
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 9, July 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

17

Verifying ODP trader function by using Event B

Belhaj Hafid, Bouhdadi Mohamed, El hajji Said

 Department of Mathematics & Computer Science, University Mohammed V, Faculty of science
BP 1014 RP, 4. Av Ibn Batouta – Agdal, Rabat, Morocco

Abstract

In order to support interoperability in open distributed systems,
an information service is needed that can provide dynamic
knowledge about available service providers. Such a service is
Trading function, identified by Basic Reference Model of Open
Distributed Processing (RM ODP). RM ODP is a joint effort of
ISO and ITU−T. Within the standardization of RM ODP, Trading
function is developed as a component standard.
The use of formal methods in the design process of ODP systems
is explicitly required. Currently there are no formal specifications
of ODP concepts which are widely accepted. One interesting
question concerns the suitability of event B for their use in ODP.
In this paper, the use of event B for verifying ODP is investigated
and evaluated. The ODP trader is chosen as case of study because
it appears as a first main application of ODP.
Keywords: RM-ODP, Trader function, event B, RODIN
platform.

1. Introduction

One property of a distributed system is that a user of the
system is unaware of the differences in computers and
operating systems in which their applications run. Such
systems are inherently complex. Despite this, distributed
processing is growing rapidly, primarily due to the
computer industry’s ability to produce cheaper, more
powerful computers. As a result of this growth, the need
for the coordinated production of standards for distributed
processing has been identified.
ODP is already a major effort between the International
Organization for Standardization (ISO) and International
Telecommunications Union (ITU-T) which will lead to
significant product development in the coming years. The
ODP work identifies and attempts to provide a framework
for distributed systems. This has been set out in a
Reference Model of ODP (RMODP) [1].
It defines an architecture through which distribution,
interworking and portability can be achieved. The RM-
ODP recognizes that it cannot provide an infrastructure to
meet all of the needs of distribution. Different systems will
almost certainly have different demands on the
infrastructure.
The RM-ODP is divided into four main parts.

Part 1 - Overview and Guide to Use : contains an overview
and guide to use of the RM-ODP.
Part 2 - Descriptive Model : contains the definition of
concepts and gives the framework for descriptions of
distributed systems.
Part 3 - Prescriptive Model : contains the specification of
the required characteristics that qualify distributed system
as open, i.e. constraints to which ODP systems must
conform. It defines a framework comprising five
viewpoints, five viewpoint languages, ODP functions and
ODP transparencies. The five viewpoints are enterprise,
information, computational, engineering and technology.
Part 4 - Architectural Semantics : contains a formalization
of a subset of the ODP concepts.
A trader [3] is an object that performs trading, which is an
ODP common function. ODP aims to provide distribution-
transparent utilization of services over heterogeneous
environments. In order to use services, users need to be
aware of potential service providers and to be capable of
accessing them. Since sites and applications in distributed
systems are likely to change frequently, it is advantageous
to allow late binding between service users and providers.
If this is to be supported, a component must be able to find
appropriate service providers dynamically. The ODP
trading function [3] provides this dynamic selection of
service providers at run time.
The languages Z, SDL, LOTOS, and Esterel are used in
RM-ODP architectural semantics part [1] for the
specification of ODP concepts. However, no formal
method is likely to be suitable for specifying every aspect
of an ODP system.
Elsewhere, we used the meta-modeling approach [9] [10]
to define syntax of a sub-language for the ODP QoS-aware
enterprise viewpoint specifications. We defined a meta-
model semantics for structural constraints on ODP
enterprise language [11] using UML and OCL. We also
used the same met-modeling and denotation approaches
for behavioral concepts in the foundations part and in the
enterprise language [12] [13].
Furthermore, for modeling ODP systems correctly by
construction, the current testing techniques [21][22] are
not widely accepted.
In this paper, we use the event-B formalism as our formal
framework for developing trader function in distributed

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 9, July 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

18

systems. Event B [4] is a method with tool support for
applying systems in the B method. Hence we can benefit
from the useful formalism for reasoning about distributed
systems given by refinement techniques and from the tool
support in B. The Rodin Platform for Event-B provides
effective support for refinement and mathematical proof.
[5]
The paper is organized as follows. Section 2 introduces
RM-ODP and trader function. Section 3, presents an
introduction to event B notations. In Section 4, we use
event B as refinement support to specify trader function.
Section 5 presents the Rodin platform as tool of proving
initial and refinement models. In section 6 we describe
related works. Lastly, section 7 concludes the paper.

