
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 5, July 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

19

A Proposal for Normalized Lack of Cohesion in Method (LCOM) Metric
Using Field Experiment

Ezekiel Okike

 School of Computer Studies, Kampala International University ,
Kampala, Uganda 256, Uganda

Abstract
Chidamber and Kemerer first defined a cohesion measure for
object-oriented software – the Lack of Cohesion in Methods
(LCOM) metric. One of the critique of the LCOM metric is that
the metric does not yield normalized or standardized values, and
as such, the metric does not seem appealing to a section of the
software engineering community. This paper presents an
approach for normalizing the LCOM metric so that most
practioners would find it as useful as its variant measures such as
Tight Class Cohesion (TCC), Low Class Cohesion (LCC),
Degree of Cohesion in a Class based on direct relation between
its public relations (DCD) and that based on indirect methods
(DCI). Data for this study was gathered from three industrial
systems. System 1 has 34 classes, System 2 has 383 classes and
System 3 has 1055 classes. The main objectives of the study
were to apply different normalization approaches in order to
determine the best for the LCOM metric. Three normalization
techniques namely Sigmoid normalization, Bowless
normalization, and Bestfit normalization were used in the study
of the selected test systems. The result of the study showed that
the Bestfit approach seem to be the best LCOM normalization
approach.

Keywords: Class Cohesion, LCOM Metric, Normalization,
Software Measurement.

1. Introduction

The Lack of Cohesion in Methods (LCOM) metric was
proposed in [6,7] as a measure of cohesion in the object
oriented paradigm.

The term cohesion is defined as the “intramodular
functional relatedness” in software [1]. This definition,
considers the cohesion of each module in isolation: how
tightly bound or related its internal elements are. Hence,
cohesion as an attribute of software modules capture the
degree of association of elements within a module, and the
programming paradigm used determines what is an

element and what is a module. In the object-oriented
paradigm, for instance, a module is a class and hence
cohesion refers to the relatedness among the methods of a
class. Cohesion may be categorized ranging from the
weakest form to the strongest form in the following order:
coincidental, logical, temporal, procedural,
communicational, sequential and functional. Further
discussion on these categories are already presented in [1,
2].

A module exhibits one of these forms of cohesion
depending on the skill of the designer. However,
functional cohesion is generally accepted as the best form
of cohesion in software design. Functional cohesion is the
most desirable because it performs exactly one action or
achieves a single goal. Such a module is highly reusable,
relatively easy to understand (because you know what it
does) and is maintainable. In this paper, the term
“cohesion” refers to functional cohesion. Several measures
of cohesion have been defined in both the procedural and
object-oriented paradigms. Most of the cohesion measures
defined in the object-oriented paradigm are inspired from

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 5, July 2010
www.IJCSI.org

20

the Lack of Cohesion in methods (LCOM) metric defined
by Chidamber and Kemerer.

1.2. The problem.

The LCOM metric defined by Chidamber and Kemerer is
often critised due to the presence of outliers and for not
being a normalized measure [3,4,8,11,14]. Based on this, a
section of the software engineering community seem not
to find the metric appealing in usage.

In this paper, the Lack of Cohesion in methods (LCOM)
metric is analysed, and a Bestfit normalized LCOM metric
is proposed. The rest of the paper is organized as follows:
Section 2 presents a summary of the approaches to
measuring cohesion in procedural and object-oriented
programs. Section 3 examines the Chidamber and
Kemerer LCOM metric. Section 4 presents the application
of three normalization techniques on the LCOM metric.
Section 5 presents the result of the study of which the
Bestfit LCOM metric is suggested as a normalized metric
to be used with the LCOM metric.

