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                                 Abstract 
 
The idea discussed here are mainly to develope some interesting 
relationship between the differential geometry of certain curves and 
the controllability of linear time-invariant (LTI) control systems 
without considering any matrix riccati equation. 
  
The problem based on the basic concepts of controllability is 
considered here. The two point boundary value problem (TPBVP) 
is described here as a flow in the Grassmannian manifold. Then a 
simple solution to determine a control function in the Grassmannian 
manifold is presented that transfer the system states from initial to 
final values and satisfies the conditions that are equivalent to the 
controllability of the systems. 

 
Keywords: Linear system, Control function, controllability,  
Grassmannian manifold. 
 
1. Introduction 

Consider a LTI control system in the form of  

               x(t)=Ax(t)+Bu(t),          (1)              

for  xRn, uRm  and A, B are constant matrices. 
The problem of controllability of the LTI control system (1) 
is considered here as a state transfer problem (STP). Thus we 
determine a control function u(t) that transfer the system 
states from the initial to final values within specified time 
interval of t seconds. 
 
The problem of controllability is discussed in [1], as the state 
transfer problem. The solution of STP is given in [1], by 
computing the state-transition matrix. In [2], concept of 
controllability is considered as a STP and proposed several 
methods for synthesizing a control function for steering the 
given initial state of the system to the origin. In [3], the 

solution to STP  is based on relating the given system to a 
family of phase-variable canonical form systems and then by 
using the technique of two-point interpolation. 
 
The idea about differential geometry is given in [4]-[6]. It 
relates with the differential relation that stitches pieces of 
curves or surfaces together. It relates with the curves, 
surfaces, the functions that define them and transformation 
between the coordinates that can be used to specifies them.  
 
Here, the concepts of differential geometry uses as a tool for 
analysis of control systems. The system (1), is described here 
as a flow in the Grassmannian manifold. Then a control 
function u(t) have synthesized in the Grassmannian manifold 
that transfer the system states from initial to final values and 
satisfies the conditions that are equivalent to the 
controllability of the LTI control systems. 
 
Main objective here is that the control engineers should not 
restrict himself to any one of the tool but should be familiar 
with as many as possible for analysis purpose. The 
interesting relationship between the differential geometry of 
certain curves and the controllability of LTI control systems 
have been discussed in [7], with matrix riccati equation. But 
we have developed the same concepts with different 
approach, without considering any matrix riccati equation. 

 
2. Brief Review of Literature  

Some basic facts about the Grassmannian manifold and 
certain group actions are as follows. For detail, the reader 
should refer the exposition given by Doolin and Martin [6]. 
 

2.1. Lie group and group action: 

 Since the idea of a group is purely abstract algebraic idea, 
the definition of a group should involve only a set of element 
and some algebraic relations between them.  A group is a set 

. 
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of elements, like a set of matrices, any pair of which can 
operate together to given another element that is also in the 
same set.  In addition to different operation of the group, it 
requires some conditions, that is each element of the group 
and its inverse should be in the same group, one element in 
the group should be as an identity element and finally, the 
operation should be associative.  For example, the set of all   
n × n unity matrices, U(n), forms a group with the usual 
matrix product as the operation.  The group U(n) is a 
manifold, the product of two unity matrices is a unitary 
matrix and this operation is a manifold map [6]. The group 
with all these properties are called lie group or continuous 
transformation group.  Lie group is a group that is a 
manifold and whose group operation yields C∞ manifold 
function and is associative. 
 
Group Action:    

The action of a group refers to members of a group operating 
on nonmembers. To understand the action of a group on a 
manifold, we consider the Lie group-G as a closed sub-group 
of the group of N × N invertible matrices, Gl(N). 
 
Now, we shall state the following definition from [6].   
Definition: The group G is said to act on the manifold, 
Gp(V), if there exist an infinitely differentiable function τ : G 
 Gp(V)  Gp(V) with the following properties. 
i) for all m  Gp(V) , τ (e, m) = m, where e is the identity 
element. 
ii) for all g, h  G and m  Gp(V) , τg,  τ(h,m) = τ (gh,m). 
We say in this case that the group G acts on Gp(V) . 
 
Let (t) be a one parameter sub-group of G with the 
following properties: 
 (t)(h) =  (t + h), (0) = 1, the identity. 
Using these properties we can show that 
-1(t )=  (-t) and 
 (t) = A (t)                        (2)                                                         

 where   
0

lim  [ ( ) (0)] / .
h

A h h 


     

 
The matrix A is called the infinitesimal generator of the sub-
group α.  If α and A are real numbers, equation (2) has the 
solution (t)eAt(0) = eAt , confirming the connection of 
above mentioned properties with exponential.  The same 
form holds if A is matrix, generating a matrix representation 
of the subgroup. Clearly the solution of the differential 
equation (2) is,   
               (t) = exp At.       (3) 
 
2.2. The Grassmannian manifold:  

The Grassmannian manifold is the set of all p-dimensional 
subspaces of an n-dimensional vector space V. It is denoted 
by Gp(V). Every p-dimensional subspace is denoted by WG 
given by the linear transformation of (n-p) × p matrix G.             