2. Introduction to ODP and the RM-ODP

2.1 RM-ODP

The Reference Model for Open Distributed Processing
(RM-ODP) [1] provides a framework within which
support of distribution, networking and portability can be
integrated. It consists of four parts. The architecture part
contains the specifications of the required characteristics
that qualify distributed processing as open. It defines a
framework comprising five viewpoints, five viewpoint
languages, ODP functions and ODP transparencies. The
five viewpoints are enterprise, information, computational,
engineering and technology. The ODP functions are
required to support ODP systems. The transparency
prescriptions show how to use the ODP functions to
achieve distribution transparency. RM-ODP defines a
number of specific repository functions [2], concerned
with maintaining a database of specialized classes of
information. There are three repository functions: Type
Repository, Relocator and the trader function [3].

2.2 Trader Overview

A trader [3] is a third party object that enables the clients
to find suitable servers in a distributed system. Figure 1
shows the interactions of a trader and its users:
• A trader accepts service offers from exporters of services
when exporters wish to advertise service offers. A service
offer contains the characteristics of a service that a service
provider is willing to offer. Service offers are stored by the
trader in a centralized or a distributed database.
• A trader accepts service requests from importers of
services when importers require knowledge about
appropriate service providers.
• A trader searches its service offer database to match the
importer's service request. And, if required, a trader can
select the most appropriate service offer(s) (if one exists)

that satisfies the importer's service request. The matched
list of service offers or the selected service offer is
returned to the importer.
After a successful match, the client, that requires a service,
can interact with the service provider of a matched offer.
The matching and selection of appropriate service at run
time by a trader allows client objects to be configured into
an ODP system without prior knowledge of server objects
that can satisfy their requirements.

Fig. 1 Trader and Its Users.

3. EVENT B MODELLING APPROACH

The Event-B [14] [15] is formal techniques consist of
describing rigorously the problem, introduce solutions or
details in the refinement steps to obtain more concrete
specifications and verifying that proposed solutions are
correct. The system is modeled in terms of an abstract
state space using variables with set theoretic types and the
events that modify state variables. Event-B, a variant of B,
was designed for developing distributed systems. In
Event-B, the events consist of guarded actions occurring
spontaneously rather then being invoked. The invariants
state properties that must be satisfied by the variables and
maintained by the activation of the events.
The mathematical foundations for development of event
based system in B is discussed in [6]. An abstract machine
consists of sets, constants and variables clause modeled as
set theoretic constructs. The invariants and properties are
defined as first order predicates. The event system is
defined by its state and contain number strained by the
conditions defined in the properties and invariant clause
known as invariant properties of the system. Each event in
the abstract model is composed of a guard and an action.
A typical abstract machine may be outlined as below.

MACHINE M
SETS S1,S2,S3...
CONSTANTS C
PROPERTIES P
VARIABLES v1,v2,v3...
INVARIANTS I
INITIALISATION init
EVENTS
 E1 = WHEN G1 THEN S1 END;
 END

Import

Invoke

Result Export

Trader

IMPORTER EXPORTER

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 9, July 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

19

4. SPECIFYING THE ODP TRADER
USING EVENT B

4.1 Refinement strategy

In this section, we present our strategy for constructing the
negotiation scenario between trader object and its users.
This will be done by means of an initial model followed
by one refinement.
a) The initial model essentially presents the protocol as
done abstractly of repository function of trader.
b) In the refinement model, we introduce the trader
repository function. A trader needs to checks with its type
repository that the service type specified in the offer is
valid.

4.2 Abstract Model of trading function

The abstract model of a trader communication protocol is
presented as a B machine in the Fig. 2. The PROCESS and
MESSAGE are defined as sets. The brief description of
this machine is given as follows.

MACHINE Trader and users communication
SETS PROCESS ={importer, exporter, trader)

 MESSAGE = {import, export, result, invoke}
VARIABLES sender , receiver
INVARIANT

/* I-1*/ sender ∈ MESSAGE → PROCESS

/* I-2*/ ∧ receiver ∈ PROCESS ↔ MESSAGE

/* I-3*/ ∧ ran(receiver) dom(sender)

INITIALISATION sender := Ф || receiver:= Ф
OPERATIONS

Send (pp ∈ PROCESS , mm ∈ MESSAGE) =

 WHEN mm ∈ dom(sender) ∧ pp ∈ dom(receiver)

 THEN sender := sender U {mm pp}
 END;

Receive (pp ∈ PROCESS , mm ∈ MESSAGE) =

 WHEN mm ∈ dom(sender) ∧ (pp mm) ∈ receiver

 THEN receiver := receiver U {pp mm}
END ;
END

Fig. 2 Abstract Model of trader function.