2. Measuring Cohesion in Procedural and
 Object oriented Programs

2.1 Measuring cohesion in procedural programs

Procedural programs are those with procedure and data
declared independently. Examples of purely procedure
oriented languages include C, Pascal, Ada83, Fortran and
so on. In this case, the module is a procedure and an
element is either a global value which is visible to all the
modules or a local value which is visible only to the
module where it is declared. As noted in [2], the
approaches taken to measure cohesiveness of this kind of
programs have generally tried to evaluate cohesion on a
procedure by procedure basis, and the notational measure
is one of “functional strength” of procedure, meaning the
degree to which data and procedures contribute to
performing the basic function. In other words the
complexity is defined in the control flow. Among the best
known measures of cohesion in the procedural paradigm
are discussed in [4] and [5].

2.2 Measuring cohesion in object-oriented systems

In the Object Oriented languages, the complexity is
defined in the relationship between the classes and their
methods. Several measures exist for measuring cohesion
in Object-Oriented systems [7,8,9,10,11,12, 13]. Most of
the existing cohesion measures in the object-oriented
paradigm are inspired from the Lack of Cohesion in
Methods (LCOM) metric [6,7]. Some examples include
LCOM3, Connectivity model, LCOM5, Tight Class

Cohesion (TCC), and Low Class Cohesion (LCC), Degree
of Cohesion in class based on direct relation between its
public methods (DCD) and that based on indirect methods
(DCI), Optimistic Class cohesion (OCC) and Pessimistic
Class Cohesion (PCC).

3. The Lack of Cohesion in Methods (LCOM) Metric.

The LCOM metric is based on the number of disjoint sets
of instance variables that are used by the method. Its
definition is given as follows [6,7].

 Definition 1.

Consider a class C1 with n methods M1, M2,…,Mn. Let
{Ii}= set of instance variables used by method Mi. There

are n such sets {Ii},…,{In}. Let P = { (Ii, Ij) | Ii ∩ Ij = }

and Q = { (Ii, Ij) | Ii ∩ Ij ≠ }. If all n sets { I1}, …,{In}

are then let P =

LCOM = { |P|- |Q|, if |P| > |Q|

= 0, otherwise

Example: Consider a class C with three methods M1, M2
and M3. Let {I1} = {a,b,c,d,e} and {I2} = {a,b,e} and {I3}

= {x,y,z}. {I1} ∩ {I2} is nonempty, but {I1} ∩ {I3} and
{I2} ∩ {I3} are null sets. LCOM is (the number of null
intersections – number of non empty intersections), which
in this case is 1.

The theoretical basis of LCOM uses the notion of degree
of similarity of methods. The degree of similarity of two
methods M1 and M2 in class C1 is given by:

 σ() = {I1} ∩ {I2}

where {I1} and {I2} are sets of instance variables used by
M1 and M2 . The LCOM is a count of the number of
method pairs whose similarity is 0 (i.e, σ() is a null set)
minus the count of method pairs whose similarity is not
zero. The larger the number of similar methods, the more
cohesive the class, which is consistent with the traditional
notions of cohesion that measure the inter relatedness
between portions of a program. If none of the methods of
a class display any instance behaviour, i.e. do not use any
instance variables, they have no similarity and the LCOM
value for the class will be zero. The LCOM value provides
a measure of the relative disparate nature of methods in
the class. A smaller number of disjoint pairs (elements of
set P) implies greater similarity of methods. LCOM is
intimately tied to the instance variables and methods of a

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 5, July 2010
www.IJCSI.org

21

class, and therefore is a measure of the attributes of an
object class.

In this definition, it is not stated whether inherited
methods and attributes are included or not. Hence, a
refinement is provided as follows [15]:

Definition 2.

Let P = , if AR (m) = m MI (c)

 = {{m1,m2} m1,m2 MI(c) m1 m2 AR(m1) AR(m2)

 AI (c) = }, else

 Let Q = {{ m1,m2} m1,m2 MI(c) m1 m2 AR

(m1) AR(m2) AI(c) }

Then LCOM2(c) = { P - Q, if P > Q

 = 0, otherwise

Where MI are methods in the class c and AI are the
attributes (or instance variables) in the class c ; AR denote
attribute reference

In this definition, only methods M implemented in class c
are considered; and only references to attributes AR
implemented in class c are counted.

