
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 3, July 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

37

A New Approach for Optimal Clustering of Distributed Program's
Call Flow Graph

Yousef Abofathy1, Bager Zarei2

 1 Department of Computer Engineering, Islamic Azad University, Shabestar Branch
Tabriz, East-Azarbaijan, Iran

2 Department of Computer Engineering, Islamic Azad University, Shabestar Branch
Tabriz, East-Azarbaijan, Iran

Abstract

Optimal clustering of call flow graph for reaching maximum
concurrency in execution of distributable components is one of
the NP-Complete problems. Both learning automatas (LAs) and
genetic algorithms (GAs) are search tools which are used for
solving many NP-Complete problems. In this paper a hybrid
algorithm is proposed to optimal clustering of call flow graph
and appropriate distributing of programs in network level. The
algorithm uses both GAs and LAs simultaneously to search in
state space. It has been shown that the speed of reaching to
solution increases remarkably using LA and GA simultaneously
in search process, and it also prevents algorithm from being
trapped in local minimums. Experimental results show the
superiority of proposed algorithm over others.
Keywords: Call Flow Graph, Clustering, Learning Automata,
Genetic Algorithm, Concurrency, Distributed Code.

1. Introduction

Optimization of distributed code with goal of achieving
maximum concurrency in execution of distributable
components in network level is considered as a new aspect
in optimization discussions. Concurrency in execution of
distributed code is obtained from remote asynchronous
calls. The problem is specifying appropriate calls, with
considering amount of yielding concurrency from remote
asynchronous calls. In this way, dependency graph
between objects are clustered with the base of amount of
calls between objects, and each cluster is considered as a
component in distributed architecture. Since clustering is a
NP-Complete problem, in this paper a hybrid non-
deterministic algorithm is proposed for optimal clustering
of call flow graph.
The proposed algorithm uses both GAs and LAs
simultaneously to search in state space. With the
combination of the GA and LA, and incorporation of
concepts of gene, chromosome, action and depth,
background of the evolution of problem's solution was
extracted effectively and is used in the search process.

Resisting against the superficial changes of solutions is the
most important characteristic of proposed algorithm. In
other words, there is a flexible balance between the
effectiveness of GA and stability of LA in proposed
algorithm. Self-recovery, reproduction, penalty and reward
are characteristics of proposed algorithm.

2. Genetic algorithms

GAs act on the basis of evolution in nature, and search for
the final solution among a population of potential
solutions. In every generation the fittest individuals of that
generation are selected and after recombination, produce a
new set of children. In this process the fittest individuals
will survive more probably in next generations.
At the beginning of algorithm a number of individuals
(initial population) are created randomly and the fitness
function is evaluated for all of them. If termination
condition does not satisfied, parents are selected based on
their fitness and are recombined. Then produced children
mutate with a fixed probability and their fitness values are
calculated. Next new population (generation) is generated
by replacing of children with parents, and this process is
repeated until the termination condition is satisfied.

3. Learning automata

Learning in LAs is choosing an optimal action from a set
of automata's allowable actions. This action is applied on a
random environment and the environment gives a random
answer to this action from a set of allowable answers. The
environment's answer depends statistically on the
automata's action. The environment term includes a
collection of all outside conditions and their effects on the
automata's operation. The interaction between
environment and LA is shown in figure 1.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 3, July 2010
www.IJCSI.org

38

Fig. 1 Interaction between environment and LA

4. Proposed searching algorithm for optimal
clustering of call flow graph

In fact, this algorithm determines appropriate clustering in
a finite search space. Finally each cluster is considered as a
component in distributed architecture.
In section 4-3 an algorithm is represented for determining
amount of yielding concurrency from a given clustering.
This algorithm is used as a goal function for evaluating of
chromosomes in evolutionary process. In fact, in
evolutionary process each chromosome is indicator of a
clustering and its fitness value specifies amount of
yielding concurrency from remote calls in a given
clustering.
In the following, the main parameters of proposed
algorithm will be explained.

