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Abstract 

Optimal clustering of call flow graph for reaching maximum 
concurrency in execution of distributable components is one of 
the NP-Complete problems. Both learning automatas (LAs) and 
genetic algorithms (GAs) are search tools which are used for 
solving many NP-Complete problems. In this paper a hybrid 
algorithm is proposed to optimal clustering of call flow graph 
and appropriate distributing of programs in network level. The 
algorithm uses both GAs and LAs simultaneously to search in 
state space. It has been shown that the speed of reaching to 
solution increases remarkably using LA and GA simultaneously 
in search process, and it also prevents algorithm from being 
trapped in local minimums. Experimental results show the 
superiority of proposed algorithm over others. 
Keywords: Call Flow Graph, Clustering, Learning Automata, 
Genetic Algorithm, Concurrency, Distributed Code. 

1. Introduction 

Optimization of distributed code with goal of achieving 
maximum concurrency in execution of distributable 
components in network level is considered as a new aspect 
in optimization discussions. Concurrency in execution of 
distributed code is obtained from remote asynchronous 
calls. The problem is specifying appropriate calls, with 
considering amount of yielding concurrency from remote 
asynchronous calls. In this way, dependency graph 
between objects are clustered with the base of amount of 
calls between objects, and each cluster is considered as a 
component in distributed architecture. Since clustering is a 
NP-Complete problem, in this paper a hybrid non-
deterministic algorithm is proposed for optimal clustering 
of call flow graph. 
The proposed algorithm uses both GAs and LAs 
simultaneously to search in state space. With the 
combination of the GA and LA, and incorporation of 
concepts of gene, chromosome, action and depth, 
background of the evolution of problem's solution was 
extracted effectively and is used in the search process. 

Resisting against the superficial changes of solutions is the 
most important characteristic of proposed algorithm. In 
other words, there is a flexible balance between the 
effectiveness of GA and stability of LA in proposed 
algorithm. Self-recovery, reproduction, penalty and reward 
are characteristics of proposed algorithm. 

2. Genetic algorithms 

GAs act on the basis of evolution in nature, and search for 
the final solution among a population of potential 
solutions. In every generation the fittest individuals of that 
generation are selected and after recombination, produce a 
new set of children. In this process the fittest individuals 
will survive more probably in next generations. 
At the beginning of algorithm a number of individuals 
(initial population) are created randomly and the fitness 
function is evaluated for all of them. If termination 
condition does not satisfied, parents are selected based on 
their fitness and are recombined. Then produced children 
mutate with a fixed probability and their fitness values are 
calculated. Next new population (generation) is generated 
by replacing of children with parents, and this process is 
repeated until the termination condition is satisfied. 

3. Learning automata 

Learning in LAs is choosing an optimal action from a set 
of automata's allowable actions. This action is applied on a 
random environment and the environment gives a random 
answer to this action from a set of allowable answers. The 
environment's answer depends statistically on the 
automata's action. The environment term includes a 
collection of all outside conditions and their effects on the 
automata's operation. The interaction between 
environment and LA is shown in figure 1. 



IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 3, July 2010 
www.IJCSI.org 

 

38

 

 

Fig. 1 Interaction between environment and LA 

4. Proposed searching algorithm for optimal 
clustering of call flow graph 

In fact, this algorithm determines appropriate clustering in 
a finite search space. Finally each cluster is considered as a 
component in distributed architecture. 
In section 4-3 an algorithm is represented for determining 
amount of yielding concurrency from a given clustering. 
This algorithm is used as a goal function for evaluating of 
chromosomes in evolutionary process. In fact, in 
evolutionary process each chromosome is indicator of a 
clustering and its fitness value specifies amount of 
yielding concurrency from remote calls in a given 
clustering. 
In the following, the main parameters of proposed 
algorithm will be explained. 