The definition of LCOM2 has been widely discussed in
the literature [7,8,10,11,15]. LCOM2 of many classes are
set to be zero although different cohesions are expected.

3.1 Remarks

In general the Lack of Cohesion in Methods (LCOM)
measures the dissimilarity of methods in a class by
instancevariable or attributes. Chidamber and Kemerer’s
interpretation of the metric is that LCOM = 0 indicates
acohesive class. However, for LCOM >0, it implies
thatinstance variables belong to disjoint sets. Such a class
maybe split into 2 or more classes to make it cohesive.

Consider the case of an n-sequentially linked methods as
shown in figure 3.1 below where n methods are
sequentially linked by shared instance variables.

 Shared instance variables

 M1 M2 M3 Mn

Fig. 3.1. n-Sequentially liked methods

In this special case of sequential cohesion:

)1(
2

 n

n
P (1)

1 nQ (2)

so that LCOM

)1(2
2

 n

n
QP + (3)

 …

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 5, July 2010
www.IJCSI.org

22

where [k]+ equals k, if k>0 and 0 otherwise [8].

From (1) and (2)

)1()1(
2

 nn

n
QP

 22
2

 n

n

)1(2
2

 n

n

)1(2
!2)!2(

!

 n

n

n
 (4)

From (4), for n < 5, LCOM = 0 indicating that classes
with less than 5 methods are equally cohesive. For n 5,
1 < LCOM < n, suggesting that classes with 5 or more

methods need to be split [8,18].

3.2 Class design and LCOM computation

 f()

 g() h()

Fig. 3.2. Class design showing LCOM

 computation

Source:[8]

Figure 3.2 presents a class x written in C++.

The Lack of Cohesion in Methods (LCOM) for class x =

1, calculated as follows:

There are two pairs of methods accessing no common

instance variables namely (<f, g>, <f, h>). Hence P = 2.

One pair of methods shares variable E, namely, <g, h>.

Hence, Q = 1. Therefore, LCOM is 2 - 1 =1.

4. Normalizing LCOM metric

4.1 The Method

Chidamber and Kemerer’s suit of metrics were used in the

study of 1055 classes from three industrial systems. Metric

values were computed for Lack of Cohesion in methods

(LCOM), Coupling Between Object Classes (CBO),

Response For a Class (RFC),Weighted Methods Per Class

(WMC), Depth of Inheritance (DIT) and Number of

Children (NOC) were used in the study. Two other metrics

used in this experiment which are not part of the

Chidamber and Kemerer metrics are: Number of Public

Methods (NPM) and Afferent Coupling (CA).

Specifically cohesion was measured using the LCOM

metric. Coupling was measured using CBO, RFC, and CA.

Size was measured using WMC, and NPM. Inheritance

was measured using DIT. Descriptive statistics was used

to analyze results as already presented in [2]. In order to

demonstrate the need for a normalized LCOM metric, 11

classes from system 3 most of which were outliers were

used. Of particular note are the LCOM values of these

classes as shown in table 4.1 below:

4.2 Outliers in LCOM metric

Table 4.1 below shows LCOM values with outliers.

LCOM = 0 indicates a cohesive class [6,7], likewise

LCOM= [0,1] [2,19]. Chidamber and Kemerer suggested

that when a class is not cohesive, the class should be split

into two or more classes to make the class cohesive. In

this study, splitting outlier classes only reduced the outlier

values and never made such classes cohesive, and there

Class x {
 Int A, B, C, D, E, F;
 Void f() {…uses A,B, C …}
 Void g () {…uses D, E…}

D

A B C

E F

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 5, July 2010
www.IJCSI.org

23

were no evidences to suggest such classes were

improperly designed. This is illustrated by taking data

from the first eight classes of system 3 in the experimental

study as shown in figures 4.2 (a) and (b). The fourth class

with LCOM value 196 was used as highlighted in figure

4.2 (a). below. The class was split into two classes (

Classmetrics and Classinfo) to see if the outlier value 196

would become a cohesive class in the range values of 0 or

1. The result as shown in figure 4.2 (b) indicate that the

outlier value was only reduced to 63 in Classmetrics while

the LCOM value for Classinfo was 34. Both values are

still outliers, implying the classes were still un cohesive

even after splitting.