4.1 Gene and chromosome

Unlike classic GAs, in the proposed algorithm binary
coding was not used for chromosomes. Each chromosome
is shown by a LA of the object migrating type, in a way
that each of chromosome's genes is assigned to the one of
the automata's actions and it is placed at a certain depth of
that action. Therefore in proposed algorithm concepts of,
chromosome and automata, gene and action are same.
In this automata is the set of allowable
actions for the LA. This automata has k actions (actions
number of this automata is equal to the number of
distributable components or clusters. Determining of
appropriate number of clusters is an optimization problem
which has not discussed in this paper). Each action shows
a cluster.

 is the set of states and N is the depth
of memory for automata. The states set of this automata is
partitioned into the k subset ,

, …, and
. Call flow graph nodes are

classified on the basis of their states. If node ni from call
flow graph is in the states set

, then node ni will be jth
cluster. In the states set of action j, state is
called inner (stable) state and state is called outer
(unstable) state. For example, consider call flow graph of
figure 2.

Fig. 2 An instance of call flow graph

Clustering of figure 2 is shown in figure 3 by a LA with
similar connections to Tsetline automata. This automata
has 4 (equal to the number of clusters) actions a1, a2, a3,
and a4 and its depth is 5. States set {1,6,11,16} are inner
states and states set {5,10,15,20} are outer states of the
automata. At the beginning each cluster is placed at the
outer state of relative action. For instance since in figure 3
C2={n2, n4, n5}, so nodes n2, n4, n5 are placed in same
cluster (cluster 2).

C1={n1} / C2={n2, n4, n5} / C3={n3, n6} / C4={n7, n8}

Fig. 3 Showing clustering of figure 2 by a LA with similar connections to
Tsetline automata

4.2 Initial population

Suppose that the number of population's members is n.
Initial population members are generated by creation of n
random clustering. As an example, initial population for
call flow graph of figure 2 with the assumption n=6 is
shown in figure 4. At the beginning each cluster is placed
at the outer state of its action.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 3, July 2010
www.IJCSI.org

39

C1={n1, n3} / C2={n4, n5, n8} / C3={n7 } /

C4={n2, n6}
C1={n1, n2, n3} / C2={n6} / C3={n4, n5} /

C4={n7, n8}
C1={n1} / C2={n2, n4, n5} / C3={n3, n6} /

C4={n7, n8}

C1={ n2, n4} / C2={ n7} / C3={n1} /

C4={n3, n5, n6, n8}
C1={ n1, n7} / C2={n4} / C3={n2, n5} /

C4={n3, n6, n8}
C1={n5, n6, n8} / C2={n4} / C3={n3, n7} /

C4={ n1, n2}

Fig. 4 Initial population for call flow graph of figure 2

4.3 Fitness function

In GAs fitness is indicator of chromosomes survival. In
clustering problem fitness of an automata has a direct
relation with the amount of yielding concurrency from
execution of distributed code. Therefore, for determining
fitness the amount of yielding concurrency from
conversion of local calls to remote asynchronous calls
must be calculated. When a function such as r is called via
function m in a way i=a.r(), caller function m can run
synchronous with function r until it does not need to the
return value of r. For example consider the figure 5. In this
figure interval between call of function r to the using point
of this call's outcome is denoted by Td, and execution time
of function r is denoted by EETr. Indisputable in the best
case 2Tc+EETr≤Td, which Tc is required time for getting
or sending of parameters. In general, waiting time of

function m for getting return value from function r is
calculated from the following criteria.
Twait = (Td > 2Tc + EETr) ? 0 : (2Tc + EETr) −Td
The problem is calculating Td and EETr. Because, for
instance, in the time of between call point and using point
of this call's outcome or in context of called function may
be exist other calls, and since it is unknown these functions
will be executed local or remote, the execution time of
them are unpredictable. For solving this problem,
calculation of execution time must be started from a
method in call flow graph in which it has not any call to
other methods in call flow graph. Fitness function pseudo
code is shown in figure 6.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 3, July 2010
www.IJCSI.org

