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Abstract 
Most of the existing solutions on task scheduling and resource 
management in grid computing are based on the traditional 
client/ server model, enforcing a homogeneous policy on making 
decisions and limiting the flexibility, unpredictable reliability 
and scalability of the system. Thus, we need well organized 
system architecture to provide high system availability with task 
scheduling scheme for Grid system. In this paper, we integrate 
Grid with P2P on to the extended Hypercube topology for task 
scheduling and load balancing, which gives optimal makespan 
and balances the load. We propose an efficient SPA based task 
scheduling algorithm named Double Min Min Algorithm which 
performs scheduling in order to enhance system performance in 
Hypercubic P2P Grid (HPGRID). The simulation result shows 
that the SPA based Double Min Min scheduling minimizes the 
makespan with load balancing and guarantees the high system 
availability in system performance. At last, the SPA based 
Double Min Min algorithm is compared with traditional Min Min 
and Max Min algorithm, by the experiment evaluation it shows 
that the new algorithm has a better quality of system load 
balancing and the utilization of system resources. 
Keywords:  Peer-to-Peer, Grid; Hypercube, Task Scheduling, 
Min Min, Max Min, Set Pair Analysis (SPA). 

1. Introduction 

Several aspects of today’s Grids are based on centralized 
or hierarchical services. However, as Grid size increase 
from tens to thousands of hosts, fault tolerance has been a 
key issue. To address this problem, functionalities should 
be decentralized to avoid bottlenecks and guarantees 
scalability. A way to ensure Grid scalability is to adopt 
P2P models and techniques to implement non-hierarchical 
decentralized Grid services and systems as discussed in 
[19]. As reason of that we expect strong possibility of the 
commonalities and synergies between these two 
technologies in terms of the connectivity, access services, 
resource discovery, task scheduling and fault tolerance.  
P2P technology is applied to the Grid and we adopt P2P 
protocol to deal with Grid Computing in Hypercube 
topology, by means of joining some Cubic Grid Peer 
(CGP) into Grid and come into being a new Grid resource 

organization model called Hypercubic P2P Grid 
(HPGRID) model. It makes each CGP in the Hypercube 
topology to form one local Grid system and answer for 
dealing with local task. Various local Grid systems are 
connected by P2P technology. In this HPGRID model, for 
a group of clients, every CGP is used as a server, but it is 
equal between every two CGPs. The topology structure 
carries out the balance between centrality search 
efficiency; it also keeps the robustness of load balancing 
and distributes search methodologies. In the Grid 
information server that is based on HPGRID model, each 
participant can configure one or more nodes and operate 
as a CGP. The CGP in the HPGRID model will change the 
information of monitor and resource find, but for the 
nodes in the different CGP will exchange information by 
P2P manner. At the same time HPGRID model has many 
characteristics such as independent of concentrate control, 
distribute, extension and can adapt resource state change.  
A new P2P Grid task scheduling algorithm is proposed 
and it is named as SPA based Double Min Min 
scheduling, in order to improve quality of the system load 
balancing and utilization of the system resources that gives 
better makespan. In this paper, we use binary connection 
number of Set Pair Analysis (SPA), a new soft computing 
method [22] to represent the uncertain Execution Time to 
Compute of tasks (ETC) and to process the synthetic 
uncertainty in task scheduling of a computing grid. The 
proposed SPA based Double Min Min scheduling 
algorithm is better logical and efficient than the 
conventional algorithms by simulation testing. This 
algorithm performs the load balancing by reselecting the 
task that are greater than mean Completion time (CT) and 
again schedule the reselected task using SPA based Min 
Min, which results in better load balancing and resource 
utilization. 
The remainder of this paper is organized as follows. The 
section 2 presents the related works; the section 3 defines 
the Problem Formulation; the section 4 illustrates about 
the Set Pair Analysis Method; the section 5 describes the 
Hypercubic P2P Grid; the section 6 illustrates the SPA 
based Double Min Min Algorithm; the section 7 explains 
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the simulation testing model; the section 8 deals with 
performance evaluation; Finally, Section 9 gives the 
conclusion and future work. 