Table 4.1. Illustration of LCOM values with outliers and not

standardized (un normalized)

Class Name

WM

C

CBO RFC LCOM CA NPM

XlmException 5 0 6 2 1 5

HandlerBase 14 2 16 91 0 14

SAXDriver 33 2 86 370 0 31

XmlHandler 13 0 13 78 3 13

XmlParser 118 1 182 6075 1 27

JspXMLParse

r

2 5 18 0 1 1

CompiledExce

ption

3 0 5 1 2 0

JspServlet$Pa

ge

11 14 154 0 1 0

JspServlet$Ma

pEntry

1 1 2 0 1 0

JspMsg 0 0 0 0 9 0

JspFactoryImp

l$1

2 0 3 1 1 1

 Source: [19]

Figure 4.2 (a) and (b) show the output after running a

Chidamber and Kemerer metric tool ckjm (discussed in

[19]) on the selected classes.

After the word ckjm is the class name being analyzed by

the tool followed by the corresponding metrics for the

class: WMC, DIT, NOC, CBO, RFC, LCOM, CA , NPM

in that order. The metric values after the class name

correspond to these metrics respectively.

[eokike@visitor2 build]$ java -jar ckjm-1.6.jar

/tmp/gr/spinellis/ckjm/*.class

gr.spinellis.ckjm.ClassMetricsContainer 3 1 0 3 18 0 2 2

.spinellis.ckjm.MethodVisitor 11 1 0 21 40 0 1 8

spinellis.ckjm.CkjmOutputHandler 1 1 0 1 1 0 3

1

.spinellis.ckjm.ClassMetrics 24 1 0 0 33 196 6 23

gr.spinellis.ckjm.MetricsFilter 7 1 0 6 30 11 2 5

gr.spinellis.ckjm.ClassVisitor 13 1 0 14 71 34 2 9

gr.spinellis.ckjm.ClassMap 3 1 0 1 21 0 0 2

gr.spinellis.ckjm.PrintPlainResults 2 1 0 2 8 0 1 2

[eokike@visitor2 build]$

Figure 4.2 (a). Spliting an outlier class

.spinellis.ckjm.ClassMetrics 14 1 0 0 16 63 1 13

JavaParser$ButtonHandler 3 1 0 2 5 3 1 1

Classidentifier 3 1 0 0 7 0 1 3

JavaParser 5 1 0 3 59 2 1 3

gr.spinellis.ckjm.Classinfo 12 1 0 1 27 34 0 12

JavaParser$1 0 1 0 0 0 0 2 0

Figure 4.2 (b). Result of splitting an outlier class

 Sources: [19]

In [19], there is no evidence to suggest that a class whose

LCOM=1 was improperly designed and therefore needs

splitting. Hence, it is suggested that the basis for splitting a

class should be whenever the number of methods (Number

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 5, July 2010
www.IJCSI.org

24

of Public Methods NPM) is greater than or equal to 5

[9,19].

4.3 Normalization of software measures

4.3.1 Related Work

The normalization of measures is an important aspect of

software measurement. Measures with outlier values need

to be normalized in order to get numbers between [0,1].

However, as stated in [16] the normalization of a measure

u to a normalized measure u’ can lead to a completely new

measure with other properties.

In [18] a measure IS is defined in order to capture the

complexity of a module derived from the interactions

(coupling) with other modules. The measure IS was the

original measure. In order to get numbers between 0 and 1

the measure CM was defined as follows:

IS

CM

1

1
1 .

where CM = Module Complexity, IS = Complexity from

coupling

In this normalization, the obtained values for CM are in

the range [0,1].

