
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 5, July 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

8

A Double Min Min Algorithm for Task Metascheduler on
Hypercubic P2P Grid Systems

D.Doreen Hephzibah Miriam and K.S.Easwarakumar

Department of Computer Science and Engineering, Anna University, Chennai,
Tamil Nadu , 600025, India

Abstract
Most of the existing solutions on task scheduling and resource
management in grid computing are based on the traditional
client/ server model, enforcing a homogeneous policy on making
decisions and limiting the flexibility, unpredictable reliability
and scalability of the system. Thus, we need well organized
system architecture to provide high system availability with task
scheduling scheme for Grid system. In this paper, we integrate
Grid with P2P on to the extended Hypercube topology for task
scheduling and load balancing, which gives optimal makespan
and balances the load. We propose an efficient SPA based task
scheduling algorithm named Double Min Min Algorithm which
performs scheduling in order to enhance system performance in
Hypercubic P2P Grid (HPGRID). The simulation result shows
that the SPA based Double Min Min scheduling minimizes the
makespan with load balancing and guarantees the high system
availability in system performance. At last, the SPA based
Double Min Min algorithm is compared with traditional Min Min
and Max Min algorithm, by the experiment evaluation it shows
that the new algorithm has a better quality of system load
balancing and the utilization of system resources.
Keywords: Peer-to-Peer, Grid; Hypercube, Task Scheduling,
Min Min, Max Min, Set Pair Analysis (SPA).

1. Introduction

Several aspects of today’s Grids are based on centralized
or hierarchical services. However, as Grid size increase
from tens to thousands of hosts, fault tolerance has been a
key issue. To address this problem, functionalities should
be decentralized to avoid bottlenecks and guarantees
scalability. A way to ensure Grid scalability is to adopt
P2P models and techniques to implement non-hierarchical
decentralized Grid services and systems as discussed in
[19]. As reason of that we expect strong possibility of the
commonalities and synergies between these two
technologies in terms of the connectivity, access services,
resource discovery, task scheduling and fault tolerance.
P2P technology is applied to the Grid and we adopt P2P
protocol to deal with Grid Computing in Hypercube
topology, by means of joining some Cubic Grid Peer
(CGP) into Grid and come into being a new Grid resource

organization model called Hypercubic P2P Grid
(HPGRID) model. It makes each CGP in the Hypercube
topology to form one local Grid system and answer for
dealing with local task. Various local Grid systems are
connected by P2P technology. In this HPGRID model, for
a group of clients, every CGP is used as a server, but it is
equal between every two CGPs. The topology structure
carries out the balance between centrality search
efficiency; it also keeps the robustness of load balancing
and distributes search methodologies. In the Grid
information server that is based on HPGRID model, each
participant can configure one or more nodes and operate
as a CGP. The CGP in the HPGRID model will change the
information of monitor and resource find, but for the
nodes in the different CGP will exchange information by
P2P manner. At the same time HPGRID model has many
characteristics such as independent of concentrate control,
distribute, extension and can adapt resource state change.
A new P2P Grid task scheduling algorithm is proposed
and it is named as SPA based Double Min Min
scheduling, in order to improve quality of the system load
balancing and utilization of the system resources that gives
better makespan. In this paper, we use binary connection
number of Set Pair Analysis (SPA), a new soft computing
method [22] to represent the uncertain Execution Time to
Compute of tasks (ETC) and to process the synthetic
uncertainty in task scheduling of a computing grid. The
proposed SPA based Double Min Min scheduling
algorithm is better logical and efficient than the
conventional algorithms by simulation testing. This
algorithm performs the load balancing by reselecting the
task that are greater than mean Completion time (CT) and
again schedule the reselected task using SPA based Min
Min, which results in better load balancing and resource
utilization.
The remainder of this paper is organized as follows. The
section 2 presents the related works; the section 3 defines
the Problem Formulation; the section 4 illustrates about
the Set Pair Analysis Method; the section 5 describes the
Hypercubic P2P Grid; the section 6 illustrates the SPA
based Double Min Min Algorithm; the section 7 explains

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 5, July 2010
www.IJCSI.org

9

the simulation testing model; the section 8 deals with
performance evaluation; Finally, Section 9 gives the
conclusion and future work.