2. Related Works 

In this section, we will review and contrast a set of 
heuristic scheduling algorithms in heterogeneous 
computing (HC) system. First, we mention metatask 
concept: A meta-task is defined as a collection of 
independent tasks with no data dependences. A metatask 
is mapped onto machine statically; each machine executes 
a single task at a time. In general, we take into account a 
set of meta-tasks in the Grid environment. There are a 
large number of heuristic algorithms to be designed to 
schedule task to machines on heterogeneous computing 
system. Braun et al. [3] provides a comparison of 11 static 
heuristics for scheduling in HC environments. In this 
section, we will list several basic heuristics scheduling 
algorithms as follows: 
OLB (Opportunistic Load Balancing) [11] assigns each 
job in arbitrary order to the processor with the shortest 
schedule, irrespective of the ETC on that processor.  
 MET (Minimum Execution Time) [10] assigns each job 
in arbitrary order to the processor on which it is expected 
to be executed fastest, regardless of the current load on 
that processor.  
MCT (Minimum Completion Time) [10] assigns each job 
in arbitrary order to the processor with the minimum 
expected completion time (CT) for the job. The 
completion time of a job j on a processor p is simply the 
ETC of j on p added to p’s current schedule length.  
Min-min [15] establishes the minimum completion time 
for every unscheduled job (in the same way as MCT), and 
then assigns the job with the minimum completion time 
(hence Min-min) to the processor which offers it this time. 
Max-min [15] is very similar to Min-min. Again the 
minimum completion time for each job is established, but 
the job with the maximum minimum completion time is 
assigned to the corresponding processor. 
In Sufferage [15] for each task, the minimum and second 
minimum completion time are found in the first step. The 
difference between these two values is defined as the 
sufferage value. In the second step, the task with the 
maximum sufferage value is assigned to the corresponding 
machine with minimum completion time. 
 In XSufferage, Casanova et al gave an improvement to 
fix the problem, in Sufferage heuristic, when there is input 
and output data for the tasks and resources are clustered. 
Sufferage problems are described in [6].  
Longest Job to Fastest Resource - Shortest Job to Fastest 
Resource (LJFR-SJFR) [1] heuristic begins with the set 
U of all unmapped tasks. Then, the set of MCT of task on 

machine is computed as, M = min (CT (Ti, Mj )) for (1 ≤ i 
≤ n, 1 ≤ j ≤ m), is found the same as min-min. Next, the 
task with the overall minimum completion time from M is 
considered as the shortest job in the fastest resource 
(SJFR). Also the task with the overall maximum 
completion time from M is considered as the longest job in 
the fastest resource (LJFR). 
In Segmented Min-Min heuristic described in [21] tasks 
are first ordered by their expected completion times. Then 
the ordered sequence is segmented and finally it applies 
Min-Min to these segments.  
QoS Guided Min-Min shown in [12] adds a QoS 
constraint (QoS for a network by its bandwidth) to basic 
Min-Min heuristic. Its basic idea is that some tasks may 
require high network bandwidth, whereas others can be 
satisfied with low network bandwidth, so it assigns tasks 
with high QoS request first according to Min-Min 
heuristic. In the worst cases, where all tasks need either 
low QoS or high QoS, this heuristic will take O (s2m) 
time. In Work Queue [13] method the heuristic selects a 
task randomly and assigns it to the machine as soon as it 
becomes available (in other word the machine with 
minimum workload). 

3. Problem Formulation 

This section presents the problem of job scheduling in 
heterogeneous computing environment. The experimental 
study is based on a benchmark simulation model by Braun 
et al. [3]; in this model static mapping of meta-tasks is 
considered. Each machine executes one task at a time in 
the order in which tasks are allocated to the machines. For 
static mapping, the size of the meta-tasks and the number 
of machines in the heterogeneous computing environment 
is known a priori. Since there are static heuristics, the 
accurate estimate of the expected execution time for each 
task on each machine is known a priori to execution and is 
contained within an ETC (expected time to compute) 
matrix where ETC (ti ,mj) is the estimated execution time 
of task i on machine j. Using the ETC matrix model, the 
scheduling problem can be defined as follows: 
 A number of independent jobs to be allocated to the 

available grid resources. 
 Number of machines is available to participate in 

the allocation of tasks. 
 The workload of each job (in millions of 

instructions). 
 The Computing capacity of each resources(in 

MIPS) 
  Ready m represents the ready time of the machine 

after completing the previously assigned jobs. 
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  ETC matrix of size t * m, where t represents the 
number of jobs and m represents the number of n 
machines. 