In neural networks a Sigmoid neural layer uses the

Sigmoid function to determine its activation. The sigmoid

function y(u) is defined as follows:

y(u) = 1/(1+e-u) ; (the usual value of e =2.7183,

u= x_values)

One thing about the sigmoid layer is that only positive

values are returned between 0.5 and 1. The Sigmoid

function is so called because it looks like an s as shown in

figure

4.1.

SIGMOID FUNCTION CURVE

0.00

0.20

0.40

0.60

0.80

1.00

1.20

-5 -4 -3 -2 -1 0 1 2 3 4 5

X-VALUES

S
IG

M
O

ID
 V

A
L

U
E

S

Figure 4.1 Sigmoid function layer

When applied to software measurement, a sigmoid layer

for the attribute being measured may be identified only if

the expected transformations are in the range [0.5,1].

Although both the approach in [18] and the Sigmoid

approach may be used to normalize a measure between the

ranges [0,1] and [0.5,1] respectively, in [16] the following

important questions were suggested in order to decide

whether to use a normalization approach:

(i) Do the measure being normalized measure the same

qualitative aspect ?

(ii) Is the normalizing measure really a normalization of

the measure being

normalized ?

(iii) After normalization, does the normalization agree

with the interpretations of the original measure ?

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 5, July 2010
www.IJCSI.org

25

5. Normalization Approaches for LCOM Metric

5.1 Bowless normalized LCOM

Using the approach in [18], a Bowles normalized LCOM

(BLCOM) may be defined as follows:

 BLCOM= 1-(1/1+LCOM).

The measure BLCOM is a numerical modification of the

measure LCOM without changing the empirical meaning

of the measure. The result of applying BLCOM on

outliered LCOM values obtained from system 3 of this

study is shown in table 5.1. Hence 0≤BLCOM≤1 is valid.

Table 5.1. Illustration of BowlessNormalized LCOM (BLCOM)

Class Name WMC LCOM BLCOM NPM

XlmException 5 2 0.666667 5

HandlerBase 14 91 0.9891304 14

SAXDriver 33 370 0.9973046 31

XmlHandler 13 78 0.9873418 13

XmlParser 118 6075 0.9998354 27

JspXMLParser 2 0 0 1

CompiledException 3 1 0.5 0

JspServlet$Page 11 0 0 0

JspServlet$MapEntr

y

1 0 0 0

JspMsg 0 0 0 0

JspFactoryImpl$1 2 1 0.5 1

 10 BLCOM

 Source: [19]

5.2 Sigmoid normalized LCOM (SLCOM)

Using a sigmoid function as explained in section 4.2

(fig 4.1), a sigmoid function layer ,

y(u) = 1/(1+e-u)

is defined.

Applied to the LCOM metric, a sigmoid normalized

LCOM may be defined as follows:

SLCOM= y(LCOM)= 1/(1+e-LCOM).

The result of applying SLCOM on outliered LCOM values

obtained from system 3 of this study is shown in table 5.2.

Hence 0.5≤SLCOM≤1 is valid.

Table 5.2. Illustration of Sigmoid Normalized LCOM (SLCOM)

Class

Name

 WMC LCOM SLCOM NPM

XlmEx

ception

5 2 0.880798 5

Handler

Base

14 91 1 14

SAXDriver 33 370 1 31

Xml

Handler

13 78 1 13

XmlParser 118 6075 1 27

JspXML

Parser

2 0 0.5 1

Compiled

Exception

3 1 0.73106 0

JspServle

t$Page

11 0 0.5 0

JspServlet$

MapEntry

1 0 0.5 0

JspMsg 0 0 0.5 0

JspFactory

Impl$1

2 1 0.73106 1

 15.0 SLCOM

 Source: [19]

5.3 Bestfit normalized LCOM

The definition of LCOM as presented in section 3 suggests

that both the Bowles normalized LCOM and the Sigmoid

normalized LCOM may not appropriately represent

Chidamber and Kemerer’s interpretation of their LCOM

metric. Although the former are normalized values,

however, in line with Chidamber and Kemerer’s

definition, a Bestfit normalized LCOM (BFLCOM) may

be defined as follows [19]:

 BFLCOM=0, LCOM=0

 BFLCOM= 1/LCOM, otherwise.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 5, July 2010
www.IJCSI.org

26

Using the BFLCOM metric, it was possible to eliminate

outliers from LCOM values in agreement with the usual

definition of LCOM and its interpretation as shown in

table 5.3.