40

Fig. 5 Calculation of exection time in remote calls

Function FitnessEvaluation(CallFlowGraph, Clusters):Speedup
Begin
 Call TopologicalSort(CallFlowGraph);
 for each method m in call flow graph
 if NoCallsm = 0 then
 EETm = 0;
 for each not call statement, i, within m
 EETm = EETm + ExecutionTime(i);
 for each local call statement, c, within m
 EETm = EETm + EETc;
 for each remote asynchronous call statement, r,
 within m
 EETm = EETm + Max(Td, 2Tc + EETr);
 for each parent, p, of m within the call flow
 graph
 NoCallsp = NoCallsp – 1;
 End if
 End for
End function

Fig. 6 Fitness function pseudo code

4.4 Operators

Since in proposed algorithm, every chromosome is shown
in the form of LA, crossover and mutation operators are
not similar to genetic traditional operators.
a) Selection operator: In order to choose LAs
(chromosomes) for recombination or mutation operators,
one of these methods can be used: Ranking Selection,
Roulette Wheel Selection, and Tournament Selection.
b) Crossover operator: To do this operator a new method is
proposed for working with sets namely NewCrossover. In
this method two nodes ni and nj are selected randomly
from call flow graph and their relative actions is swapped
in two parents. With doing this operator two new
automatas are created which are called children of two
parents.
For example, suppose that LA2 and LA5 automatas are
selected randomly as parents from the previously formed
population. By random selection of two nodes n3 and n7

from call flow graph and swapping their relative actions in

two parents, two new automats are created. This is shown
in figure 7.
c) Mutation operator: To do this operator a node ni is
selected randomly from call flow graph and its action is
swapped randomly. State of random node n5 before and
after mutation is shown in figure 8.
d) Penalty and reward operator: Since in proposed algorithm,
every chromosome is shown in the form of LA, in each
automata after examining fitness of a cluster (action)
which is selected randomly, that cluster will be rewarded
or penalized. State of a cluster in the relative action states
set will be changed as the result of rewarding or penalizing
it. If a cluster is placed at the outer state of an action,
penalizing it leads to action of one of its nodes is changed
and so a new clustering will created. The rate of this
operator should be low, because this operator is a random
search operator, and reduces the effectiveness of algorithm
if it is applied with high rate. Reward and penalty operator
vary according to the LA types.
For example, in an automata with similar connections to
Tsetline automata if cluster C3 is in the states set {11, 12,
13, 14, 15}, and its execution time without considering
remote calls is less than threshold, this cluster is rewarded
and it moves to the inner states of its action. If cluster C3 is
in the innermost state (state number 11) and rewarded, it
will remain in that state. The movement of such cluster is
shown in figure 9.
If execution time of a cluster without considering remote
calls is greater than threshold, this cluster is not
appropriate and it is penalized. The movement of such
cluster for two different cases is as follows:
a) The cluster is at a state other than outer state: Panelizing
this cluster reduces its importance and it moves to the
outer states. The movement of such cluster is shown in
figure 10.
b) The cluster is in outer state: In this case, we find a
cluster of automata in which, if one of the cluster nodes is
moved to the founded cluster, maximum increase in fitness
outcome. In this case, if the founded cluster is not in outer
state, first it is moved to outer state of its action and then
node is moved to it. The movement of such cluster is
shown in figure 11.
Important subject is determining of threshold value. For
this consider concurrent execution time in following three
different cases:
Best Case (100% Concurrency):

Average Case (50% Concurrency):

Worst Case (0% Concurrency):

In above criteria, Tc is concurrent execution time, Ts is
sequent execution time, and NoClusters is number of
clusters. In this paper we considered threshold value be
concurrent execution time in average case.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 3, July 2010
www.IJCSI.org