The sender is a partial function from MESSAGE to
PROCESS defined in invariant I-1. The mapping (m p)

∈ sender indicate that message m was sent by process p.

The receiver is a relation between PROCESS and
MESSAGE defined in invariant I-2. A mapping of form (p

 m) ∈ receiver indicates that a process p has delivered

a message m. The sender and receiver are initialized as
empty set.
In our model of trader communication protocol with its
users, a sent message is also delivered to its sender. It may
be noticed that all delivered messages must be messages
whose Message Sent event is also recorded. This property
is defined as invariant I-3. The events of sending and
receiving of messages are modeled as Send(pp, mm) and
Receive(pp, mm). When a Send event is invoked, the entry
of a process and the corresponding message is made to the
sender.

4.3 Refinement model: Introducing repository
function of a trader

In order to match service requests with service offers, a
trader interacts with the type repository function provided
by the ODP infrastructure [2]. The set of all service types
known to a trader is known to its type repository.
The possible interaction scenario for the trader and its
environment is given below:
Interaction 1. Service Export - the trader receives a service
offer from an exporter. The trader checks with its type
repository that the service type (or interface type), the
service properties and service offer properties specified in
the offer are valid. The service offer is stored in the trader
database including the offer's service type identifier (if
given), interface type identifier, service and service offer
properties.
Interaction 2. Service import - the trader receives a service
request from a client. The trader checks with its type
repository that the request contains a known service or
interface type and the properties in the matching
constraints are valid.
Interaction 3. Matched offers - the trader returns offers
(possibly empty) to the importer that matches the
importer's requirement specifications.
Finally, to use the service, the importer needs to map the
service interface identifier to an interface location for the
service, establish a binding with the server at the service
location and, finally, invoke the service.

Fig. 3 Trader and Its Users taking in account the repository function.

 Import
-Service type
-Service properties

 Invoke
Offers’s service type identifier

 Result
-Service offer properties
-Offers’s service type
identifier

Export
-Service type
-Service properties
-Service offer properties
-Offers’s service type identifier

Trader

IMPORTER EXPORTER

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 9, July 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

20

In this refinement we introduce the repository interface of
trader. The refinement of abstract model is given in Fig. 4
and Fig. 5. A brief description of the refinement steps are
given below.
The abstract repository interface is represented by a

variable repository. A mapping of the form (m1 m2) ∈

repository indicates that parameter m1 is sent with
message m2 (Inv I-4). A repository on the messages can be
defined only on those messages whose message sent event
is recorded (Inv I-5).
REFINEMENT Repository interface
REFINE Trader and users communication
SETS PROCESS = {importer, exporter, trader);
 MESSAGE = {import, export, result, invoke};
PARAMETER= {Service type, Service properties,
Service offer properties, Offers’ service type identifier}
CONSTANT Trader type repository
VARIABLES Sender, receiver, repository
INVARIANT

/* I-4* repository ∈ PARAMETER ↔ MESSAGE

/* I-5*/ ∧ ran (repository) dom (sender)

INITIALISATION sender := Ф || receiver := Ф || repository :=
Ф

Fig. 4 Trader communication with users and repository: Initialization

The events send (pp, mm, param) and receive (pp, mm,
param) respectively models the events of sending a
message and the receiving of a message.
As shown in the operations, only exporter process can
export a service offer. When the trader receives a service
offer from an exporter pp, the trader checks with its type
repository (Trader type repository) that the service type is
valid. The service offer is stored in the trader database
including the offer's service type identifier, interface type
identifier, service and service offer properties.
Furthermore, only importer process can import a service.
When the trader receives a service request from a client,
the trader checks with its type repository (Trader type
repository) that the request contains a known service or
interface type and the properties in the matching
constraints are valid.