Table 5.3. Illustration of Bestfit Normalized LCOM (BFLCOM)

 Class

Name

 WMC LCOM BFLCOM NPM

Xlm

Exception

5 2 0.5 5

HandlerBase 14 91 0.0109 14

SAXDriver 33 370 0.0027 31

XmlHandler 13 78 0.128 13

XmlParser 118 6075 0.0001 27

JspXMLPars

er

2 0 0 1

Compiled

Exception

3 1 1 0

JspServlet

$Page

11 0 0 0

JspServlet$

MapEntry

1 0 0 0

JspMsg 0 0 0 0

JspFactory

Impl$1

2 1 1 1

 10 BFCOM ,

 Source: [19]

5.4 Discussion: Comparison of Normalized

LCOM values

A close observation of the considered normalized LCOM

metrics reveal some interesting configurations. Bowles

LCOM (BLCOM) is a generalized measure. Although its

values are in the range [0,1], its transformations with

respect to LCOM may not be exact. Consider table 5.1 and

transformations of LCOM values from 0 to 0, and from 1

to 0.5. If a modified interpretation of LCOM = [0,1] is

accepted [19], then the transformation of LCOM to

BLCOM for value 1 should be 1.

The Sigmoid LCOM (SLCOM) also has the same problem

when applied to LCOM. SLCOM range [0.5,1] does not

necessarily represent LCOM range [0,1]. However, Bestfit

LCOM (BFLCOM) range [0,1] gives exact transformation

for LCOM range [0,1] table 5.3. This comparative analysis

is shown in table 5.4 . From this table BFLCOM seem to

be the appropriate normalization of the LCOM metric;

considering the appropriate transformations of 0 to 0, and

1 to 1 while eliminating outlier values. This result suggest

that the LCOM metric may be used with the BFLCOM

metric to obtained normalized values much like the other

variants measures of cohesion whose ranges are [0,1]

such as Connectivity (CO) metric [9], Tightclass

cohesion/Low class cohesion (TCC/LCC) [11], Degree of

cohesion in class based on direct relation between its

public (DCD) or that based on indirect methods (DCI) [12] ,

Optimistic class cohesion (OCC) and pessimistic class

cohesion (PCC) [13].

Table 5.4. Comparative normalized LCOM metric

 Class

Name

LCOM BLCOM SLCOM BFLCOM

Xlm

Exception

2 0.666667 0.880798 0.5

HandlerBase 91 0.9891304 1 0.0109

SAXDriver 370 0.9973046 1 0.0027

XmlHandler 78 0.9873418 1 0.128

XmlParser 6075 0.9998354 1 0.0001

JspXMLPars

er

0 0 0.5 0

Compiled

Exception

1 0.5 0.7310 1

JspServlet

$Page

0 0 0.5 0

JspServlet$

MapEntry

0 0 0.5 0

JspMsg 0 0 0.5 0

JspFactory

Impl$1

1 0.5 0.7310 1

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 5, July 2010
www.IJCSI.org

27

References
[1] E. Yourdon and L. Constantine, Structured Design:

 Fundamentals of a Discipline of Computer Program
and Systems Design, Englewood Cliffs, New Jersey:
Prentice-Hall, 1979.

[2] E. Okike, “A pedagogical Evaluation and Discusion about the
Lack of Cohesion in methods (LCOM) Metric Using field
Experiment”, International journal of computer science issues,
Vol. 7, issue 2, No. 3, March 2010. Pp 36-43

[3] M. F. Shumway . “Measuring Class Cohesion in Java”.
Master of Science Thesis. Department of computer
science, Colorado state university, Technical Report CD -
97-113, 1997.