41

C1={ n1, n7} / C2={n4} /

C3={n2, n5} / C4={n3, n6, n8}
C1={n1, n2, n3} / C2={n6} /
C3={n4, n5} / C4={n7, n8}

C1={ n1, n3} / C2={n4} /

C3={n2, n5} / C4={n7, n6, n8}
C1={n1, n2, n7} / C2={n6} /
C3={n4, n5} / C4={n3, n8}

Fig. 7 The manner of doing crossover operator

C1={n3, n7} / C2={n4, n6,n5}

/ C3={ n1, n2} / C4={n8}
C1={n3, n7} / C2={n4, n6} /
C3={ n1, n2, n5} / C4={n8}

b. State of node n5 after
mutation

a. State of node n5 before
mutation

Fig. 8 The manner of doing mutation operator

b. Sate of cluster C3 after
rewarding

a. Sate of cluster C3 before
rewarding

Fig. 9 The manner of rewarding a cluster

b. Sate of cluster C3 after
penalizing

a. Sate of cluster C3 before
penalizing

Fig. 10 The manner of penalizing a cluster palced in a state other than
outer state

c. Transferring a

node from cluster C4
to C1

b. Transferring
cluster C1 to outer

state

a. Sate of cluster C4
before penalizing

Fig. 11 The manner of penalizing a cluster palced in outer state

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 3, July 2010
www.IJCSI.org

42

Proposed algorithm pseudo code is shown in figure 12.

Function CFG_Clustering(CallFlowGraph):Clusters
Begin
 n = Size of Population;
 Create the initial population LA1 … LAn;
 FitnessEvaluation(CallFlowGraph, LAi); //for all LAs
 while(Termination Condition not Satisfied) do
 NewLA1 = NewLA2 = LA with minimum Value of
 Execution Time; //move best two individuals to the new population

 for i = 2 to n do //Create new population
 Select LA1; Select LA2 ;
 if (Random ≤ CrossoverRate) then
 Crossover(LA1, LA2);
 if (Random ≤ MutationRate) then
 Mutation(LA1); Mutation(LA2);
 NewLAi+1 = LA1;
 NewLAi+2 = LA2 ;
 i=i+2;
 end for
 for i = 1 to n do //Replace old population with new population

 LAi = NewLAi;
 Cj = Random * NoClusters;
 if (ExecutionTime(LAi.Cj) < Threshold) then
 Reward(LAi , Cj);
 else
 Penalize(LAi , Cj);
 end for
 FitnessEvaluation(CallFlowGraph, LAi); //for all LAs
 end while
End function

Fig. 12 Proposed algorithm pseudo code

5. Proposed method evaluation

In order to evaluating proposed algorithm, distributed code
of implementation of TSP was used. This distributed code
solves TSP by using dynamic methods and finding optimal
spanning tree.
Table and diagram 1 shows execution time of TSP
program for three cases sequential, distributed by
reference [2] algorithm clustering, and distributed by
proposed algorithm clustering for graphs with different
node and edges number.
As you observed average execution time of TSP program
by proposed algorithm clustering is less than average
execution time of sequential and distributed by reference
[2] algorithm clustering. This shows that proposed
algorithm is efficient than other algorithms, and it can be
used for clustering of call flow graph of large application
programs.

Table 1: Execution time of TSP program for three cases sequential,
distributed by reference [2] algorithm clustering, and distributed by

proposed algorithm clustering for graphs with different node and edges
number

N
um

be
r

of
 G

ra
ph

N

od
es

N
um

be
r

of
 G

ra
ph

E

d
ge

s

S
eq

u
en

ti
al

E

xe
cu

ti
on

 T
im

e

D
is

tr
ib

ut
ed

E

xe
cu

ti
on

 T
im

e
w

it
h

 R
ef

er
en

ce
 [

2]