Let X and W be one dimensional subspaces of two 
dimensional vector space V, such that V is their direct sum: 
V = X  W. By the direct sum meant that X and W have no 
subspaces in common except (0,0) of V, which will be 
referred to as the set {0}. The situation can be visualized in 
Fig.1. 
 
The point p in Fig.1 belongs to the subspace WG. It is 
specified uniquely by x + Gx, with G a real number (a 1 x 1 
matrix) and  x  X . Every point in WG is specified similarly 
by some x and every point in the plane except W itself 
belongs to a WG for some G.  
 
    W                                                  WG 

                                                                                    

  Gx                                          p 

                                     

                                                               

 

                                                                                                           

                                                                                                    

                                                           x             X 

Fig. 1 

 
The  p-dim subspace X of V can be represented by a unique 
form, WG in Gp(V) as 

 : ,
x

W x X and G L X WG Gx
  
  
    

         (4) 

for some matrix G, if and only if X0 ∩ W = {0}. We leave 
out the proof of (4) and refer the reader to [5] & [6].  
 
Let Gl(N) be the set of all N × N invertible matrices.  Also, 
let (t) be a one-parameter sub-group of Gl(N) and Gp(V) be 
regarded as the Grassmannian manifold.  The action of (t) 
on Gp(V) is given as : 
             Gl(N)  Gp(V ) Gp(V)              (5)                         
 
Therefore for α(t)  Gl(N) and WG  Gp(V), we have                                
           (α(t),WG )  α(t)(WG).                               (6) 
 
That meant an integral curve, x(t)=(t)WG, in Gp(V), is 
formed by the action of a one parameter sub-group (t) of G 
as shown in Fig.2. 
                Gp(V)               Gl(N) 

  

                                                                                                            

                                                                        

                                               

. 

 

 

WG 

(t)WG

(t)

Fig. 2. 
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The mental picture is that the curve x(t) being traced in 
Gp(V) by the evolution on the continuous transformation of 
the initial p-dim. sub-space, WG, under the action of the 
group. 
 
3. Methodology   

Let Gp(V) be a Grassmannian manifold. A curve, x(t), in a 
manifold Gp(V), is defined to be a differentiable 
function,x:R→ Gp(V),whose domain, (a, b), is an open 
interval of R. Then, x(t) = A (x(t)), is a differential equation 
on Gp(V). Now, a curve, x(t), in Gp(V) satisfying the equation 
x(t) = A (x(t)), and such that x(a) = xa. Such a curve is also 
called an integral curve starting from the point xa. 
 
At this stage, consider a curve x(t), in Gp(V), formed by the 
action of a one-parameter sub-group (t) of G.  That is, x(t) 
=  (t)xa. By differentiating this equation and by using the 
equation (2), we get the equation. 
                   x(t)=Ax(t)                     (7) 
Since A is the infinitesimal generator of a Lie group (t), the 
determination of which corresponds to finding the solution 
of the differential equation (7). 
This construction produces an ordinary differential equation 
in the form of the initial value problem with the initial value 
xa. The vector field is generated by the matrix A and the 
flow, (t) = expAt on the Grassmannian manifold Gp(V). 
Now, if WG be the initial p-dim. subspace in the 
Grassmannian manifold, Gp(V), then by the group action, 
              Gl(N)  Gp(V)  Gp(V).          (8)                                                                       
Therefore for WG  Gp(V) and (t)  Gl(N), 
             (α(t), WG)   α(t) (WG).           (9)                                           
 
If LTI control system (1) is in the form of   
              x(t)=Ax(t)+Bu(t),                      (10)  
for xRn, uRm, t[0,T], with boundary conditions  x(0) = 
x0 and x(T) = xT . Then with some efforts it is possible to 
describe the system (10), as a flow in the Grassmannian 
manifold,Gp(V), as  

x(t)=Ax(t)+Bu(t),                       (11)                                                                                              
for t[a,b], with boundary conditions xa=WGO and  xb=WGT . 
A curve x(t) = α(t)WG is an integral curve satisfying the 
equation (11) in Gp(V), starting from the initial point 
xa=WGO.   
 
For a necessary and sufficient condition for the existence of 
a unique solution of the boundary value problem,(11),if we 
consider (t) in the matrix form, then from (4),we get, 

1
0

3

( )
( )

( )
a

G
a

t x
t W

t x





 

  
 

                          (12)                                                     

The eqn.(12) can rewrite as  

0 1
3 1

( )
( )

( ) ( ) ( )
G

E t
t W

t t E t


 

 
  
 

       (13)

                                                                      

where E(t) = 1(t) xa  X. .Such a representation of (t) is 
possible if and only if  -1(t) exists.  Hence the results.  This 
is very important result, that gives condition for the 
existence of a unique solution of the TPBVP in the 
Grassmannian manifold, Gp(V). 
 