The main aim of the scheduling algorithm is to minimize 
the makespan where makespan = max (CT (ti, mj)) where 
CT represents the completion time of task i on machine j. 

4. Set Pair Analysis Method 

Set Pair Analysis (SPA) is a new soft computing method 
which can express and process the synthetic uncertainty 
caused by fuzzy, random, indeterminate known 
uncertainty etc. It was first presented by Professor Zhao 
Ke-qin in 1989 [14]. After twenty years theory and 
application research about SPA, it gradually becomes a 
new uncertainty theory by which we can research certainty 
and uncertainty as a whole now. A Set Pair is a system 
containing two sets (A,B) where there are some similar 
attributes or tight relations, such as (Control, Decision), 
(Products, Sell), etc can be seen examples of Set Pair 
under specified conditions. The main thought of SPA is as 
follows: To two sets A, B under specified conditions, first 
analyzing their identical, discrepancy and contrary 
properties or attributes, and then describing them 
quantificational, expressing their relations by a formula 
called connection degree finally. 

4.1 Connection Number 

Let A and B be two sets, and both of them have N 
attributes. We define their connection degree denoted as   
μ (A, B). For brevity, we will usually denote μ (A, B) 
simply as μ.. 

Thus  j
N

P
i

N

F

N

S
       (1) 

where NPFS      (2) 
S is the number of their identical attributes, P is the 
number of their contrary attributes, SPNF   is the 

number of their discrepancy attribute. N
S , N

F  and 

N
P are called identical degree, discrepancy (uncertain) 

degree, and contrary degree respectively.  j is the 
coefficient of the contrary degree, and is specified as -1. 
As the coefficient of the discrepancy degree, i is an 
uncertain value between  -1 and 1, i.e. i   [-1,1], in terms 
of various circumstances. The uncertainty of the 
discrepancy degree of two sets is eliminated when i is 
specified as -1 or 1, and will increase when i is 
approaching zero.  
Let a = N

S , b = N
F , and   c = N

P  , then the formula (1) 

and (2) can be rewritten as follows. 
cjbia        (3) 

where a + b +c = 1    (4) 

4.2 Binary Connection Number 

We say that cjbia   is a ternary connection 
number if a, b, c are arbitrary nonnegative real number, 
and i, j are discrepancy coefficient, contrary coefficient 
respectively. bia  is a binary connection number 
when c=0. Obviously, the connection number (binary or 
ternary) is an extension and generalization of connection 
degree by deleted the constraint condition a + b +c = 1, 
and the main theory meaning of the connection number is 
extended the conception of number. We only use binary 
connection number to represent the uncertain Execution 
Time to Compute (ETC) of grid tasks. 
The heuristics algorithm discussed in related works has 
been mapped to SPA methodology for both batch mode 
and online mode in paper [8]. 

5. Hypercubic P2P Grid 

5.1 Hypercube Topology 

A hypercube can be represented as Qk
n , where k is the 

number of nodes in each dimension and n is the number of 
dimensions spanned by the hypercube. All the nodes in the 
hypercube have  nk 1  neighbours, (in Figure 1, the 
hypercube has four dimensions and k = 2). A complete 
hypercube graph consists of N = kn nodes, in which every 
peer has its own logical id, which is represented by base k 
(k is always 2 for hypercube), and it can be coded using n 
bits as RGC (Reflected Gray Code). In RGC, the two 
adjacent nodes differ by only one bit in their coding. For 
instance, given k = 2 and n = 3, the RGC corresponds to 
the nodes are (000, 001, 010, 011, 100, 101,110,111). The 
hyper cube is always symmetric and the network diameter 
for a hypercube is Δ = N

klog . This is crucial for load 

balancing in the network, as the search begins from any 
node due to its symmetry. 
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Fig 1: A Four dimensional hypercube System 