2. Related Works

In this section, we will review and contrast a set of
heuristic scheduling algorithms in heterogeneous
computing (HC) system. First, we mention metatask
concept: A meta-task is defined as a collection of
independent tasks with no data dependences. A metatask
is mapped onto machine statically; each machine executes
a single task at a time. In general, we take into account a
set of meta-tasks in the Grid environment. There are a
large number of heuristic algorithms to be designed to
schedule task to machines on heterogeneous computing
system. Braun et al. [3] provides a comparison of 11 static
heuristics for scheduling in HC environments. In this
section, we will list several basic heuristics scheduling
algorithms as follows:
OLB (Opportunistic Load Balancing) [11] assigns each
job in arbitrary order to the processor with the shortest
schedule, irrespective of the ETC on that processor.
 MET (Minimum Execution Time) [10] assigns each job
in arbitrary order to the processor on which it is expected
to be executed fastest, regardless of the current load on
that processor.
MCT (Minimum Completion Time) [10] assigns each job
in arbitrary order to the processor with the minimum
expected completion time (CT) for the job. The
completion time of a job j on a processor p is simply the
ETC of j on p added to p’s current schedule length.
Min-min [15] establishes the minimum completion time
for every unscheduled job (in the same way as MCT), and
then assigns the job with the minimum completion time
(hence Min-min) to the processor which offers it this time.
Max-min [15] is very similar to Min-min. Again the
minimum completion time for each job is established, but
the job with the maximum minimum completion time is
assigned to the corresponding processor.
In Sufferage [15] for each task, the minimum and second
minimum completion time are found in the first step. The
difference between these two values is defined as the
sufferage value. In the second step, the task with the
maximum sufferage value is assigned to the corresponding
machine with minimum completion time.
 In XSufferage, Casanova et al gave an improvement to
fix the problem, in Sufferage heuristic, when there is input
and output data for the tasks and resources are clustered.
Sufferage problems are described in [6].
Longest Job to Fastest Resource - Shortest Job to Fastest
Resource (LJFR-SJFR) [1] heuristic begins with the set
U of all unmapped tasks. Then, the set of MCT of task on

machine is computed as, M = min (CT (Ti, Mj)) for (1 ≤ i
≤ n, 1 ≤ j ≤ m), is found the same as min-min. Next, the
task with the overall minimum completion time from M is
considered as the shortest job in the fastest resource
(SJFR). Also the task with the overall maximum
completion time from M is considered as the longest job in
the fastest resource (LJFR).
In Segmented Min-Min heuristic described in [21] tasks
are first ordered by their expected completion times. Then
the ordered sequence is segmented and finally it applies
Min-Min to these segments.
QoS Guided Min-Min shown in [12] adds a QoS
constraint (QoS for a network by its bandwidth) to basic
Min-Min heuristic. Its basic idea is that some tasks may
require high network bandwidth, whereas others can be
satisfied with low network bandwidth, so it assigns tasks
with high QoS request first according to Min-Min
heuristic. In the worst cases, where all tasks need either
low QoS or high QoS, this heuristic will take O (s2m)
time. In Work Queue [13] method the heuristic selects a
task randomly and assigns it to the machine as soon as it
becomes available (in other word the machine with
minimum workload).

3. Problem Formulation

This section presents the problem of job scheduling in
heterogeneous computing environment. The experimental
study is based on a benchmark simulation model by Braun
et al. [3]; in this model static mapping of meta-tasks is
considered. Each machine executes one task at a time in
the order in which tasks are allocated to the machines. For
static mapping, the size of the meta-tasks and the number
of machines in the heterogeneous computing environment
is known a priori. Since there are static heuristics, the
accurate estimate of the expected execution time for each
task on each machine is known a priori to execution and is
contained within an ETC (expected time to compute)
matrix where ETC (ti ,mj) is the estimated execution time
of task i on machine j. Using the ETC matrix model, the
scheduling problem can be defined as follows:
 A number of independent jobs to be allocated to the

available grid resources.
 Number of machines is available to participate in

the allocation of tasks.
 The workload of each job (in millions of

instructions).
 The Computing capacity of each resources(in

MIPS)
 Ready m represents the ready time of the machine

after completing the previously assigned jobs.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 5, July 2010
www.IJCSI.org

10

 ETC matrix of size t * m, where t represents the
number of jobs and m represents the number of n
machines.

The main aim of the scheduling algorithm is to minimize
the makespan where makespan = max (CT (ti, mj)) where
CT represents the completion time of task i on machine j.

4. Set Pair Analysis Method

Set Pair Analysis (SPA) is a new soft computing method
which can express and process the synthetic uncertainty
caused by fuzzy, random, indeterminate known
uncertainty etc. It was first presented by Professor Zhao
Ke-qin in 1989 [14]. After twenty years theory and
application research about SPA, it gradually becomes a
new uncertainty theory by which we can research certainty
and uncertainty as a whole now. A Set Pair is a system
containing two sets (A,B) where there are some similar
attributes or tight relations, such as (Control, Decision),
(Products, Sell), etc can be seen examples of Set Pair
under specified conditions. The main thought of SPA is as
follows: To two sets A, B under specified conditions, first
analyzing their identical, discrepancy and contrary
properties or attributes, and then describing them
quantificational, expressing their relations by a formula
called connection degree finally.

4.1 Connection Number

Let A and B be two sets, and both of them have N
attributes. We define their connection degree denoted as
μ (A, B). For brevity, we will usually denote μ (A, B)
simply as μ..