A
lg

or
it

h
m

C

lu
st

er
in

g
D

is
tr

ib
ut

ed

E
xe

cu
ti

on
 T

im
e

w
it

h
 P

ro
p

os
ed

A

lg
or

it
h

m

C
lu

st
er

in
g

20 40 0.573 7.357 4.347

40 81 1.383 7.810 5.057

60 122 3.246 8.163 6.163

80 163 11.214 11.109 8.713

100 204 19.773 14.741 10.677

120 245 43.517 30.722 22.222

140 286 85.362 60.871 46.546

160 327 145.721 105.227 73.379

180 368 234.871 168.280 112.511

200 409 360.143 261.412 196.615

220 450 576.655 440.343 316.741

240 491 997.653 774.142 542.524

Average Execution Time
(Second) 206.6759 157.5148 112.125

Diagram 1: Execution time of TSP program for three cases sequential,
distributed by reference [2] algorithm clustering, and distributed by

proposed algorithm clustering for graphs with different node and edges
number

6. Conclusion

Problem of finding optimal distribution for reaching
maximum concurrency in distributed programs is a NP-
Complete problem. So, Deterministic methods are not
appropriate for this problem. In this paper an evolutionary

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 3, July 2010
www.IJCSI.org

43

non-deterministic method is proposed for this problem.
Proposed method uses both GAs and LAs simultaneously
to search in state space. Evaluation results and amount of
yielding concurrency from using proposed algorithm,
indicator of proposed method efficiency over others.

References
[1] S. Parsa, and O. Bushehrian, "Performance-Driven Object-

Oriented Program Remodularization", ISSN: 1751-8806,
INSPEC Accession Number: 10118318, Digital Object
Identifier: 10.1049/iet-sen: 20070065, Aug, 2008.

[2] S. Parsa, and V. Khalilpoor, "Automatic Distribution of
Sequential Code Using JavaSymphony Middleware", 32th
International Conference On Current Trends in Theory and
Practice of Computer Science, 2006.

[3] Roxana Diaconescu, Lei Wang, Zachary Mouri, and Matt
Chu, "A Compiler and Runtime Infrastructure for Automatic
Program Distribution", 19th International Parallel and
Distributed Processing Symposium (IPDPS 2005), IEEE,
2005.

[4] S. Parsa, O. Bushehrian, "The Design and Implementation
of a Tool for Automatic Software Modularization", Journal
of Supercomputing, Volume 32, Issue 1, April 2005.

[5] Mohammad M. Fuad, and Michael J. Oudshoorn, "AdJava-
Automatic Distribution of Java Applications", 25th
Australasian Computer Science Conference (ACSC2002),
Monash University, Melbourne, 2002.

[6] S. Mitchell Brian, "A Heuristic Search Approach to Solving
the Software Clustering Problem", Thesis, Drexel
University, March 2002.

[7] Thomas Fahringer, and Alexandru Jugravu,
"JavaSymphony: New Directives to Control and
Synchronize Locality, Parallelism, and Load Balancing for
Cluster and GRID-Computing", Proceedings of Joint ACM
Java Grande ISCOPE 2002 Conference, Seattle,
Washington, Nov 2002.

[8] Michiaki Tatsubori, Toshiyuki Sasaki, Shigeru Chiba1, and
Kozo Itano, "A Bytecode Translator for Distributed
Execution of Legacy Java Software", LNCS 2072, pp. 236-
255, 2001.

[9] Markus Dahm, "Doorastha—A Step Towards Distribution
Transparency", JIT, 2000.

[10] Michael Philippsen, and Bernhard Haumacher, "Locality
Optimization in JavaParty by Means of Static Type
Analysis", Concurrency: Practice & Experience, pp. 613-
628, July 2000.

[11] Andre Spiegel, "Pangaea: An Automatic Distribution Front-
End for Java", 4th IEEE Workshop on High-Level Parallel
Programming Models and Supportive Environments (HIPS
'99), San Juan, Puerto Rico, April 1999.