5.2 Hypercubic P2P Grid Topology 

The Hypercubic P2P Grid Topology is the hypercube 
structure with additional neighbourhood links. In short, we 
refer Hypercubic P2P Grid as HPGRID. The Hypercubic 
P2P Grid nodes have    11  nk ) neighbours. Let l , 1 ≤   
≤ l ≤ kn−2, be the layer of the HPGRID. Let d be the set of 
nodes at each layer of the HPGRID, then d = {0, 1, 2, 3}. 
Also, the number of nodes in HPGRID is kn, and the 

number of edges are k nnn 12 1  . The HPGRID 
Topology for n = 3 is depicted in Figure 2. There in, the 
dashed lines are the additional neighbourhood links. 
The HPGRID system can be represented by an undirected 
graph  EVG ,  where  vv dlV 0.0. ,......,  . 

 
Fig 2: A 3D Hypercubic P2P Grid Topology 
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where p and q are the binary values of the nodes of 

HPGRID, and p
1
denotes the number of ones in p. For 

instance, consider the equivalent HPGRID of Figure 2 
shown as a HPGRIP graph figure 3.  
Here  
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In E, the first four edges are the additional neighbourhood 
links, and the remaining edges are the hypercubic edges. 

5.3 Representation of HPGRID 

Generally, the grid model integrated with P2P mode is 
composed of many Cubic GridPeers [20]. Each 
CubicGridPeer represents a super management domain. 
Each Cubic GridPeer controls the access of a group of 
local computing resources. It plays two roles: one as the 
resource provider and the other as resource consumer. The 
resource provider allows its free resources to other Cubic 
GridPeer (consumer), while the consumer arbitrarily uses 
its local resources or the free resources of other Cubic 
GridPeers to carry out its task. The resource management 
model for HPGRID is shown in figure 4. The bottom 
communities of the model using the traditional grid 
technologies, and the P2P mode are adapted to interact the 
information between Cubic Grid Peers. Here, Cubic 
GridPeer (CGP) is equivalent to a super node. When they 
search resources, the users first query the resources in the 
domain of Cubic GridPeer. If no query result, the search 
will be carried out through Cubic Grid- Peer to query the 
other Cubic GridPeers with P2P way. 
 

 
 

Fig 3: A 3D Hypercubic P2P Grid 

In HPGRID, each node represents a CGP where each 
CGP is a collection of Grid Nodes GNs. The GN that 
belongs to a particular CGP is called Grid Community 
GC. Each Grid node is represented using its own identifier 
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and the identifier of the corresponding CGP. That is, grid 
node & is represented as  IDID gCGPg )(,  

 
Fig. 4: Overview of HPGRID 

 
At each CGP in the HPGRID system, it contains a CGP 
Header in the format represented in figure 5. 

 
Fig 5: CGP Header Format 

 
The CGP Header field description is as follows, 
 CGPID : Cubic Grid Peer Identifier, 
 DF : Distance factor, 
 RD: Resource Density, 
 LF : Load Factor, 
 Flag = 0,CGP  is non-alive, Flag = 1,CGP is alive, 
 NodeIDi

: Nodes Identifier where i = 1, 2 …n. 

 Resrc_Avail: : The total number resources available at 
the node, 

 Ptr to RT :Pointer to Resource Table, 
 No. of PEs : Total number of processing element at 

the node. 
Each CGP contains a common resource table which has 
the details of all the available resources in its own GC. 
The Resource table format is described in Figure 6. It 
contains the resource name and number of resources 
corresponding to its resource number. 
 

 
Fig 6: Resource Table 

 
5.4 Parameter at Cubic Grid Peer 

The parameters represent the state of a Cubic Grid Peer 
(CGP) that one must meet the following criteria: they must 
be small, they must facilitate identifying the fertility of a 
Cubic GridPeer and they must not divulge resource 
structure information. Based on parallel application 
characterization experience, we identified the following 
parameters. 
 