Fig. 5: Trader communication with users and

repository: Events

OPERATIONS
Send (pp ∈ PROCESS, mm ∈ MESSAGE, param ∈

PARAMETER) =

WHEN mm ∈ dom (sender) ∧ pp ∈ dom (receiver) ∧ param

∈ dom(repository)

 ∧ pp =exporter

 ∧ Service_type = Trader_type_repository

THEN sender := sender U {mm pp} || repository := repository
U {param mm}
END;

Receive (pp ∈ PROCESS , mm ∈ MESSAGE, param ∈

PARAMETER) =

WHEN mm ∈ dom(sender) ∧ pp ∈ dom(receiver) ∧

param ∈ dom(repository)

 ∧ pp = importer

 ∧ Service_type = Trader_type_repository

THEN receiver := receiver U {pp mm} || repository :=
repository U {param mm}
END ;

Fig. 5 Trader communication with users and repository: Events

5. PROOFING TRADER MODELS

Rodin Platform [5] is an open tool set implemented on top
of Eclipse. It is devoted to supporting the development of
such systems. It has been developed within the framework
of the European project Rodin. It contains a modeling
database surrounded by various plug-ins: static checker,
proof obligation generator, proovers, model-checkers,
animators, UML transformers, requirement document
handler, etc. The database itself contains the various
modeling elements needed to construct discrete transition
system models: essentially variables, invariants, and
transitions.
The initial model of trader communication with users and
its refinements models are developed by using Event-B.
Each model was analyzed and proved to be correct using
The Rodin Platform. The correctness of each step is
proved in order to achieve a reliable protocol
communication between trader, client and server objects.
The abstract and refinement models of the trader by both
essentials construct of Event-B (machine and context) are
illustrated below:

Fig. 6 A context of trader abstract model.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 9, July 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

21

Fig. 7 A machine of trader abstract model.

Fig. 8 A context of trader refinement model.

Fig. 9 A machine of trader refinement model.

6. RELATED WORK

There are related works which are using event-B to specify systems. For
example, Abrial [8] introduces patterns for state-based specifications in
EventB and uses informal graphical notations similar to TD to illustrate
the patterns. Cansell et al. [16] introduce a time constraints pattern based
on an Event-B model for distributed applications. This work uses global
time which interacts with a number of active times as do our patterns.
Bicarregui [17] extends Event-B notations to three linear temporal logic
(LTL) operators The work proposes using three new constructs that are to
replace the standard Event-B structure, WHEN…THEN…END, to
represent the three LTL operators. In [18] the use of the Formal
Description Techniques (FDT's) Z, LOTOS and SDL'92 is investigated
and evaluated for specifying the ODP trader. KAOS [19] is a goal-
oriented modeling technique for requirements specification, in which a
goal defines an objective of the composite system. KAOS uses a Goal
model to declare the system requirements. An attempt to combine KAOS
with B is introduced by Ponsard and Dieul [20]. Our earlier works [11]
[23] investigates how to translate the specification of enterprise viewpoint
concepts in event-B. Our work is unique in providing techniques for
verifying ODP trader specification by using the standard Event B
notations provided.

7. CONCLUSION AND PERSPECTIVES

In this paper we have presented a formal approach to
modeling and analyzing trading function using Event B.
The abstract model of trader is done abstractly of its
repository function.
In the refinement of the abstract model, we introduced the
notion of a trader repository function. In fact, in order to
match service requests with service offers, a trader
interacts with the type repository function provided by the
ODP infrastructure. The set of all service types known to a
trader is known to its type repository.
The system development approach considered is based on
Event B, which facilitates incremental development of
distributed systems. The work was carried out on the
Rodin platform. In order to verify our trader model, the
initial and refinement model of trader are developed by
using Event-B, Each model is analyzed and proved to be
correct.
Our experience with this case study strengthens our
believe that abstraction and refinement are valuable
technique for modeling complex distributed system.
As for future work, we are going to generalize our
approach to verify ODP common function trader from
different viewpoint. This will be our basis for further
investigation of using event-B in the design process of
ODP systems

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 9, July 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

22

References
[1] ISO/IEC, ‘’Basic Reference Model of Open Distributed

Processing-Part1, 2,3 ,and 4: ’ISO/IEC 1994
[2] ISO/IEC, “ODP Type Repository Function”, ISO/IEC

JTC1/SC7 N2057, 1999. 24. ISO/IEC, “The ODP Trading
Function”, ISO/IEC JTC1/SC21 1995.

[3] ITU/ISO “ ODP Trading Function - Part 1 ; Specification”,
ISO/IEC IS 13235-1, ITU/T Draft Rec X950 - 1, (1997)

[4] http://www.event-b.org/
[5] RODIN. Development Environment for Complex Systems

(Rodin). 2009. http://rodin.cs.ncl.ac.uk/.
[6] J.-R. Abrial. The B-Book: Assigning programs to meanings.

