of the tester
sending xi(Line4).

4. Agents Testers: Each tester executes its local test

sequence in the following way:

 For a communication with the IUT

- If the message is a reception, the tester waits until its
AET informs it of the reception.

- If the message is a sending, the tester awaits the arrival
of the AMRI and tests:

1- If the sending is like !M{} : the Agent tester Inform
Execution tester to sends the message and sends the
AMRI to collect the messages which will be
observed following this sending. Before each new
turn, box of collection of the AMRI is initialized.

2- If the sending is like !M{xi−1,yi−1} (the message could

be sent only if the messages xi−1 and yi−1 were well
observed) the tester will search among information
collected by the AMRI during the last turn:

a- If xi−1, yi−1 is in box of collection of the AMRI:

the tester sends the message and initializes the
AMRI for a new turn.

b- If xi-1 and yi-1 do not exist in box of collection.
The tester will be able to return the AMRI to
check the reception of these messages by the
testers concerned.

 For a communication with other testers
(Messages of coordination)

‐ If the message is a reception, the tester waits until
its AGCT informs it of the reception.

‐ If the message is a sending, the tester informs its
AGCT which will communicate with the AGCT
of the tester who must receive this message.

5. Conclusion

This article, presents architecture, model and method of
distributed test guaranteeing the principles of coordination
and synchronization between the various components of
the application of distributed testing. We exploited the
concepts of mobiles agents and actors agents which make
it possible to propose software architectures able to
support the dynamic adaptation and to reduce the number
of messages between the various components of the
distributed test. The implementation , the introduction of
the notion of time into the test sequences and the test of
the applications like Web services are the prospects for
our approach.

References

[1] M.Benattou and J.M. Bruel, '' Active Objects for
Coordination in Distributed Testing, '' International conference
on object-oriented information systems, Montpellier, FRANCE,
2002.
[2] O. Rafiq, L. Cacciari, M. Benattou, ''Coordination Issues in
Distributed Testing'', Proceeding of the fifth International
Conference on Parallel and Distributed Processing Techniques
and Applications (PDPTA'99) pp: 793-799, USA, 1999, CSREA
Press .
[3] A.Khoumsi , '' A Temporal Approach for Testing Distributed
Systems, '' IEEE Transactions on Software Engineering, '' vol .28
no.11, pp.1085-1103, November 2002.
[4] B.Chena, H. Chengb, J.Palen, Integrating mobile agent
technology with multi-agent systems for distributed traffic
detection and management systems'',Transportation Research
Part C: Emerging Technologies
Volume 17, Issue 1, February 2009, pp.1-10.
[5] G. Bernard , L. Ismail , ''Apport des agents mobiles à
l’exécution répartie''. Technique et science informatiques,
Hermès, Paris, 2002, Vol. 21, No 6/2002, pp. 771-796.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

238

 [6] G. Agha : Actors : a model of concurrent computation in
distributed systems.M.I.T. Press, Cambridge, Ma., 1986.
 [7] J.-P. Arcangeli, L. Bray, A. Marcoux, C. Maurel et F.
Migeon : Réflexivité pour la mobilité dans les systèmes
d’acteurs. In 4ème École d’Informatique des SYstèmes
PArallèles et Répartis (ISPAR’2000), 2000.
[8] A. Gill, ,Introduction to the theory of finite-state machines,
Mc Graw-Hill, New Yor- USA, 1962.
[9] A. Petrenko, G. v. Bochmann and M. Yayo, On fault
coverage of tests for finite state specification, Computer Network
and ISDN Systems 29, 1996.
[10] M. Benattou, "A Multi-Agent Based Architecture For
Distributed Testing," proceeding of The 18th International
Conference on Software Engineering and Knowledge
Engineering, San Francisco, pp : 495-498, 2006 .
[11] Digital Equipment Corporation “Distributed Computing
Environment Application Development Reference”, Maynard,
Maryland, U.S.A.1992.
[12] Lockhart H.W. OSF DCE – Guide to Developing
Distributed Applications. McGraw-Hill, New York, U.S.A.1994.
[13] A.Schill DCE - das OSF Distributed Computing
Environment, Einführung und Grundlagen. Springer Verlag
1996.
[14] Object Management Group (1995)," The Common Object
Request Broker: Architecture and Specification, "Revision 2.6.
Framingham, Massachusetts, U.S.A, December 2001.
[15] G.S.Blair and J.-B.Stefani. Open distributed processing and
multimedia.Boston MA USA: Addison Wesley Longman ,1998 .
[16] A.Benharref,R.Glitho,R.Dssouli. “Mobile Agents for
Testing Web Services in Next Generation Networks”, Mobility
Aware Technologies and Applications, Vol.3744 ,2005, pp.182-
191.
[17] Gorton, I., J. Haack, D. McGee, A. J. Cowell, O.Kuchar and
J. Thomson. Evaluating Agent Architectures: Cougaar, Aglets
and AAA. , SELMAS:264-278. 2003.
[18] S.Leriche ,” Architectures à composants et agents pour
laconception d’applications réparties adaptables ”,J.P Arcangeli,
ingénierie des Langages pour les sYstèmes Répartis et
Embarqués (LYRE), Informatique et Télécommunications
(EDIT), Université Toulouse III,Toulouse ,France,2006 .
[19]Sébastien Leriche and Jean-Paul Arcangeli. Flexible
Architectures of Adaptive Agents: the Agent approach. Dans /
In : International Journal of Grid Computing and Multi-Agent
Systems, ISSN : 0975-8135, Vol. 1, No. 1, p. 51-71, January-
June 2010
[20] J.-P. Arcangeli, F. Migeon, S. Rougemaille, ” JAVACT : a
Java middleware for mobile adaptive agents”,
Lab.IRIT,University of Toulouse, February 5th,
2008,france .