4.1 Gene and chromosome 

Unlike classic GAs, in the proposed algorithm binary 
coding was not used for chromosomes. Each chromosome 
is shown by a LA of the object migrating type, in a way 
that each of chromosome's genes is assigned to the one of 
the automata's actions and it is placed at a certain depth of 
that action. Therefore in proposed algorithm concepts of, 
chromosome and automata, gene and action are same. 
In this automata  is the set of allowable 
actions for the LA. This automata has k actions (actions 
number of this automata is equal to the number of 
distributable components or clusters. Determining of 
appropriate number of clusters is an optimization problem 
which has not discussed in this paper). Each action shows 
a cluster. 

 is the set of states and N is the depth 
of memory for automata. The states set of this automata is 
partitioned into the k subset , 

, …, and 
. Call flow graph nodes are 

classified on the basis of their states. If node ni from call 
flow graph is in the states set 

, then node ni will be jth 
cluster. In the states set of action j, state  is 
called inner (stable) state and state  is called outer 
(unstable) state. For example, consider call flow graph of 
figure 2. 

 

Fig. 2 An instance of call flow graph 

Clustering of figure 2 is shown in figure 3 by a LA with 
similar connections to Tsetline automata. This automata 
has 4 (equal to the number of clusters) actions a1, a2, a3, 
and a4 and its depth is 5. States set {1,6,11,16} are inner 
states and states set {5,10,15,20} are outer states of the 
automata. At the beginning each cluster is placed at the 
outer state of relative action. For instance since in figure 3 
C2={n2, n4, n5}, so nodes n2, n4, n5 are placed in same 
cluster (cluster 2). 

 
C1={n1} / C2={n2, n4, n5} / C3={n3, n6} / C4={n7, n8} 

Fig. 3 Showing clustering of figure 2 by a LA with similar connections to 
Tsetline automata 

4.2 Initial population 

Suppose that the number of population's members is n. 
Initial population members are generated by creation of n 
random clustering. As an example, initial population for 
call flow graph of figure 2 with the assumption n=6 is 
shown in figure 4. At the beginning each cluster is placed 
at the outer state of its action. 
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C1={n1, n3} / C2={n4, n5, n8} / C3={n7 } / 

C4={n2, n6}
C1={n1, n2, n3} / C2={n6} / C3={n4, n5} / 

C4={n7, n8} 
C1={n1} / C2={n2, n4, n5} / C3={n3, n6} / 

C4={n7, n8} 

 
C1={ n2, n4} / C2={ n7} / C3={n1} / 

C4={n3, n5, n6, n8}
C1={ n1, n7} / C2={n4} / C3={n2, n5} / 

C4={n3, n6, n8}
C1={n5, n6, n8} / C2={n4} / C3={n3, n7} / 

C4={ n1, n2} 

Fig. 4 Initial population for call flow graph of figure 2 

4.3 Fitness function 

In GAs fitness is indicator of chromosomes survival. In 
clustering problem fitness of an automata has a direct 
relation with the amount of yielding concurrency from 
execution of distributed code. Therefore, for determining 
fitness the amount of yielding concurrency from 
conversion of local calls to remote asynchronous calls 
must be calculated. When a function such as r is called via 
function m in a way i=a.r(), caller function m can run 
synchronous with function r until it does not need to the 
return value of r. For example consider the figure 5. In this 
figure interval between call of function r to the using point 
of this call's outcome is denoted by Td, and execution time 
of function r is denoted by EETr. Indisputable in the best 
case 2Tc+EETr≤Td, which Tc is required time for getting 
or sending of parameters. In general, waiting time of 

function m for getting return value from function r is 
calculated from the following criteria. 
Twait = (Td > 2Tc + EETr) ? 0 : (2Tc + EETr ) −Td 
The problem is calculating Td and EETr. Because, for 
instance, in the time of between call point and using point 
of this call's outcome or in context of called function may 
be exist other calls, and since it is unknown these functions 
will be executed local or remote, the execution time of 
them are unpredictable. For solving this problem, 
calculation of execution time must be started from a 
method in call flow graph in which it has not any call to 
other methods in call flow graph. Fitness function pseudo 
code is shown in figure 6. 
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Fig. 5 Calculation of exection time in remote calls 

Function FitnessEvaluation(CallFlowGraph, Clusters):Speedup 
Begin 
      Call TopologicalSort(CallFlowGraph); 
      for each method m in call flow graph 
            if NoCallsm = 0 then 
                  EETm = 0; 
                  for each not call statement, i, within m 
                        EETm = EETm + ExecutionTime(i); 
                  for each local call statement, c, within m 
                        EETm = EETm + EETc; 
                  for each remote asynchronous call statement, r, 
                  within m 
                        EETm = EETm + Max(Td, 2Tc + EETr); 
                  for each parent, p, of m within the call flow   
                  graph 
                        NoCallsp = NoCallsp – 1; 
            End if 
      End for 
End function 