Thus j
N

P
i

N

F

N

S
 (1)

where NPFS  (2)
S is the number of their identical attributes, P is the
number of their contrary attributes, SPNF  is the

number of their discrepancy attribute. N
S , N

F and

N
P are called identical degree, discrepancy (uncertain)

degree, and contrary degree respectively. j is the
coefficient of the contrary degree, and is specified as -1.
As the coefficient of the discrepancy degree, i is an
uncertain value between -1 and 1, i.e. i [-1,1], in terms
of various circumstances. The uncertainty of the
discrepancy degree of two sets is eliminated when i is
specified as -1 or 1, and will increase when i is
approaching zero.
Let a = N

S , b = N
F , and c = N

P , then the formula (1)

and (2) can be rewritten as follows.
cjbia  (3)

where a + b +c = 1 (4)

4.2 Binary Connection Number

We say that cjbia  is a ternary connection
number if a, b, c are arbitrary nonnegative real number,
and i, j are discrepancy coefficient, contrary coefficient
respectively. bia  is a binary connection number
when c=0. Obviously, the connection number (binary or
ternary) is an extension and generalization of connection
degree by deleted the constraint condition a + b +c = 1,
and the main theory meaning of the connection number is
extended the conception of number. We only use binary
connection number to represent the uncertain Execution
Time to Compute (ETC) of grid tasks.
The heuristics algorithm discussed in related works has
been mapped to SPA methodology for both batch mode
and online mode in paper [8].

5. Hypercubic P2P Grid

5.1 Hypercube Topology

A hypercube can be represented as Qk
n , where k is the

number of nodes in each dimension and n is the number of
dimensions spanned by the hypercube. All the nodes in the
hypercube have  nk 1 neighbours, (in Figure 1, the
hypercube has four dimensions and k = 2). A complete
hypercube graph consists of N = kn nodes, in which every
peer has its own logical id, which is represented by base k
(k is always 2 for hypercube), and it can be coded using n
bits as RGC (Reflected Gray Code). In RGC, the two
adjacent nodes differ by only one bit in their coding. For
instance, given k = 2 and n = 3, the RGC corresponds to
the nodes are (000, 001, 010, 011, 100, 101,110,111). The
hyper cube is always symmetric and the network diameter
for a hypercube is Δ = N

klog . This is crucial for load

balancing in the network, as the search begins from any
node due to its symmetry.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 5, July 2010
www.IJCSI.org

11

Fig 1: A Four dimensional hypercube System

5.2 Hypercubic P2P Grid Topology

The Hypercubic P2P Grid Topology is the hypercube
structure with additional neighbourhood links. In short, we
refer Hypercubic P2P Grid as HPGRID. The Hypercubic
P2P Grid nodes have    11  nk) neighbours. Let l , 1 ≤
≤ l ≤ kn−2, be the layer of the HPGRID. Let d be the set of
nodes at each layer of the HPGRID, then d = {0, 1, 2, 3}.
Also, the number of nodes in HPGRID is kn, and the

number of edges are k nnn 12 1  . The HPGRID
Topology for n = 3 is depicted in Figure 2. There in, the
dashed lines are the additional neighbourhood links.
The HPGRID system can be represented by an undirected
graph  EVG , where  vv dlV 0.0. ,......, .

Fig 2: A 3D Hypercubic P2P Grid Topology

            
2

2

1
1.13.3.12.0.11.2.10. ,,,,,,,






n

l
llllllll vvvvvvvvE

   11:,  qpqp

where p and q are the binary values of the nodes of

HPGRID, and p
1
denotes the number of ones in p. For

instance, consider the equivalent HPGRID of Figure 2
shown as a HPGRIP graph figure 3.
Here


















)111(),110(),101(),100(

)011(),010(),001(),000(

3.22.21.20.2

3.12.11.10.1

vvvv
vvvv

V

and





























),),,),,),,

),),,),,),,

),),,),,),,

),),,),,),,

3.23.12.22.11.21.10.20.1

0.22.22.23.23.21.21.20.2

0.12.12.13.13.11.11.10.1

1.23.13.22.10.21.12.20.1

((((

((((

((((

((((

vvvvvvvv
vvvvvvvv

vvvvvvvv
vvvvvvvv

V

In E, the first four edges are the additional neighbourhood
links, and the remaining edges are the hypercubic edges.

5.3 Representation of HPGRID

Generally, the grid model integrated with P2P mode is
composed of many Cubic GridPeers [20]. Each
CubicGridPeer represents a super management domain.
Each Cubic GridPeer controls the access of a group of
local computing resources. It plays two roles: one as the
resource provider and the other as resource consumer. The
resource provider allows its free resources to other Cubic
GridPeer (consumer), while the consumer arbitrarily uses
its local resources or the free resources of other Cubic
GridPeers to carry out its task. The resource management
model for HPGRID is shown in figure 4. The bottom
communities of the model using the traditional grid
technologies, and the P2P mode are adapted to interact the
information between Cubic Grid Peers. Here, Cubic
GridPeer (CGP) is equivalent to a super node. When they
search resources, the users first query the resources in the
domain of Cubic GridPeer. If no query result, the search
will be carried out through Cubic Grid- Peer to query the
other Cubic GridPeers with P2P way.