5.4.1 Distance Factor (DF) 

This gives an idea of how far the target CGP is from the 
home CGP. A home CGP is defined to be the CGP in 
which the program and input data are present and to which 
the output data will go. If it is separated by a large 
network distance, i.e., high latency and low bandwidth, the 
staging files and the arriving program and the input files to 
that CGP will be costly. Another reason why such a factor 
is important is that tasks in parallel programs might be 
scheduled on different CGP. Thus there will be some 
communication between CGP, even though such a 
situation will be reduced as far as possible by the search 
algorithm. For tightly coupled applications this may not 
always be possible and the scheduler might be forced to 
schedule them on different CGP. This parameter will 
make CGP between which there is large latency or low 
bandwidth less desirable to the CGP selector. A high value 
of this factor makes a CGP less desirable for scheduling. 
                 )}(),({_ CGPnCGPhdistMinDF                   (5) 
where h(CGP) denotes home CGP and n(CGP) denotes 
neighbour CGP. 
 
5.4.2 Resource Density (RD): 

This parameter represents the intensity of computing 
power per unit communication bandwidth. The lower the 
value of RD, the more will be the bandwidth between 
every pair of nodes. This signifies that the resources in the 
CGP’s are tightly coupled. For parallel programs that have 
a communicator in which a small group of processes 
communicate a lot, a CGP with a low value of RD is 
important. For example, a SMP will have low RD whereas 
a network of workstations will have high RD. A similar 
parameter has been used to represent the computation to 
communication ratio in schedulers of parallel programs. 

Average Resource Density(ard) =  
m

n

j
jrd

1                      

(6) 

where Resource Density(rd)=
T

stet i
i

i 
 

where i represents t executed on m, eti  is the end time of 
executing ti on resource mj, sti is the start time of executing 
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ti on resource mj and T is the total application execution 
time so far which can be calculated through the following 
relation: 

T = max (eti) - min (stj) 
 
5.4.3 Load Factor (LF) 
This gives the overall load at some instant in that CGP. 
This is important to take care of the computation 
component of the parallel program. Thus parallel 
processes have a high computation aspect compared to 
communication which would prefer a better value for LF 
than for RD. 

Load Factor = %1001 





 

ard

k
      (7) 

where k = 

 
m

m

i
rd jard




1

2

 

These parameters would be number calculated from 
information about the state of resources in a particular 
CGP. 
 
5.5 Node Arrival 
The sequence of steps involved in node arrival is as 
follows. 
1. The arriving node of the HPGRID will be placed in 

the waiting queue Wq . 
2.  If there is a non-alive node present in a CGP, the 

incoming node is assigned to the available free space 
having the minimum identity. 

a. The CGP then fetches the leaf node’s (GN’s) 
information from its neighbouring CGPs 
header from the same zone. 

b. In case of non availability of a CGP header, 
the required information will be obtained from 
the CGP header of the neighbouring zones. 

c. Suppose the required CGP header is not 
available even in the neighbouring zone, the 
incoming CGP probes each of its leaf nodes 
and creates a new CGP header. 

3. If there is no non-alive node, the arriving node will 
be appended in the waiting queue Wq, until it finds 
a free space. 

 
5.6 Node Departure 

When a node decides to departure from the HPGRID, it 
does the following. 

1. It transfers the CGP Header to its neighbouring 
CGP of the same zone, which will be exploited 
by the newly arrived node to fetch the 
information about its leaf nodes (GN’s) and 
makes the node’s state as non-alive. 

2.  Suppose the neighbouring CGP is also non alive 
within the same zone, it transfers to the 
neighbouring zone by a single hop and makes the 
node’s state as non-alive. 

In exceptional cases, due to crashing, heavy traffic, 
etc., its state will be defined as non-alive. 

6. Task Scheduling Algorithms 

In this section, our proposed algorithm SPA based Double 
Min Min Algorithm is illustrated which outperforms the 
conventional algorithm Min-min and Max-min. The 
architecture of the metascheduler is given in Figure 7. 
 
The metaschedulers takes as input the available resource 
list, users and the task to be scheduled in the HPGRID 
system. From the input values given by the user, the ETC 
matrix is generated as described in [3]. Now, the SPA 
based Double Min Min algorithm is executed, where it 
assigns the job on to the resource which minimizes the 
makespan and balances the load with effective resource 
utilization. 
 