Fig. 6 Fitness function pseudo code 

4.4 Operators 

Since in proposed algorithm, every chromosome is shown 
in the form of LA, crossover and mutation operators are 
not similar to genetic traditional operators. 
a) Selection operator: In order to choose LAs 
(chromosomes) for recombination or mutation operators, 
one of these methods can be used: Ranking Selection, 
Roulette Wheel Selection, and Tournament Selection. 
b) Crossover operator: To do this operator a new method is 
proposed for working with sets namely NewCrossover. In 
this method two nodes ni and nj are selected randomly 
from call flow graph and their relative actions is swapped 
in two parents. With doing this operator two new 
automatas are created which are called children of two 
parents. 
For example, suppose that LA2 and LA5 automatas are 
selected randomly as parents from the previously formed 
population. By random selection of two nodes n3 and n7 

from call flow graph and swapping their relative actions in 

two parents, two new automats are created. This is shown 
in figure 7. 
c) Mutation operator: To do this operator a node ni is 
selected randomly from call flow graph and its action is 
swapped randomly. State of random node n5 before and 
after mutation is shown in figure 8. 
d) Penalty and reward operator: Since in proposed algorithm, 
every chromosome is shown in the form of LA, in each 
automata after examining fitness of a cluster (action) 
which is selected randomly, that cluster will be rewarded 
or penalized. State of a cluster in the relative action states 
set will be changed as the result of rewarding or penalizing 
it. If a cluster is placed at the outer state of an action, 
penalizing it leads to action of one of its nodes is changed 
and so a new clustering will created. The rate of this 
operator should be low, because this operator is a random 
search operator, and reduces the effectiveness of algorithm 
if it is applied with high rate. Reward and penalty operator 
vary according to the LA types.  
For example, in an automata with similar connections to 
Tsetline automata if cluster C3 is in the states set {11, 12, 
13, 14, 15}, and its execution time without considering 
remote calls is less than threshold, this cluster is rewarded 
and it moves to the inner states of its action. If cluster C3 is 
in the innermost state (state number 11) and rewarded, it 
will remain in that state. The movement of such cluster is 
shown in figure 9. 
If execution time of a cluster without considering remote 
calls is greater than threshold, this cluster is not 
appropriate and it is penalized. The movement of such 
cluster for two different cases is as follows: 
a) The cluster is at a state other than outer state: Panelizing 
this cluster reduces its importance and it moves to the 
outer states. The movement of such cluster is shown in 
figure 10. 
b) The cluster is in outer state: In this case, we find a 
cluster of automata in which, if one of the cluster nodes is 
moved to the founded cluster, maximum increase in fitness 
outcome. In this case, if the founded cluster is not in outer 
state, first it is moved to outer state of its action and then 
node is moved to it. The movement of such cluster is 
shown in figure 11. 
Important subject is determining of threshold value. For 
this consider concurrent execution time in following three 
different cases: 
Best Case (100% Concurrency):            

Average Case (50% Concurrency):       

Worst Case (0% Concurrency):             

In above criteria, Tc is concurrent execution time, Ts is 
sequent execution time, and NoClusters is number of 
clusters. In this paper we considered threshold value be 
concurrent execution time in average case. 
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C1={ n1, n7} / C2={n4} / 

C3={n2, n5} / C4={n3, n6, n8}
C1={n1, n2, n3} / C2={n6} / 
C3={n4, n5} / C4={n7, n8} 

 
C1={ n1, n3} / C2={n4} / 

C3={n2, n5} / C4={n7, n6, n8}
C1={n1, n2, n7} / C2={n6} / 
C3={n4, n5} / C4={n3, n8} 