Fig 3: A 3D Hypercubic P2P Grid

In HPGRID, each node represents a CGP where each
CGP is a collection of Grid Nodes GNs. The GN that
belongs to a particular CGP is called Grid Community
GC. Each Grid node is represented using its own identifier

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 5, July 2010
www.IJCSI.org

12

and the identifier of the corresponding CGP. That is, grid
node & is represented as  IDID gCGPg)(,

Fig. 4: Overview of HPGRID

At each CGP in the HPGRID system, it contains a CGP
Header in the format represented in figure 5.

Fig 5: CGP Header Format

The CGP Header field description is as follows,
 CGPID : Cubic Grid Peer Identifier,
 DF : Distance factor,
 RD: Resource Density,
 LF : Load Factor,
 Flag = 0,CGP is non-alive, Flag = 1,CGP is alive,
 NodeIDi

: Nodes Identifier where i = 1, 2 …n.

 Resrc_Avail: : The total number resources available at
the node,

 Ptr to RT :Pointer to Resource Table,
 No. of PEs : Total number of processing element at

the node.
Each CGP contains a common resource table which has
the details of all the available resources in its own GC.
The Resource table format is described in Figure 6. It
contains the resource name and number of resources
corresponding to its resource number.

Fig 6: Resource Table

5.4 Parameter at Cubic Grid Peer

The parameters represent the state of a Cubic Grid Peer
(CGP) that one must meet the following criteria: they must
be small, they must facilitate identifying the fertility of a
Cubic GridPeer and they must not divulge resource
structure information. Based on parallel application
characterization experience, we identified the following
parameters.

5.4.1 Distance Factor (DF)

This gives an idea of how far the target CGP is from the
home CGP. A home CGP is defined to be the CGP in
which the program and input data are present and to which
the output data will go. If it is separated by a large
network distance, i.e., high latency and low bandwidth, the
staging files and the arriving program and the input files to
that CGP will be costly. Another reason why such a factor
is important is that tasks in parallel programs might be
scheduled on different CGP. Thus there will be some
communication between CGP, even though such a
situation will be reduced as far as possible by the search
algorithm. For tightly coupled applications this may not
always be possible and the scheduler might be forced to
schedule them on different CGP. This parameter will
make CGP between which there is large latency or low
bandwidth less desirable to the CGP selector. A high value
of this factor makes a CGP less desirable for scheduling.
)}(),({_ CGPnCGPhdistMinDF  (5)
where h(CGP) denotes home CGP and n(CGP) denotes
neighbour CGP.

5.4.2 Resource Density (RD):

This parameter represents the intensity of computing
power per unit communication bandwidth. The lower the
value of RD, the more will be the bandwidth between
every pair of nodes. This signifies that the resources in the
CGP’s are tightly coupled. For parallel programs that have
a communicator in which a small group of processes
communicate a lot, a CGP with a low value of RD is
important. For example, a SMP will have low RD whereas
a network of workstations will have high RD. A similar
parameter has been used to represent the computation to
communication ratio in schedulers of parallel programs.

Average Resource Density(ard) =
m

n

j
jrd

1

(6)

where Resource Density(rd)=
T

stet i
i

i 

where i represents t executed on m, eti is the end time of
executing ti on resource mj, sti is the start time of executing

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 5, July 2010
www.IJCSI.org

13

ti on resource mj and T is the total application execution
time so far which can be calculated through the following
relation:

T = max (eti) - min (stj)

5.4.3 Load Factor (LF)
This gives the overall load at some instant in that CGP.
This is important to take care of the computation
component of the parallel program. Thus parallel
processes have a high computation aspect compared to
communication which would prefer a better value for LF
than for RD.

Load Factor = %1001 





 

ard

k
 (7)

where k =

 
m

m

i
rd jard




1

2

These parameters would be number calculated from
information about the state of resources in a particular
CGP.

5.5 Node Arrival
The sequence of steps involved in node arrival is as
follows.
1. The arriving node of the HPGRID will be placed in

the waiting queue Wq .
2. If there is a non-alive node present in a CGP, the

incoming node is assigned to the available free space
having the minimum identity.

a. The CGP then fetches the leaf node’s (GN’s)
information from its neighbouring CGPs
header from the same zone.

b. In case of non availability of a CGP header,
the required information will be obtained from
the CGP header of the neighbouring zones.

c. Suppose the required CGP header is not
available even in the neighbouring zone, the
incoming CGP probes each of its leaf nodes
and creates a new CGP header.

3. If there is no non-alive node, the arriving node will
be appended in the waiting queue Wq, until it finds
a free space.

5.6 Node Departure

When a node decides to departure from the HPGRID, it
does the following.