[4] J. M. Bieman and L. M. Ott, . “Measuring Functional
Cohesion”, IEEE Transactions on Software Engineering,
vol. 20, no. 8, pp. 644-658, August 1994.

 [5] J. M. Bieman and B. K. Kang, 998. Measuring Design –
level Cohesion. IEEE Transactions on Software
Engineering, vol. 20, no. 2, pp. 111-124, February 1998.

 [6] S. R. Chidamber and C. F. Kemerer, “Towards a
 Metric Suite for Object Oriented Design”, Object
 Oriented Programming Systems, Languages and

 Applications, Special Issue of SIGPLAN Notices, vol. 26,
no.10, pp. 197-211, October 1991.

[7] S. R. Chidamber and C. F. Kemerer , “A Metric Suite
 for Object Oriented Design”, IEEE Transactions on
 Software Engineering, vol. 20, no. 6, pp. 476-
 493, June 1994.
[8] W. Li and S. Henry, “Object Oriented Metrics that Predict

Maintainability”. Journal of Systems and Software, vol.
23, pp. 111-122, February1993.

[9] M. Hitz and B. Montazeri, “Chidamber and Kenmerer ‘s
mtric Suite: A

 Measurement Theory Perspective”, IEEE Transactions on
Software

 Engineering, vol. 22. no. 4, pp.267-270, April 1996.
[10] B. Henderson-Sellers, Software Metrics, U.K:
 Prentice Hall, 1996.

 [11] J. M. Bieman and B. K. Kang, “Cohesion and Reuse in an
Object Oriented System”, Proceedings of the
Symposium on Software Reusability (SSR ’95), Seattle:
WA. Pp. 259-262, April 1995.

[12] L. Badri and M. Badri, “A proposal of a New Class
cohesion Criterion: An Empirical Study” Journal of Object
Technology, vol. 3, no. 4, pp. 145-159, April 2004.
 [13] H. Aman, K. Yamasski, and M. Noda, “A Proposal of

Class Cohesion Metrics using sizes of cohesive parts”,
Knowledge based Software Engineering. T. Welzer et al.
Eds. IOS press, pp. 102-107, September 2002.

[14] B. S. Gupta, “A Critique of Cohesion Measures in he

Object Oriented Paradigm”, M.S Thesis, Department of
Computer Science, Michigan Technological University.
iii+ 42pp, 1997.

[15] L. C. Briand, J. Daly and J. Wust, “A Unified Framework
for Cohesion Measurement in Object Oriented
Systems”, Empirical Software

 Engineering, vol. 3, no.1, pp. 67-117, 1998.
[16] H. Zuse, “A framework for Software Measuremen”,

 New York: Walter de Gruyter, 1988.
[17] V. R. Basili, L. C. Briand, and W. Melo, “A validation of

Object Oriented Design Metrics as quality indicators”,
IEEE Transaction On Software Engineering, vol. 22 ,
no.10, pp. 751- 761, 1996.

[18] A. J. Bowles, Effects of Design complexity on
Software Maintenance”, Dissertation, Northwestern
University, Evanston, Illinois, 1983.

[19] E. U. Okike “Measuring class cohesion in object-
oriented
systems using Chidamber and Kemerar metrics and
Java as case study. Ph.D thesis. Department of
Computer Science, University of Ibadan, xvii + 133pp,
2007.

Ezekiel U. Okike received the BSc degree in computer science
from the University of Ibadan Nigeria in 1992, the Master of
Information Science (MInfSc) in 1995 and PhD in computer
science in 2007 all from the same University. He has been a
lecturer in the Department of Computer Science, University of
Ibadan since 1999 to date. Since September, 2008 to date, he has
been on leave as a senior lecturer and Dean of the School of
Computer Studies, Kampala International University, Uganda.
His current research interests are in the areas of software
engineering, software metrics, compilers and programming
languages. He is a member of IEEE computer and
communication societies.