Fig. 7 The manner of doing crossover operator 

 
C1={n3, n7} / C2={n4, n6,n5} 

/ C3={ n1, n2} / C4={n8}
C1={n3, n7} / C2={n4, n6} / 
C3={ n1, n2, n5} / C4={n8} 

b. State of node n5 after 
mutation

a. State of node n5 before 
mutation 

Fig. 8 The manner of doing mutation operator 

b. Sate of cluster C3 after 
rewarding

a. Sate of cluster C3 before 
rewarding

Fig. 9 The manner of rewarding a cluster 

b. Sate of cluster C3 after 
penalizing

a. Sate of cluster C3 before 
penalizing

Fig. 10 The manner of penalizing a cluster palced in a state other than 
outer state 

 
c. Transferring a 

node from cluster C4 
to C1 

b. Transferring 
cluster C1 to outer 

state  

a. Sate of cluster C4 
before penalizing 

Fig. 11 The manner of penalizing a cluster palced in outer state 

 
 
 



IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 3, July 2010 
www.IJCSI.org 

 

42

 

Proposed algorithm pseudo code is shown in figure 12. 

Function CFG_Clustering(CallFlowGraph):Clusters 
Begin 
      n = Size of Population; 
      Create the initial population LA1 … LAn; 
      FitnessEvaluation(CallFlowGraph, LAi); //for all LAs 
      while(Termination Condition not Satisfied) do 
            NewLA1 = NewLA2 = LA with minimum Value of   
            Execution Time; //move best two individuals to the new population  

            for i = 2 to n do //Create new population 
                  Select LA1;  Select LA2 ; 
                  if (Random ≤ CrossoverRate) then  
                        Crossover(LA1, LA2); 
                  if (Random ≤ MutationRate) then   
                        Mutation(LA1); Mutation(LA2); 
                  NewLAi+1 = LA1; 
                  NewLAi+2 = LA2 ; 
                  i=i+2; 
            end for 
            for i = 1 to n do //Replace old population with new population   

                  LAi = NewLAi; 
                  Cj = Random * NoClusters; 
                  if (ExecutionTime(LAi.Cj) < Threshold) then 
                        Reward(LAi , Cj); 
                  else 
                        Penalize(LAi , Cj); 
            end for 
            FitnessEvaluation(CallFlowGraph, LAi); //for all LAs 
       end while 
End function 

Fig. 12 Proposed algorithm pseudo code 

5. Proposed method evaluation 

In order to evaluating proposed algorithm, distributed code 
of implementation of TSP was used. This distributed code 
solves TSP by using dynamic methods and finding optimal 
spanning tree. 
Table and diagram 1 shows execution time of TSP 
program for three cases sequential, distributed by 
reference [2] algorithm clustering, and distributed by 
proposed algorithm clustering for graphs with different 
node and edges number. 
As you observed average execution time of TSP program 
by proposed algorithm clustering is less than average 
execution time of sequential and distributed by reference 
[2] algorithm clustering. This shows that proposed 
algorithm is efficient than other algorithms, and it can be 
used for clustering of call flow graph of large application 
programs. 

Table 1: Execution time of TSP program for three cases sequential, 
distributed by reference [2] algorithm clustering, and distributed by 

proposed algorithm clustering for graphs with different node and edges 
number 
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20 40 0.573 7.357 4.347 

40 81 1.383 7.810 5.057 

60 122 3.246 8.163 6.163 

80 163 11.214 11.109 8.713 

100 204 19.773 14.741 10.677 

120 245 43.517 30.722 22.222 

140 286 85.362 60.871 46.546 

160 327 145.721 105.227 73.379 

180 368 234.871 168.280 112.511 

200 409 360.143 261.412 196.615 

220 450 576.655 440.343 316.741 

240 491 997.653 774.142 542.524 

Average Execution Time 
(Second) 206.6759 157.5148 112.125 

 

 

Diagram 1: Execution time of TSP program for three cases sequential, 
distributed by reference [2] algorithm clustering, and distributed by 

proposed algorithm clustering for graphs with different node and edges 
number 

6. Conclusion 

Problem of finding optimal distribution for reaching 
maximum concurrency in distributed programs is a NP-
Complete problem. So, Deterministic methods are not 
appropriate for this problem. In this paper an evolutionary 
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non-deterministic method is proposed for this problem. 
Proposed method uses both GAs and LAs simultaneously 
to search in state space. Evaluation results and amount of 
yielding concurrency from using proposed algorithm, 
indicator of proposed method efficiency over others. 
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