Cambridge University Press, 1996.
[7] J.-R. Abrial. Tools for Constructing Large Systems (a

proposal). In Rigorous Development of Complex Fault-
Tolerant Systems. M. Butler, etc. (Eds). LNCS 4157
Springer, 2006

[8] J.-R. Abrial, Tutorial - Case study of a complete reactive
system in Event-B: A mechanical press controller. Proc. 5th
International Symposium on Formal Methods (FM’2008),
Turku, Finland, 2008.

[9] M. Bouhdadi et al., ‘’A UML-Based Meta-language for the
QoS-aware Enterprise Specification of Open Distributed
Systems’’ IFIP Series, Vol 85, Springer, (2002) 255-264.

[10] Mohamed Bouhdadi and Youssef Balouki. ‘A Semantics of
Behavioral Concepts for Open Virtual Enterprises’. Series:
Lecture Notes in Electrical Engineering, , Vol. 27 .Springer,
2009. p.275-286.

[11] H. Belhaj and al. Event B for ODP Enterprise Behavioral
Concepts Specification, Proceedings of the World Congress
on Engineering 2009 Vol I, WCE '09, July 1 - 3, 2009,
London, U.K., Lecture Notes in Engineering and Computer
Science, pp. 784-788, Newswood Limited, 2009

[12] Youssef Balouki and Mohamed Bouhdadi. ‘Using BPEL for
Behavioral Concepts in ODP Enterprise Language’, Virtual
Enterprises and Collaborative Networks, IFIP, Vol. 283, pp.
221-232, Springer, 2008

[13] Mohamed Bouhdadi and Youssef Balouki and El maati
Chabbar, ‘Meta-modeling Syntax and Semantics of Structural
Concepts for Open Networked Enterprises’, Lecture Notes in
Computer Science, Vol. 4707, pp. 45-54, Springer, 2007.

[14] Joochim, T., Snook, C., Poppleton, M. and Gravell, A.
(2010) TIMING DIAGRAMS REQUIREMENTS
MODELING USING EVENT-B FORMAL METHODS. In:
IASTED International Conference on Software Engineering
(SE2010), February 16 – 18, 2010, Innsbruck, Austria.

[15] C.Snook & M.Butler, UML-B and Event-B: an
integration of languages and tools. Proc. IASTED
International Conf. on Software Engineering (SE2008),
Innsbruck, Austria, 2008.

[16] D. Cansell, D. Méry & J. Rehm, Time Constraint
Patterns for Event B Development. Proc. Formal
Specification and Development in B, 7th International Conf.
of B (B 2007), Besancon, France, 2007. 140-154.

[17] J. Bicarregui, et al, Towards Modeling Obligations in Event-
B. Proc. International Conf. of ASM, B and Z Users, London,
UK, 2008, 181-194.

[18] Joachim Fischer , Andreas Prinz and Andreas Vogel,
Different FDT's confronted with different ODP-viewpoints of
the trader. Book Series Lecture Notes in Computer Science

Éditeur Springer Berlin / Heidelberg Volume 670/1993,
Pages 332-350.

[19] E. Letier & A.V. Lamsweerde, Agent-Based Tactics for
Goal-Oriented Requirements Elaboration. Proc. 24th
International Conf. on Software Engineering (ICSE’02),
Orlando, Florida, USA, 2002, 83-93.

[20] C. Ponsard & E. Dieul, From Requirements Models to
Formal Specifications in B. Proc. International Workshop on
Regulations Modeling and their Validation and Verification
(REMO2V’06), Universitaires de Namur, Luxemburg , 2006,
249-260.

[21] Myers, G. The art of Software Testing, John Wiley &Sons,
New York, 1979

[22] Binder, R. Testing Object Oriented Systems. Models.
Patterns, and Tools, Addison-Wesley, 1999

[23] Hafid Belhaj, Youssef Balouki, Mohamed Bouhdadi, Said
El hajji: Using Event B to specify QoS in ODP Enterprise
language. PRO-VE'10 11th IFIP Working Conference on
VIRTUAL ENTERPRISES, Saint-Etienne, France, 11-13
October 2010. (accepted)

Belhaj Hafid is a PhD student in Computing sciences at the
University of Rabat. He received his MSc in Computer Science
(Architecture of Information Systems and Communication) from
National Engineer School of Computer Science and System
Analysis (ENSIAS), Rabat, Morocco. Topic: Conception and
development of a platform for decisional reactive agents. Since
2001 he was an engineer in Moroccan Pension Fund (C.M.R)
overseeing it design, development and information architecture.
He has experience in teaching, research, and student supervision
in software engineering and logic programming. His main
research interest is in the formal specification of open distributed
systems and model driven architecture.