 

  
 

Fig 7: Architecture of Metascheduler 
 

6.1 Task Scheduling 

The metascheduler schedules the task as per SPA based 
Double Min Min algorithm, where it finds the minimum 
task on to the processor in the first step, in the following 
iteration it finds the minimum task on to the remaining 
processor leaving out the processor that has been assigned 
previously. The iteration again continues in the same 
method until the entire task has been mapped. The 
resulting scheduling set gives the task assigned to the 
processor; from the set the mean Completion Time (CT) is 
calculated. The task that are assigned to the processor with 
CT greater than mean are reselected and reschedule using 
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SPA based Min Min until all the CGPs values are less than 
or equal to Mean CT. Thus, task scheduling results in 
better makespan, load balancing and resource utilization. 

6.2 Parameters Definition 

1. Mq: On the one side it denotes the qth computing 
resource, on the other hand, it denotes the tasks set 
assigned to Mq , and all tasks in the Mq is on the order 
of its assigned time. 

2. Sq: The time of resource Mq  to start a new task when 
Mq finished all tasks assigned to it. 

3. E(p,q): Expected execution time if task tp,assigned to 
resource Mq. 

4. C(p,q): Completion time of a new task  tp, assigned 
to resource Mq , C(p,q)= Sq + E(p,q) 

5. CT:  a set of ordered pair (tp, Mq), it means task tp is 
going to be assigned to resource Mq and C(p,q) = min 
C(p,q) such that k=1,2,......,m in a loop of scheduling 
algorithm. 

6. grp(CTp,machines): The function ”grp” is used to 
group all the tasks and machines that has minimum 
completion time. The best minimum task/machine 
pair (p,q) is selected from the Group. 

7.  Mean_CT :is used to find the mean completion of all 
the machines. 

6.3 SPA based Double Min Min Algorithm 

 Input: Tasks set T, Computing resource set M, 
Dimension of  HPGRID  System,  ETC  Matrix  based  on  
connection number and Sq . 
Output: Scheduling results M1,M2….,Mm. 

6.4 SPA based Double Min Min Algorithm 
Description 

1. For each task, find the Completion time with respect to 
each resource. 

2. Compare all the completion times of that task and 
select the resource which provides the minimum 
earliest completion time. 

3.  Repeat the process for all tasks. 
4.  From the resultant set, find the task which has the 

minimum of the minimum completion times. 
5. Assign that task with the corresponding resource. 
6. Repeat the process until task set becomes empty. 
7. The mean of all machines completion time is taken. 
8. The task mapped to machine whose completion time is 

greater than the mean value is selected. 
9. Perform SPA based Min Min Scheduling to enhance 

load balancing moving overload task to CGPs with 
lesser load. 

10.  Tasks allocated to the selected machines are 
reallocated according to grp function. 

Algorithm 1: SPA based Double Min Min Algorithm 
1. for every M q  M  

M q  = 0; 

end for 
Repeat the following steps until (T = 0). 

2. 0CT  ; 
3. for every t p    T 

4. for every M q  M  

       qpESqpC q ,,  ;  

    end for 
 
5.  Find the minimum earliest completion time of t p and 

the corresponding resource M q . 

Let CT = CT  {< t p  , M q >}; 

6. end for 

7.   CTMtqpCC qp  ,,minmin  

   CTMtandCkpCMM kpk  ,, min
min  

8.  Choose any one < tp,Mq> from Mmin; 
Let Mk = Mk    tr ; 
T = T - tr; 
Sk = Sk + E(r,k); 

9. Calculate Mean_CT = (Σ Sk) /No. of Machines; 
10.  for all Machine Mk 

if (Sk  ≥ Mean_CT) 
Select tasks reserved on the machine 

 end for 
11. for every tp   T reselected 
12. Repeat Step 4 to Step 8 
13.  Compute NewCT = CT  {<tp,Mq >}; 