1. It transfers the CGP Header to its neighbouring
CGP of the same zone, which will be exploited
by the newly arrived node to fetch the
information about its leaf nodes (GN’s) and
makes the node’s state as non-alive.

2. Suppose the neighbouring CGP is also non alive
within the same zone, it transfers to the
neighbouring zone by a single hop and makes the
node’s state as non-alive.

In exceptional cases, due to crashing, heavy traffic,
etc., its state will be defined as non-alive.

6. Task Scheduling Algorithms

In this section, our proposed algorithm SPA based Double
Min Min Algorithm is illustrated which outperforms the
conventional algorithm Min-min and Max-min. The
architecture of the metascheduler is given in Figure 7.

The metaschedulers takes as input the available resource
list, users and the task to be scheduled in the HPGRID
system. From the input values given by the user, the ETC
matrix is generated as described in [3]. Now, the SPA
based Double Min Min algorithm is executed, where it
assigns the job on to the resource which minimizes the
makespan and balances the load with effective resource
utilization.

Fig 7: Architecture of Metascheduler

6.1 Task Scheduling

The metascheduler schedules the task as per SPA based
Double Min Min algorithm, where it finds the minimum
task on to the processor in the first step, in the following
iteration it finds the minimum task on to the remaining
processor leaving out the processor that has been assigned
previously. The iteration again continues in the same
method until the entire task has been mapped. The
resulting scheduling set gives the task assigned to the
processor; from the set the mean Completion Time (CT) is
calculated. The task that are assigned to the processor with
CT greater than mean are reselected and reschedule using

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 5, July 2010
www.IJCSI.org

14

SPA based Min Min until all the CGPs values are less than
or equal to Mean CT. Thus, task scheduling results in
better makespan, load balancing and resource utilization.

6.2 Parameters Definition

1. Mq: On the one side it denotes the qth computing
resource, on the other hand, it denotes the tasks set
assigned to Mq , and all tasks in the Mq is on the order
of its assigned time.

2. Sq: The time of resource Mq to start a new task when
Mq finished all tasks assigned to it.

3. E(p,q): Expected execution time if task tp,assigned to
resource Mq.

4. C(p,q): Completion time of a new task tp, assigned
to resource Mq , C(p,q)= Sq + E(p,q)

5. CT: a set of ordered pair (tp, Mq), it means task tp is
going to be assigned to resource Mq and C(p,q) = min
C(p,q) such that k=1,2,......,m in a loop of scheduling
algorithm.

6. grp(CTp,machines): The function ”grp” is used to
group all the tasks and machines that has minimum
completion time. The best minimum task/machine
pair (p,q) is selected from the Group.

7. Mean_CT :is used to find the mean completion of all
the machines.

6.3 SPA based Double Min Min Algorithm

 Input: Tasks set T, Computing resource set M,
Dimension of HPGRID System, ETC Matrix based on
connection number and Sq .
Output: Scheduling results M1,M2….,Mm.

6.4 SPA based Double Min Min Algorithm
Description

1. For each task, find the Completion time with respect to
each resource.

2. Compare all the completion times of that task and
select the resource which provides the minimum
earliest completion time.

3. Repeat the process for all tasks.
4. From the resultant set, find the task which has the

minimum of the minimum completion times.
5. Assign that task with the corresponding resource.
6. Repeat the process until task set becomes empty.
7. The mean of all machines completion time is taken.
8. The task mapped to machine whose completion time is

greater than the mean value is selected.
9. Perform SPA based Min Min Scheduling to enhance

load balancing moving overload task to CGPs with
lesser load.

10. Tasks allocated to the selected machines are
reallocated according to grp function.

Algorithm 1: SPA based Double Min Min Algorithm
1. for every M q M

M q = 0;

end for
Repeat the following steps until (T = 0).

2. 0CT ;
3. for every t p T

4. for every M q M

    qpESqpC q ,,  ;

 end for

5. Find the minimum earliest completion time of t p and

the corresponding resource M q .

Let CT = CT {< t p , M q >};

6. end for

7.   CTMtqpCC qp  ,,minmin

   CTMtandCkpCMM kpk  ,, min
min

8. Choose any one < tp,Mq> from Mmin;
Let Mk = Mk  tr ;
T = T - tr;
Sk = Sk + E(r,k);

9. Calculate Mean_CT = (Σ Sk) /No. of Machines;
10. for all Machine Mk

if (Sk ≥ Mean_CT)
Select tasks reserved on the machine

 end for
11. for every tp T reselected
12. Repeat Step 4 to Step 8
13. Compute NewCT = CT {<tp,Mq >};

if (NewCT ≤ Mean_CT)
Group (CTp,machines) = grp(CTp,1,CTp,2..)
end for

14. Reschedule (tp on Mk)
Compute NewCTp,k
end for

7. Simulation Model

7.1 Types of ETC Matrix

ETC Matrix has been generated as defined in [3]. To
further vary the characteristics of the ETC matrices in an
attempt to capture more aspects of realistic mapping
situations, different ETC matrix consistencies were used.
An ETC matrix is said to be consistent if whenever a
machine m j executes any task t k faster than machine