[12] Saeed Parsa, and Omid Bushehrian, "Genetic Clustering
with Constraints", Journal of Research and Practice in
Information Technology, 2007.

[13] Leng Mingwei, Tang Haitao, and Chen Xiaoyun, "An
Efficient K-means Clustering Algorithm Based on Influence
Factors", Eighth ACIS Int. Conference on Software
Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing, pp. 815-820, July 2007.

[14] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu,
Christine D. Piatko, Ruth Silverman, and Angela Y. Wu,

"An Efficient K-Means Clustering Algorithm: Analysis and
Implementation", IEEE Transaction on Pattern Analysis and
Machine Intelligence, Vol. 24, No. 7, July 2002.

[15] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu,
Christine D. Piatko, Ruth Silverman, and Angela Y. Wu,
"The Analysis of a Simple K-Means Clustering Algorithm",
Proc. of the Sixteenth Annual Symposium on Computational
Geometry, pp. 162, June 2000.

[16] B. Hendrickson, and R. Leland, "A Multilevel Algorithm for
Partitioning Graphs", Proceedings of the 1995 ACM/IEEE
Conference on Supercomputing (CDROM), pp. 28, ACM
Press, 1995.

[17] V. R. Vemuri, "Genetic Algorithms”, Computer Society
meeting, Department of Applied Science, University of
California, 1997.

[18] E. Cantu-Paz, "A Survey of Parallel Genetic Algorithms",
IlliGAL Reprot, No. 97003, May 1997.

[19] D. E. Goldberg, "Genetic Algorithms in Search,
Optimization and Machine Learning", Reading, MA,
Addition-Wesley, 1989.

[20] F. Busetti, "Genetic Algorithm Overview".
[21] K. A. Dejong , and W. M. Spears, "Using Genetic

Algorithms to Solve NP-Complete Problems", Proceedings
of the Third International Conference on Genetic
Algorithms, 1989.

[22] K. S. Narendra, and M. A. L. Thathachar, "Learning
Automata: An Introduction", Prentice-hall, Englewood
cliffs, 1989.

[23] M. R. Meybodi, and H. Beigy, "Solving Graph Isomorphism
Problem by Learning Automata", Thesis, Computer
Engineering Faculty, Amirkabir Technology University,
Tehran, Iran, 2000.

[24] H. Beigy, and M. R. Meybodi, "Optimization of Topology
of Neural Networks Using Learning Automata",
Proceedings of 3th Annual International Computer Society
of Iran Computer Conference (CSICC-98), Tehran, Iran, pp.
417-428, 1999.

[25] B. J. Oommen, R. S. Valiveti, and J. R. Zgierski, "An
Adaptive Learning Solution to the Keyboard Optimization
Problem", IEEE Transaction On Systems. Man. And
Cybernetics, Vol. 21, No. 6, pp. 1608-1618, 1991.

[26] B. J. Oommen, and D. C. Y. Ma, "Deterministic Learning
Automata Solution to the Keyboard Optimization Problem",
IEEE Transaction on Computers, Vol. 37, No. 1, pp. 2-3,
1988.

[27] A. A. Hashim, S. Amir, and P. Mars, "Application of
Learning Automata to Data Compression", in Adaptive and
Learning Systems, K. S. Narendra, Editor, New York,
Plenum Press, pp. 229-234, 1986.

[28] M. R. Meybodi, and S. Lakshmivarhan, "A Learning
Approach to Priority Assignment in a Two Class M/M/1
Queuing System with Unknown Parameters", Proceedings
of Third Yale Workshop on Applications of Adaptive
System Theory, Yale University, pp. 106-109, 1983.

[29] Bager Zarei, M. R. Meybodi, and Mortaza Abbaszadeh, "A
Hybrid Method for Solving Traveling Salesman Problem",
Proceedings of the 6th IEEE/ACIS International Conference
on Computer and Information Science (ICIS 2007), IEEE
Computer Society, Melbourne, Australia, pp. 394-399, 11-
13 July 2007.