Now, with some efforts, a control function, u(t), can be 
determine by relating the system (11) to a family of scalar 
differential equation and solving the problem latter by two-
point interpolation in the Grassmannian manifold, Gp(V), 
that affects a possible state transfer of the LTI systems and 
satisfies conditions that are equivalent to the controllability 
of the system. 
 

4. Results 

If system (10) is in the form of 

0 1 0 0

( ) 0 0 1 ( ) 0 ( ),

6 11 6 1

x t x t u t 
  

   
   
   
      

            (14) 

 
for x(t)Rn, u(t)Rm and t = T = 1sec., subject to x0 = [1 1 -
2]T, xT = [0 0 0]T. Then it is possible to define (14) as a flow 
in the Grassmannian manifold in the form of (11) as  

 x(t)=Ax(t)+Bu(t),                  (15)                     
for t[a,b], with boundary conditions xa=WGO and  xb=WGT . 
 
A curve x(t) be a solution curve satisfying the equation (15).  
For system to be controllable, it is necessary and sufficient 
condition that the solution curve of (15), that is x(t), should 
be spanned by the controllability space formed by the n-
vectors of the controllability matrix,Qc, 
          Qc=[B, AB, A2B, ………, An-1B]               (16) 
 
The controllability subspace <A/B> is the space spanned by 
the columns of matrix B with respect to the linear 
transformation A, [2]. We do not assume that the pair (A, B) 
is controllable, of course when the pair (A,B) is not 
controllable, only some states are transferred to the origin. 
Therefore solution curve of (15), 
  x(t) = Qc(t)WG.                   (17)                     
 
with initial and final values, from the boundary conditions, 
for the curve, x(t), in the Grassmannian manifold, xa =WG0 = 
[15  7  1]T and xb= WGT = [0  0  0]T.       
 
Now it is possible to determine a control function, u(t), by 
relating the system (15) to a family of scalar differential 
equation and solving the problem latter by two-point 
interpolation in the Grassmannian manifold, Gp(V), as 
    Dnx(t) + a1D

n-1x(t) +..+ an-1Dx(t) + anx(t) = u(t)       (18)                     
 

. 

. 

.

.       
 

.       
 

.       
 

. 
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where, a1, a2, …, an are constants and operator ‘D’ represent 
differentiation with respect to time t.  The system states can 
be described by equivalence between (15) and (18) as, 
 x(t) = x1(t), Dx(t) = x2(t) ,..., D

n-1x(t) = xn(t).           (19) 
 
Here, instead of solving (18) for the response x(t), we look it 
as a formula for a control function u(t) in terms of the 
response x(t) and look upon the desired state transfer of the 
LTI system as providing two point boundary conditions on 
an n-times differentiable function x(t), in the Grassmannian 
manifold, Gp(V).  Thus by an interpolation technique a 
control function u(t) can be synthesize as, 
u(t) = -988 - 133t +7267.5t2 – 2111t3 – 4437.5t4                                          
           -669t5                                                          (20) 
and the system states that satisfies the conditions that are 
equivalent to the controllability of the LTI system (15), in 
the Grassmannian manifold, Gp(V), 
x1(t) = 15 + 7t + 0.5t2 – 193.5t3 + 282.5t4 – 111.5t5        (21) 
x2(t) = 7 + t – 580.5t2 + 1130t3 – 557.5t4                                (22)                                      
x3(t) = 1 – 1161t + 3390t2 – 2230t3.                            (23) 
 
The transfer characteristics of a control function, u(t) and the 
system states x1(t), x2(t) and x3(t) are shown in Fig. 3, 4, 5  
and 6 respectively. 
 
5. Conclusion 

Main objective here is that the control engineers should not 
restrict himself to any one of the tool but should be familiar 
with as many as possible for analysis purpose. The 
interesting relationship between the differential geometry of 
certain curves and the controllability of LTI control systems 
have developed here without considering any matrix riccati 
equations. 
 
We have developed some interesting relationship between 
the curve obtained by the evolution of the continuous 
transformation of the initial condition under the action of the 
group in the Grassmannian manifold with the solution curve 
of TPBVP, that satisfies conditions that are equivalent to 
controllability of the LTI control systems.  
 
This new idea of analysis of control systems using 
differential geometrical approach may help us greatly in near 
future.  Graphical results shows possible state transfer of the 
linear time-invariant control system in the Grassmannian 
manifolds, by a control force, u(t), that satisfies conditions 
that are equivalent to the controllability of the system.  
 
This method has the flexibility of choosing the time interval 
t = T sec. during which the transfer of the states from initial 
to final values are desired.  
 
We can also extend the same idea for analysis of linear time-
varying control system. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3 Transfer char. of a control function u(t) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4 Transfer char. of the state x1(t) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Transfer char. of the state x2(t). 
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Fig. 6 Transfer char. of the state x3(t). 
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