mk , then machine m j executes all tasks faster than

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 5, July 2010
www.IJCSI.org

15

machine mk . Consistent matrices were generated by
sorting each row of the ETC matrix independently, with
machine m0 always being the fastest and machine m (μ−1)

the slowest. In contrast, inconsistent matrices
characterize the situation where machine mj may be faster
than machine mk for some tasks and slower for others.
These matrices are left in the unordered, random state in
which they were generated (i.e., no consistency is
enforced). Semi-consistent matrices are inconsistent
matrices that include a consistent sub matrix of a
predefined size. For the partially-consistent matrices used
here, the row elements in column positions [0, 2, 4, ...] of
row i are extracted, sorted, and replaced in order, while the
row elements in column positions [1, 3, 5, ...] remain
unordered (i.e., the even column are consistent and the
odd columns are, in general, inconsistent).

7.2 SPA on ETC matrix

Set-pair analysis represents uncertainty in grid. SPA
concept is applied in ETC matrix generation. Expected
time to compute (ETC) is represented as a + bi, where a
is normal finish time, b is possible delay time or saving
time, i [−1, 1] is the uncertainty coefficient which
determines b.

Example of SPA based ETC Matrix [3 × 3]

















5i + 18 14i + 21 8i + 19

3i + 16 2i + 15 10i + 14

6i + 28 3i + 24 5i + 30

For example 30 + 5i 30 represents seconds to complete
the task, where i = {−1, 1}, specifies 5i {−5i+ 5}
seconds saved / delayed.
Example of SPA based ETC Matrix types.

Inconsistent Matrix

















5i + 18 14i + 21 8i + 19

3i + 16 2i + 15 10i + 14

6i + 28 3i + 24 5i + 30

Semi Consistent Matrix

















8i + 19 14i + 21 5i + 18

3i + 16 2i + 15 10i + 14

5i + 30 3i + 24 6i + 28

Consistent Matrix

















14i + 21 8i + 19 5i + 18

3i + 16 2i + 15 10i + 14

5i + 30 6i + 28 3i + 24

Figure 8, shows the part of the ETC Consistent matrices
generated for 512 tasks on 16 machines using
Gridsim[4]toolkit.

Fig. 8: Part of Consistent Matrix for 512 X 16

8. Performance Analysis

This section deals about the performance analysis using
the simulator Gridsim toolkit, the simulation environment
used for implementation and experimental results has been
analysed.

8.1 Simulation Environment

To evaluate and compare our SPA based Double Min Min
scheduling algorithm with its two basic heuristics Min-
Min and Max-Min, a simulation environments known as
Gridsim toolkit [4] had been used. There are several grid
simulators that allow evaluating a new grid scheduling
algorithm, such as Bricks [2], MicroGrid [18] and
SimGrid [5]. But Gridsim has some good which are listed
below:

 It allows modelling of heterogeneous types of
resources.

 Resource capability can be defined in the form of
MIPS (Million Instructions Per Second) as per
SPEC (Standard Performance Evaluation
Corporation) benchmark.

 There is no limit on the number of application
jobs that can be submitted to a resource.

 It supports simulation of both static and dynamic
schedulers.

Gridsim had been used in many researches to evaluate the
results such as [[7], [9], [16], [17]].

8.2 Experimental Results and Evaluation

Using Gridsim toolkit, the scheduling algorithm SPA
based Double Min Min along with the basic heuristic Min-
Min and Max-Min based on SPA, is simulated.
Specifically, the proposed algorithm is compared with Min
Min algorithm using SPA which has given minimum
makespan as discussed in [8]. The experimental results
represent the proposed algorithm generates even better

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 5, July 2010
www.IJCSI.org

16

makespan when compared with the makespan generated
for the conventional algorithm Min-Min and Max-Min
based on SPA. For each heuristic all the three types of
ETC matrix is generated and the results are evaluated.
The simulation has been executed 10 times for 256 tasks
on 3D HPGRID system for all three types of ETC matrix
Consistent, Semi - Consistent, Inconsistent and performs
SPA Double Min Min for which the average values are
computed to generate their corresponding makespan
values. From the results obtained, the proposed method is
evaluated which gives good results.

