
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

167

Interactive Guided Online/Off-line search using Google API and
JSON

Kalyan Netti1

 1 Scientist, NGRI(CSIR),
Hyderabad, Andhra Pradesh, India

Abstract
Information retrieval systems (e.g., web search engines)
are critical for overcoming information overload. A major
deficiency of existing retrieval systems is that they
generally lack user modeling and are not adaptive to
individual users, resulting in inherently non-optimal
retrieval performance [1]. Sources of these problems
include the lack of support for query refinement. Web
search engines typically provide search results without
considering user interests or context. This in turn increases
the overhead on the search engine server. To address these
issues we propose a novel interactive guided Online/off-
line search mechanism. The system allows user to choose
for normal or combinational search [5] of the query string
and allows the user to store the best search results for the
query string. The proposed system also provides option for
off-line search which searches from the bundle of stored
results. Systems which implemented offline search require
downloading and installing the stored bundle of search
results before using it. The proposed system is an
interactive web based search facility both offline and
online. The system doesn’t require installing the bundle of
saved search results for offline searching, as the search
results are added to the bundle interactively as chosen by
the user. The system is very likely to return the best
possible result as it uses combinational search. The result
from the combination search can be stored and can be
searched again offline. Experiments revealed that
combination search of keywords in query yields variety of
results. Thus the Bundle of Stored result consists of best
possible results as the user chooses to save in it. This will
enhance the systems searching capabilities offline, which
in turn reduces the burden on the search engine server.

Keywords: Web search Engine, Meta-search engine,
Information retrieval, Google, Retrieval Models, Offline
Search, Combination Search, Google API, JSON

1. Introduction

One of the most pressing issues with today's explosive
growth of the Internet is the so-called resource discovery

problem[3]. Although many information retrieval systems
have been successfully deployed, the current retrieval

systems are far from optimal [1]. A major deficiency of
existing retrieval systems is, they generally lack user
modeling and are not adaptive to individual users [4]. This
non-optimality or inconvenience to the users may
sometimes be seen as the search engine inability to
understand the user query, but if it is seen through user
perspective, two specific issues can be observed.
a) Different users may use a search query in many
different ways, but clearly thinking of one result. Like, a
user may give a query as “java programming”, other user
may give the query like “programming java”. Sometimes
the search engine may give different results even though
the user perspective is same. b) User after giving the query
has to go through the information of all websites which
are returned by the search engine, even though a best
search engine can filter the non-query related sites. This
process although a common one is very tedious. Once the
user is not satisfied with the result he/she may repeat the
process with a different query possibly with a different
combination of keywords. This may overburden the search
server with repeated queries.
A system which can give user an option for searching with
different combinations of keywords in the query is a
viable solution for the problem mentioned at ‘a’ above.
Also a system which allows the user to save the best
possible results as a bundle, and accessing them later
offline is a probable solution for ‘b’ mentioned above. The
bundle of search results saved can be searched again for
further refinement by any other user for a same type of
query or combination.
The system implemented in this paper is an interactive
interface and provides an option for the user to search the
server with a combination of keywords or with a normal
search. It allows the user to save the search result as a
bundle of website URLs. Later users can access the bundle
offline for further refinement of the search. This will
reduce overhead on the network and on the server when
the search is performed for the same type of result. Also
the result can be assured of the best result as it is yielded
from the combination of keywords. The main aim of this