if (NewCT  ≤ Mean_CT) 
Group (CTp,machines) = grp(CTp,1,CTp,2..) 
end for 

14. Reschedule (tp on Mk) 
Compute NewCTp,k 
end for 

7. Simulation Model 

7.1 Types of ETC Matrix 

ETC Matrix has been generated as defined in [3]. To 
further vary the characteristics of the ETC matrices in an 
attempt to capture more aspects of realistic mapping 
situations, different ETC matrix consistencies were used.  
An ETC matrix is said to be consistent if whenever a 
machine m j executes any task t k  faster than machine 

mk , then machine m j  executes all tasks faster than 
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machine mk . Consistent matrices were generated by 
sorting each row of the ETC matrix independently, with 
machine m0 always being the fastest and machine m (μ−1)     

the slowest. In contrast, inconsistent matrices 
characterize the situation where machine mj may be faster 
than machine mk for some tasks and slower for others. 
These matrices are left in the unordered, random state in 
which they were generated (i.e., no consistency is 
enforced). Semi-consistent matrices are inconsistent 
matrices that include a consistent sub matrix of a 
predefined size. For the partially-consistent matrices used 
here, the row elements in column positions [0, 2, 4, ...] of 
row i are extracted, sorted, and replaced in order, while the 
row elements in column positions [1, 3, 5, ...] remain 
unordered (i.e., the even column are consistent and the 
odd columns are, in general, inconsistent). 

7.2 SPA on ETC matrix 

Set-pair analysis represents uncertainty in grid. SPA 
concept is applied in ETC matrix generation. Expected 
time to compute (ETC) is represented as a + bi, where a  
is normal finish time, b is possible delay time or saving 
time, i [−1, 1] is the uncertainty coefficient which 
determines b. 

Example of SPA based ETC Matrix [3 × 3] 
 

















5i + 18  14i + 21  8i + 19

3i + 16  2i + 15  10i + 14

6i + 28  3i + 24  5i + 30

 

For example 30 + 5i  30 represents seconds to complete 
the task, where i = {−1, 1}, specifies 5i  {−5i+ 5}   
seconds saved / delayed. 
Example of SPA based ETC Matrix types. 

Inconsistent Matrix 

















5i + 18  14i + 21  8i + 19

3i + 16  2i + 15  10i + 14

6i + 28  3i + 24  5i + 30

 

Semi Consistent Matrix 
 

















8i + 19  14i + 21  5i + 18

3i + 16  2i + 15  10i + 14

5i + 30  3i + 24  6i + 28

 

Consistent Matrix 
 

















14i + 21  8i + 19  5i + 18

3i + 16  2i + 15  10i + 14

5i + 30  6i + 28  3i + 24

 

 

Figure 8, shows the part of the ETC Consistent matrices 
generated for 512 tasks on 16 machines using  
Gridsim[4]toolkit. 

 
Fig. 8: Part of Consistent Matrix for 512 X 16 

8. Performance Analysis 

This section deals about the performance analysis using 
the simulator Gridsim toolkit, the simulation environment 
used for implementation and experimental results has been 
analysed. 

8.1 Simulation Environment 

To evaluate and compare our SPA based Double Min Min 
scheduling algorithm with its two basic heuristics Min-
Min and Max-Min, a simulation environments known as 
Gridsim toolkit [4] had been used. There are several grid 
simulators that allow evaluating a new grid scheduling 
algorithm, such as Bricks [2], MicroGrid [18] and 
SimGrid [5]. But Gridsim has some good which are listed 
below: 

 It allows modelling of heterogeneous types of 
resources. 

 Resource capability can be defined in the form of 
MIPS (Million Instructions Per Second) as per 
SPEC (Standard Performance Evaluation 
Corporation) benchmark. 

 There is no limit on the number of application 
jobs that can be submitted to a resource. 

 It supports simulation of both static and dynamic 
schedulers. 

Gridsim had been used in many researches to evaluate the 
results such as [[7], [9], [16], [17]]. 