Figures 9, 10 and 11 shows value of average makespan
generated by SPA based Double Min Min outperforms the
SPA based Min Min and Max Min for Consistent, Semi-
consistent and inconsistent ETC matrices executed for 256
tasks on 8 machines. The results shows that SPA based
Double Min Min gives better makespan even as the
number of tasks and machines are increased in the
HPGRID system

Fig. 9: SPA Double Min Min Scheduling for 256 tasks on 8 CGPs for

Consistent ETC

Fig. 10: SPA Double Min Min Scheduling for 256

tasks on 8 CGPs for Inconsistent ETC

Fig. 11: SPA Double Min Min Scheduling for 256

tasks on 8 CGPs for Semi-Consistent ETC

The resource density for all the 3 types of Matrix has been
analyzed on executing 256 tasks on 8 CGPs. The
following figures 12, 13 and 14 shows the graph generated
from the values obtained during simulation process. For
all the three Matrix types, the proposed algorithm SPA
Double Min Min gives better resource density than the
SPA Min Min and SPA Max Min. Figures 15, 16 and 17
shows value of load factor in percentage generated by
SPA based Double Min Min which outperforms the SPA
based Min Min and Max Min for Consistent, inconsistent
and Semi-consistent ETC matrices executed for 256 tasks
on 8 machines.

Fig. 12: Resource Density on SPA Double Min Min

Scheduling for 256 tasks on 8 CGPs for Consistent ETC

Fig. 13: Resource Density on SPA Double Min Min Scheduling for 256

tasks on 8 CGPs for Inconsistent ETC

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 5, July 2010
www.IJCSI.org

17

Fig. 14: Resource Density on SPA Double Min Min Scheduling for 256

tasks on 8 CGPs for Semi-Consistent ETC

Fig. 15: Load Factor on SPA Double Min Min

Scheduling for 256 tasks on 8 CGPs for Consistent ETC

Fig. 16: Load Factor on SPA Double Min Min Scheduling for 256 tasks

on 8 CGPs for Inconsistent ETC

Fig. 17: Load Factor on SPA Double Min Min Scheduling for 256 tasks

on 8 CGPs for Semi-Consistent ETC

9. Conclusions and Future Work

To achieve high throughput computing in a Hypercubic
P2P Grid environment, the SPA Double Min Min
scheduling algorithm was proposed. To enhance Load
balancing, we find the Mean CT for the scheduled results
and reselect the tasks that are greater than Mean CT. For
the reselected task, the SPA based Min Min is computed.
We have separately computed the makespan value for all
the three types of ETC Matrix, where we concluded that
the proposed algorithm gives better results than the
conventional algorithms, SPA based Min-Min and Max-
Min. The Resource Density and Load factor is also
calculated for SPA Double Min Min Average, when
compared the proposed work gives better value than the
SPA based Min Min and Max Min for all the three sets.
Evaluation of our new heuristic was done through a
simulation environment called Gridsim. The experimental
results show that the SPA Double Min Min outperforms
the SPA based Min-Min and Max-Min heuristics.
The future work will focus on the research on scheduling
occasion, resource description, fault tolerant processing
and other aspects, in order to further optimize and improve
the system. In addition to this, many issues remain open,
like deadline of task, QoS of task, execution cost on each
resource, communication cost etc. Some of the above
mentioned issues are under consideration as a part of
further work.

References

[1] A. Abraham, Rajkumar Buyya, and Baikunth Nath. Nature’s
heuristics for scheduling jobs on computational grids. In
Proceedings of 8th IEEE International Conference on
Advanced Computing and Communications (ADCOM 2000),
pages 45–52, 2000.

[2]K. Aida, Atsuko Takefusa, Hidemoto Nakada, Satoshi
Matsuoka, Satoshi Sekiguchi, and Umpei Nagashima.
Performance evaluation model for scheduling in global
computing systems. International Journal of High
Performance Computing Applications, 14(3):268–279, 2000.

[3]T.D Braun , Howard Jay Siegel, Noah Beck, Ladislau L.
Boloni, Muthucumaru Maheswaran, Albert I. Reuther, James
P. Robertson, Mitchell D. Theys, Bin Yao, Debra Hensgen,
and Richard F. Freund. et al, A comparison of eleven
static heuristics for mapping a class of independent tasks
onto heterogeneous distributed computing systems. Journal
of Parallel and Distributed Computing, 61(6):810–837,
2001.

[4]R. Buyya and Manzur Murshed. Gridsim: A toolkit for the
modeling and simulation of distributed resource management
and scheduling for grid computing. Concurrency and
Computation: Practice and Experience (CCPE),
14(13):1175–1220, 2002.

[5]H. Casanova. Simgrid: A toolkit for the simulation of
application scheduling. In CCGRID ’01: Proceedings of the
1st International Symposium on Cluster Computing and the

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 5, July 2010
www.IJCSI.org

18

Grid, page 430 - 437, Washington, DC, USA, 2001. IEEE
Computer Society.

[6]H. Casanova, Dmitrii Zagorodnov, Francine Berman, and
Arnaud Legrand. Heuristics for scheduling parameter sweep
applications in grid environments. In HCW ’00: Proceedings
of the 9th Heterogeneous Computing Workshop, page 349 -
363, Washington, DC, USA, 2000. IEEE Computer Society.