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

168

paper is to make information search handy and appropriate
such that it will be easy to use while offline thus reducing
the overhead on the search engine server. The system uses
Google as a search server and to refine the URLs of the
search results JSON and Google API is used. The reason
for using Google as a search server is that, Google has
grown to be one of the most popular search engines that
are available on the Web. Like most other search engines,
Google indexes Web sites, Usenet news groups, news
sources, etc. with the goal of producing search results that
are truly relevant to the user. This is done using
proprietary algorithms, which work based on the
understanding that if a page is useful, other pages covering
the same topic will somehow link to it. So, it can be said
that Google focuses on a page’s relevance and not on the
number of responses [6]. There for it can be said that
Google focuses on a page’s relevance and not on the
number of responses.
Moreover, Google allows sophisticated searches, with
required and forbidden words, and the ability to restrict
results based on particular language or encoding [8].
However, only a small number of web users actually know
how to utilize the true power of Google. Most average
web users, make searches based on imprecise query
keywords or sentences, which presents unnecessary, or
worse, inaccurate results to the user. Based on this
assumption, applications that help guide user’s searching
sessions have started to emerge. This is further motivated
by the introduction of Google Web Services, which allows
developers to query the Google server directly from their
application [5] [8].
Google has been providing access to its services via
various interfaces such as the Google Toolbar and wireless
searches. And now the company has made its index
available to other developers through a Web services
interface. This allows the developers to programmatically
send a request to the Google server and get back a
response. The main idea is to give the developers access to
Google’s functionality so that they can build applications
that will help users make the best of Google. The Web
service offers existing Google features such as searching,
cached pages, and spelling correction [7]. It is provided
via Google AJAX Search API and can be manipulated in
any way that the programmer pleases. Also Google is now
allowing queries using a REST-based interface that returns
search results using JSON .

2. Related Work

Great deal of work has been done in making available
guided search such as GuideBeam [10], which is the result
of research work carried out by the DSTC (Distributed
Systems Technology Centre) at the University of
Queensland in Brisbane, Australia. GuideBeam works
based on a principle called "rational monotonicity" that

emerged from artificial intelligence research in the early
nineties. In the context of GuideBeam, rational
monotonicity prescribes how the user's current query can
be expanded in a way which is consistent with the user's
preferences for information. In other words it is a guiding
principle of preferential reasoning [11]. Since users prefer
certain pieces of information in their quest for
information, preferential reasoning fits very nicely into the
picture of guided searching. Users can intuitively navigate
to the desired query in a context-sensitive manner. This is
known as "Query by Navigation". The goal is to elicit a
more precise query from the user, which will translate into
more relevant documents being returned from the
associated search engine. Another example that is more
closely related to Google would be the Google API Search
Tool by Softnik Technologies [12]. It is a simple but
powerful Windows software tool for searching Google. It
is completely free and is not meant to be a commercial
product. All that the users need to do is register with
Google for a license key and they will be entitled to pose
1000 queries a day. It is also an efficient research tool
because it allows the users to record the search results and
create reports of their research easily and automatically.
The URLs, titles, etc. can be copied to the clipboard and
then to a spread sheet or any other software. In summary,
it enables the users to organize and keep track of their
searching sessions, all at the convenience of their
desktops.
The Google API Search Tool requires the users to
download and install the software before they can start
using it. An alternative is to have a Web-based version of
the search tool. Many projects have been exploring this
path like [5] Guided Google, Google API Proximity
Search (GAPS) developed by Staggernation.com [13]. The
GAPS is developed using Perl and uses the Google API to
search Google for two search terms that appear within a
certain distance from each other on a page [6]. Most of the
Frameworks mentioned above are either free tools
available or commercial ones. Most of the tools mentioned
above like Guided Google, Staggernation etc were
developed using Google SOAP API, which is
discontinued by Google and those tools are no longer
available on web. Most of the tools are not interactive.
Some systems like COS [14] have the limitation of
downloading and installing the COS pack [14] offline and
it has no facility of Combination Search, thus again
resulting in inconvenience to the user.
The main difference between the tools and systems
mentioned above and the system proposed in this paper is
that there is no need for the user to download the bundle
of best search results for offline search just as
implemented in COS [14].Instead, user has an option to
choose between offline and online search. The system
allows allow users to save beset results interactively. The

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

169

system has the facility for combination search which
proved one to retrieve best results. The system is
implemented as web interface and is easy to use. It uses
powerful Google Ajax API which is the latest search API
from Google [7], JSON for parsing the streamed response.
Thus the proposed system provides a focused search and is
very likely to return the relevant response to user.Online
help for parsing the streamed response using JSON
through web interface by using JSP and Servlets is not
available in internet although help for stand-alone is
available.