8.2 Experimental Results and Evaluation 

Using Gridsim toolkit, the scheduling algorithm SPA 
based Double Min Min along with the basic heuristic Min-
Min and Max-Min based on SPA, is simulated. 
Specifically, the proposed algorithm is compared with Min 
Min algorithm using SPA which has given minimum 
makespan as discussed in [8]. The experimental results 
represent the proposed algorithm generates even better 
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makespan when compared with the makespan generated 
for the conventional algorithm Min-Min and Max-Min 
based on SPA. For each heuristic all the three types of 
ETC matrix is generated and the results are evaluated.  
The simulation has been executed 10 times for 256 tasks 
on 3D HPGRID system for all three types of ETC matrix 
Consistent, Semi - Consistent, Inconsistent and performs 
SPA Double Min Min for which the average values are 
computed to generate their corresponding makespan 
values. From the results obtained, the proposed method is 
evaluated which gives good results. 
 
Figures 9, 10 and 11 shows value of average makespan 
generated by SPA based Double Min Min outperforms the 
SPA based Min Min and Max Min for Consistent, Semi-
consistent and inconsistent ETC matrices executed for 256 
tasks on 8 machines. The results shows that SPA based 
Double Min Min gives better makespan even as the 
number of tasks and machines are increased in the 
HPGRID system  
 

 
Fig. 9: SPA Double Min Min Scheduling for 256 tasks on 8 CGPs for 

Consistent ETC 
 

 
Fig. 10: SPA Double Min Min Scheduling for 256 

tasks on 8 CGPs for Inconsistent ETC 
 

 
Fig. 11: SPA Double Min Min Scheduling for 256 

tasks on 8 CGPs for Semi-Consistent ETC 

 
The resource density for all the 3 types of Matrix has been 
analyzed on executing 256 tasks on 8 CGPs. The 
following figures 12, 13 and 14 shows the graph generated 
from the values obtained during simulation process. For 
all the three Matrix types, the proposed algorithm SPA 
Double Min Min gives better resource density than the 
SPA Min Min and SPA Max Min. Figures 15, 16 and 17 
shows value of load factor in percentage generated by 
SPA based Double Min Min which outperforms the SPA 
based Min Min and Max Min for Consistent, inconsistent 
and Semi-consistent ETC matrices executed for 256 tasks 
on 8 machines. 

 
Fig. 12: Resource Density on SPA Double Min Min 

Scheduling for 256 tasks on 8 CGPs for Consistent ETC 
 

 
Fig. 13: Resource Density on SPA Double Min Min Scheduling for 256 

tasks on 8 CGPs for Inconsistent ETC 
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Fig. 14: Resource Density on SPA Double Min Min Scheduling for 256 

tasks on 8 CGPs for Semi-Consistent ETC 

 
Fig. 15: Load Factor on SPA Double Min Min 

Scheduling for 256 tasks on 8 CGPs for Consistent ETC 

 
Fig. 16: Load Factor on SPA Double Min Min Scheduling for 256 tasks 

on 8 CGPs for Inconsistent ETC 
 

 
Fig. 17:  Load Factor on SPA Double Min Min Scheduling for 256 tasks 

on 8 CGPs for Semi-Consistent ETC 

 

9. Conclusions and Future Work 

To achieve high throughput computing in a Hypercubic 
P2P Grid environment, the SPA Double Min Min 
scheduling algorithm was proposed. To enhance Load 
balancing, we find the Mean CT for the scheduled results 
and reselect the tasks that are greater than Mean CT. For 
the reselected task, the SPA based Min Min is computed. 
We have separately computed the makespan value for all 
the three types of ETC Matrix, where we concluded that 
the proposed algorithm gives better results than the 
conventional algorithms, SPA based Min-Min and Max-
Min. The Resource Density and Load factor is also 
calculated for SPA Double Min Min Average, when 
compared the proposed work gives better value than the 
SPA based Min Min and Max Min for all the three sets. 
Evaluation of our new heuristic was done through a 
simulation environment called Gridsim. The experimental 
results show that the SPA Double Min Min outperforms 
the SPA based Min-Min and Max-Min heuristics. 
The future work will focus on the research on scheduling 
occasion, resource description, fault tolerant processing 
and other aspects, in order to further optimize and improve 
the system. In addition to this, many issues remain open, 
like deadline of task, QoS of task, execution cost on each 
resource, communication cost etc. Some of the above 
mentioned issues are under consideration as a part of 
further work. 
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