[7] S.S Chauhan and R.C. Joshi. A weighted mean time min-min
max-min selective scheduling strategy for independent tasks
on grid. In Advance Computing Conference (IACC), 2010
IEEE 2nd International, pages 4 –9, 19-20 2010.

[8]H. Decai, Yuan Yuan, Zhang Li-jun, and Zhao Ke-qin.
Research on tasks scheduling algorithms for dynamic and
uncertain computing grid based on a+bi connection number
of SPA. Journal of Software, 4(10):1102–1109, 2009.

[9]K. Etminani and M. Naghibzadeh. A min min max-min
selective algorithm for grid task scheduling. In Proceedings
of the 3rd IEEE/IFIP International Conference in Central
Asia, 2007.

[10]R. Freund, Michael Gherrity, Stephen Ambrosius, Mark
Campbell, Mike Halderman, Debra Hensgen, Elaine Keith,
Taylor Kidd, Matt Kussow, John D. Lima, Francesca
Mirabile, Lantz Moore, Brad Rust, and H. J. Siegel.
Scheduling resources in multi-user, heterogeneous,
computing environments with smartnet. In 7TH IEEE
Heterogeneous Computing Workshop (HCW 98), pages 184–
199, 1998.

[11]R. Freund and Taylor Kidd Nccosc. Smartnet: A scheduling
framework for heterogeneous computing. In Proceedings of
the International Symposium on Parallel Architectures,
Algorithms, and Networks (ISPAN-96), pages 514–521. IEEE
Computer Society Press, 1996.

[12]X. He, XianHe Sun, and Gregor von Laszewski. QoS guided
min-min heuristic for grid task scheduling. Journal of
Computer Science and Technology, 18(4):442–451, 2003.

[13]H. Izakian, Ajith Abraham, and Vaclav Snasel. Comparison
of heuristics for scheduling independent tasks on
heterogeneous distributed environments. In CSO ’09:
Proceedings of the 2009 International Joint Conference on
Computational Sciences and Optimization, pages 8–12,
Washington, DC, USA, 2009. IEEE Computer Society.

[14] Z. Ke-Qin and Xuan Ai-li. Set pair theory- a new theory
method of non-define and its applications. Systems
engineering,, 1:18–24, 1996.

[15]M. Maheswaran Shoukat, Muthucumaru Maheswaran,
Shoukat Ali, Howard Jay Siegel, Debra Hensgen, and
Richard F. Freund. Dynamic mapping of a class of
independent tasks onto heterogeneous computing systems.
Journal of Parallel and Distributed Computing, 59:107–131,
1999.

[16]J. Sherwani, Nosheen Ali, Nausheen Lotia, Zahra Hayat, and
Rajkumar Buyya. Libra: a computational economy-based job
scheduling system for clusters. Journal of Software: Practice
and Experience, 34(6):573–590, 2004.

[17] C. Shin Yeo and Rajkumar Buyya. Pricing for utility-driven
resource management and allocation in clusters.
International Journal of High Performance Computing
Applications, 21(4):405–418, 2007.

[18] H. J. Song, X.Liu, D.Jakobsen, R.Bhagwan, X.Zhang,
K.Taura, and A.Chien. The Micro-Grid: a scientific tool for

modeling computational grids. Scientific Programming,
8(3):127– 141, 2000.

[19]P. Trunfio and Domenico Talia. Toward a synergy between
P2P and Grids. IEEE Internet Computing, 7(4):94–96, 2003.

[20]X. Wen, Wei Zhao, and Fan xing Meng. Researchof Grid
Scheduling Algorithm based on P2P GridModel. In
International Conference on Electronic Commerce and
Business Intelligence,pages 41–44, 2009.

[21]M. Wu, Wei Shu, and Hong Zhang. Segmented min-min: A
static mapping algorithm for metatasks on heterogeneous
computing systems. In HCW ’00: Proceedings of the 9th
Heterogeneous Computing Workshop, page 375,
Washington, DC, USA, 2000. IEEE Computer Society.

[22] J. Yun-Liang and Xu Cong-Fu. Advances in set pair
analysis theory and its applications. Computer Science.
Computer Science,33(1):205–209, 2006.

Doreen Hephzibah Miriam is currently a Research Scholar at the
Department of Computer Science and Engineering at Anna
University, Chennai. She received her B.Tech in Information
Technology from Madras University, Chennai, and M.E degree in
Computer Science and Engineering from Anna University,
Chennai. Her research interests include parallel and distributed

computing, peer to peer computing and grid computing.

K.S. Easwarakumar is a Professor & Head at the Department of
Computer Science and Engineering at Anna University, Chennai.
He received his M.Tech in Computer and Information Sciences
from Cochin University of Science and Technology, Cochin and
Ph.D in Computer Science and Engineering from Indian Institute of
Technology, Madras. His research interests include parallel and
distributed computing, Data Structures and Algorithms, Graph
Algorithms, Parallel Algorithms, Computational Geometry,
Theoretical Computer Science and Molecular computing.