3. Architecture

3.1 Proposed System Architecture

Figure 1 shows the overview and architecture of the
proposed system. The user access the system as a web
interface which is developed using JSPs. The JSPs are

Figure 1: Main Architecture

hosted on a Tomcat Server. The Tomcat server acts as
both a stand-alone webserver and servlet container. Before
submitting the Query, the user has the option to choose
between online and offline search. If the user chooses
online search then the system will ask to choose either
Combination Search or Normal Search. The search is then
handled by the Google AJAX Api and is sent to
Google.com. Google has Google cluster which is further
divided into smaller clusters that is made up of a few
thousand machines, and is geographically distributed to
protect Google against catastrophic data centric failures.

Each of these smaller clusters will be assigned queries
based on the user’s geographic proximity to it [15, 16].
This is a form of load balancing, and it helps to minimize
the round-trip time for a query; hence, giving greater
response time. If the user chooses for online search, the
response is handled by the JSON implemented in
JSP/Servlet Container in Tomcat and the search result is
displayed to the User. The user has then an option to save
the search results directly to the bundle of saved results. If
the user chose for the offline search then the JSP/Servlet
container sends the request to the Bundle of Saved Results
and returns the response to the user.
3.2 Google Ajax Search API
Figure 2, shows the Google API architecture. The
architecture of how Google Web Services interact with
user applications is shown in Figure 2. The Google server
is responsible for processing users’ search queries [9]. The
programmers develop applications in a language of their
choice (Java, C, Perl, PHP, .NET, etc.) and connect to the
remote Google Web APIs service. Communication is
performed via the Google AJAX Search Api. The AJAX
Search API allows you to easily integrate some very
powerful and diverse Google based search mechanisms or
"controls" onto a Web page with relatively minimal
coding. These include: [7]
a) Web Search: This is a traditional search input field
where, when a query is entered, a series of text search
results appear on the page.
b) Local Search: With Local Search, a Google Map is
mashed together with a search input field and the search
results are based on a specific location.
c) Video Search: The AJAX Video Search provides the
ability to offer compelling video search along with
accompanying video based search results.
Once connected, the application will be able to issue
search requests to Google's index of more than two billion
web pages and receive results as structured data, access
information in the Google cache, and check the spelling of
words. Google Web APIs support the same search syntax
as the Google.com site.
In short, the Google AJAX APIs serve as an enhanced
conduit to several of Google's most popular hosted
services. The hosted services such as Google Search or
Google Maps can be accessed directly, but with AJAX
APIs comes the ability to integrate these hosted services
into anyone's custom web pages. The way the AJAX APIs
work is by allowing any web page that is hosted on the
Internet access to Google search (or feed) data through
JavaScript code.

User JSP and
Servlet
Container

Google
AJAX
search

Google.
com

Bundle
of Saved
Results

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

170

Figure 2: Google AJAX Search API Architecture

The core JavaScript code that fetches the search or feed
data can be as simple as Search.execute() or Feed.load().
As the request is made to Google's worldwide servers, a
response of either Search data or prepared AJAX Feed
data is streamed back to the Web page in either JSON
(JavaScript Object Notation) or XML formats. Parsing of
this data can either be done manually or automatically by
using one of the provided UI controls that are built upon
the lower level AJAX APIs.

3.3 JSON

JSON (an acronym for JavaScript Object Notation) is a
lightweight text-based open standard designed for human-
readable data interchange. It is derived from the JavaScript
programming language for representing simple data
structures and associative arrays, called objects. Despite
its relationship to JavaScript, it is language-independent,
with parsers available for virtually every programming
language.
In JSON the String data structure take on these forms

JSON Schema [17] is a specification for a JSON-based
format for defining the structure of JSON data. JSON
Schema provides a contract for what JSON data is
required for a given application and how it can be
modified, much like what XML Schema provides for
XML. JSON Schema is intended to provide validation,

documentation, and interaction control of JSON data.
JSON Schema is based on the concepts from XML
Schema, RelaxNG, and Kwalify, but is intended to be
JSON-based, so that JSON data in the form of a schema
can be used to validate JSON data, the same
serialization/deserialization tools can be used for the
schema and data, and it can be self descriptive.
Apart of certain limitations which are limited to textual
data formats which also apply to XML and YAML, JSON
is primarily used for communicating data over the Internet.
The proposed system in this paper uses JSON extensively
to parse the response send by the Google API. Parsing the
response using JSON enables the system to store the
results in array, get the required URLs, Count the total
results etc. This enables the user to compare the query
string during combinational search, by total number of
results retrieved and save the best results.

4. Design and Implementation

The Proposed system is an interactive web interface,
which is developed using JAVA and coded in JSP and
Servlets. As discussed earlier, this system is developed
based on the assumption that search engines typically
provide search results without considering user interests or
context, which in turn leads to Overhead of the search
engine server.
This implementation tries to demonstrate, how the new
Google AJAX search API can be fully utilized, how it
helps the users to guide for better results, how it reduces
the overhead on the search engine sever.
This system can be grouped into four categories. The first
one is for choosing between Online and offline search.
The second one is choosing normal search or combination
search. The third one is saving the results into the bundle
of storage. The fourth is searching the bundle of stored
results offline. Each of these is discussed in detail in
following sections. A simple illustration of how this
system works is given at figure 3;

Figure 3: Design and Implementation of the system

4.1 Online Search

There is a main page (index.jsp) that is used to interface
with all other files. This page consists of query text box (a

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

171

shown in figure 4), and options for the user to Offline
search and online search. If the user chooses online search
the page display the option to choose for normal search or
combination search. The normal and combination search
functions are supported by search.jsp program file. The
program file search.jsp connects to Google.com by using
googconnector.java bean which establishes the connection
using Google AJAX Api.

Figure 4: Online Search and Combination Search

4.2 Combination Search

As mentioned earlier this system provides a function that
will automatically calculate the permutation and make
different combinations of the keywords used. For
example, if the users were to key in the term “java
programming”, it will automatically generate two
combinations, which are “java programming” and
“programming java”. The results of these two queries
when searched using Google.com are very different (see
Figure 5 and Figure 6).Generating different combinations
of key words in query string is carried out by
combination.jsp program file.

4.3 Parsing Response

Once the response is send by the Google, search.jsp parses
the streamed response using JSON. The code snippet for
connecting to Google.com using AJAX API Search is as
follows

Figure 5: searching google.com using “java programming”

Figure 6: searching google.com using “programming java”

// Encode the Query to make a valid one
//The query is returned from
//combination.jsp if use choose
//combination search

query = URLEncoder.encode(query, "UTF-
8");

URL url = new
URL("http://ajax.googleapis.com/ajax/se
rvices/search/web?start=0&rsz=large&v=1
.0&q=" + query);
// opening connection
URLConnection connection =
url.openConnection();

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

172

The code snippet for parsing the response from Google
and storing into array , getting the best URLs, Counting
number of results etc using JSON is as follows

// Reading the JSON response

 String line;
 StringBuilder res = new
StringBuilder();
 BufferedReader reader = new
BufferedReader(new
InputStreamReader(connection.getInputSt
ream()));
 while((line = reader.readLine()) !=
null) {
 res.append(line);
 //out.println("\n"+line);
 }

//parsing using JSON Objects
 String resp = builder.toString();

 JSONObject json = new
JSONObject(builder.toString());

// Displaying the required results

out.println("Results Ordered = "
+json.getJSONObject("responseData").get
JSONObject("cursor").getString("estimat
edResultCount"));
out.println("
");

// Parsing the respone using JSONArray
 JSONArray ja =
json.getJSONObject("responseData").getJ
SONArray("results");

out.println("\n Results:");
out.println("
");
for (int i = 0; i < ja.length(); i++) {
out.print((i+1) + ". ");
 JSONObject j = ja.getJSONObject(i);

out.println(j.getString("titleNoFormatt
ing"));
out.println("
");
out.println(j.getString("url"));
out.println("
");
 }
//out.println(""+response1);

4.4 Saving Results and Offline Search

After displaying the results the user has the option to save
the results in bundled storage of results. The results can be
stored by selecting the checkboxes displayed as prefix to
each result. After clicking the checkbox the user can press

the save button to save the results (as shown in figure
7).The program search.jsp saves the URLs, search string
in the bundle storage. The offline search for the user is
taken care by offline.jsp program file. The user can choose
offline search from the index.jsp file.

5. Evaluation

This section focuses on evaluating the search performance
of this system when chosen online and offline. This
section also focuses on the performance of both normal
search and combination search. For simplicity, a common
search query “java programming” is used.

5.1 Online Search & Saving Results

5.1.1 Normal Search

As shown in the figure 4, after giving the query as “java
programming” in index.jsp and clicking “submit query”
button google.com returned around 11100000 results as
shown in figure 7. For convenience purpose the system

Figure 7: Displaying results after parsing for search query “java
programming”

was restricted to display the first 8 results. The total results
are computed using JSON as discussed in earlier section.
The next part of the display shows check boxes as a prefix
to every result so that user has option to save the result by
clicking the checkboxes and later clicking save button.

5.1.2 Combination Search

In combination search, the query “java programming” is
passed through a function written in combination.jsp
program file which give all unique combinations of it.In
this case it will also produce “programming java”. The
search result of “java programming” and “programming
java” yielded different sets of results as shown in figure 8
and 9. The “java programming” query yielded The

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

173

11100000 results whereas “programming java” yielded
around 12100000 results, which is big difference. Thus
this system shows a unique way of getting best search
results by giving combination of words and providing user
a best possible way to search the internet and choosing the
best results. Apart of that, the system also allows to save
the results which are yielded from both the search queries,
thus providing a variety of options and results.

5.1.3 Offline Search

In searching based on offline, the term “java
programming” is submitted to the bundle of stored results.
The bundle of results is the one which were saved by the
user during normal search as shown in figure 7. The result
of this search is shown in figure 10.Figure 10 show only 3
results displayed which are top 3 results stored by the user
in figure 7.

As illustrated in the figures 8 and 9 the combinational
search yields different results as compared to the normal
search.

Figure 8: Combination Search (part 1), displaying results for search query
“java programming”

As illustrated in figure:10 the user chooses the option for
the offline search and the results are from stored bundle of
results. The user after performing combination search,
which yields variety of results from combination of words
in the query string, can save the best possible results.

Figure 9: Combination Search (part 2), displaying results for search query
“programming java”

Later the offline search yields the best results and thus
reduces the repeat searching by the user which again
reduces the burden on the search engine server.

Figure 10: Offline Search, Displaying results for search query
“programming java

6. Conclusion and Future Work

This paper proposed an interactive web interface for
guided searching and uses powerful Google AJAX search
API and JSON to parse the response. This interface
provides an option for online and offline search. The
proposed system also provides an option for Combination
search and Normal search to user. A detailed evaluation of
the system demonstrated how the user can harness the
capability of search engines by manipulation and
automation the existing search engine functions (this paper
uses google.com as an example).

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

174

However the system has lot of scope to be improved. For
instance the system can provide an option to choose
between the top search engines like (yahoo.com, window
live) thus making the user to see different set of results
(this paper uses google.com as example). The system can
also be further developed to allow the user to give ranking
to the results which are to be saved in the bundle of saved
result..
Offline search has lot of scope to improve. A simple
replacement policy like least recently used can be
employed to update the bundle of saved results and thus
making the offline search more efficient and likely one to
retrieve best results.

References

[1] Xuehua Shen, Bin Tan, ChengXiang Zhai,”Implicit User
Modeling for Personalized Search” CIKM’05, October 31–
November 5, 2005, Bremen, Germany.

[2] Orland Hoeber and Xue Dong Yang, “Interactive Web
Information Retrieval Using WordBars”, Proceedings of the
2006 IEEE/WIC/ACM International Conference on Web
Intelligence

[3] M. Schwartz, A. Emtage, B. M e, and B. Neumann, "A
Comparison of Internet Resource Discovery Approaches,"
Computer Systems,

[4] G. Nunberg. As google goes, so goes the nation. New York
Times, May 2003.

[5] Ding Choon Hoong and Rajkumar Buyya,”Guided Google:
 A Meta Search Engine and its Implementation using
 the Google Distributed Web Services
[6] The Technology behind Google

http://searchenginewatch.com/searchday/02/sd0812-
googletech.html

[7] http://code.google.com/apis/ajaxsearch/
[8] Google Groups (web-apis)

http://groups.google.com/groups?group=google.public.web-
apis

[9] www.json.org
[10] Guidebeam - http://www.guidebeam.com/aboutus.html
[11] Peter Bruza and Bernd van Linder, Preferential Models of
Query by Navigation. Chapter 4 in Information Retrieval:
Uncertainty & Logics, The Kluwer International Series on
Information Retrieval. Kluwer Academic Publishers,
1999.http://www.guidebeam.com/preflogic.pdf
[12] Softnik Technologies, Google API Search Toolhttp://
www.searchenginelab.com/common/products/gapis/docs/
[13] Google API Proximity Search (GAPS) -
 http://www.staggernation.com/gaps/readme.html
[14] Sree Harsha Totakura, S Venkata Nagendra Rohit Indukuri
V Vijayasherly, COS: A Frame Work for Clustered off-line
Search
[15] Luiz André Barroso, Jeffrey Dean, and Urs Hölzle, Web
Search for a Planet: The Google Cluster Architecture, Google,
2003.
[16] Mitch Wagner, Google Bets The Farm On Linux, June
2000, - http://www.internetwk.com/lead/lead060100.htm
[17] http://json-schema.org
[18] M. B. Rosson and J. M. Carroll. Usability Engineering:

scenario-based development of human-computer interaction.
Morgan Kaufmann, 2002.
[19] I. Ruthven. Re-examining the potential effectiveness of
interactive query expansion. In Proceedings of the ACM SIGIR
Conference on Research and Development in Information
Retrieval, 2003.
[20] G. Salton and C. Buckley. Improving retrieval performance
by relevance feedback. Journal of the American Society for
Information Science, 41(4), 1990.
[21] B. Shneiderman. Designing the User Interface. Addison-
Wesley, 1998.
[22] C. Silverstein, M. Henzinger, H. Marais, and M. Moricz.
Analysis of a very large web search engine query log. SIGIR
Forum, 33(1), 1999.
[23] A. Spink, D. Wolfram, B. J. Jansen, and T. Saracevic.
Searching the web: the public and their queries. Journal
of the American Society for Information Science and
Technology, 52(3), 2001.
[24] K. Sugiyama, K. Hatano, and M. Yoshikawa. Adaptive web
search based on user profile construction without any effort
from users. In Proceedings of the 2004 World Wide Web
Conference (WWW2004), 2004.
[25] J. Teevan, S. Dumais, and E. Horvitz. Personalizing search
via automated analysis of interests and activities. In Proceedings
of the ACM SIGIR Conference on Research and
Development in Information Retrieval, 2005.
[26] E. M. Voorhees. Query expansion using lexical-semantic
relations. In Proceedings of the ACM SIGIR Conference on
Research and Development in Information Retrieval, 1994.
[27] C. Ware. Information Visualization: Perception for Design.
Morgan Kaufmann, 2004.
[28] J. Xu and W. B. Croft. Improving the effectiveness of
information retrieval with local context analysis. ACM
Transactions on Information Systems, 18(1), 2000.
[29] Yahoo. Yahoo search web searvices.
http://developer.yahoo.com/search.
[30] Y. Yao. Information retrieval support systems. In
Proceedings of the 2002 IEEE World Congress on
Computational Intelligence, 2002.

Kalyan Nettii, born in Andhra Pradesh, India. He obtained his
Master degree in Technology in Computer Science and
Engineering with specialization in Database Management Systems
from JNTU, Andhra Pradesh, India, in 2004.Kalyan Netti is
interested in the following topics: semantic web technologies,
Ontologies, data interoperability, semantic heterogeneity, relational
database systems, temporal databases and temporal data
modeling.

