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Abstract 
In spite of the several software effort estimation models 
developed over the last 30 years, providing accurate estimates of 
the software project under development is still unachievable goal. 
Therefore, many researchers are working on the development of 
new models and the improvement of the existing ones using 
artificial intelligence techniques such as: case-based reasoning, 
decision trees, genetic algorithms and neural networks. This 
paper is devoted to the design of Radial Basis Function Networks 
for software cost estimation. It shows the impact of the RBFN 
network structure, especially the number of neurons in the hidden 
layer and the widths of the basis function, on the accuracy of the 
produced estimates measured by means of MMRE and Pred 
indicators. The empirical study uses two different software 
project datasets namely, artificial COCOMO’81 and Tukutuku 
datasets. 
 
Keywords: software effort estimation, RBF Neural Networks, 
COCOMO'81, Tukutuku dataset. 

1. Introduction 

As demand for software computer increases continually 
and the software scope and complexity become higher 
than ever, the software companies are in real need of 
accurate estimates of the project under development. 
Indeed, good software effort estimates are critical to both 
companies and clients. They can be used for making 
request for proposals, contract negotiations, planning, 
monitoring and control [1]. Unfortunately, many software 
development estimates are quite inaccurate. Molokken and 
Jorgensen report in recent review of estimation studies 
that software projects expend on average 30-40% more 
effort than is estimated [2].  
 
In fact, if the project is underestimated, once it seems 
running out of the schedule, the project manager and his 
team are put under high pressure to finish the software.  As 
a result, the manager may skimp on verification and 
validation or quality assurance. For example, developers 
might scrap unit testing or software integration and test or 

rush a premature design into production [3]. Consequently, 
the delivered product may be with poor quality and many 
underdeveloped functions. On the other side, if the project 
is overestimated, hence according to Parkinson’s Law, the 
work will expand to fill available time, which leads the 
company to miss opportunities to take on other projects. 
 
In order to help solving the problems of making some 
accurate software project predictions and supporting 
managers in their task, many estimation models have been 
developed over the last three decades [4], falling into three 
general categories [5][6]: 
  
Expert judgment: This technique evolves the 
consultation of one expert in order to derive an estimate 
for the project based on his experience and available 
information about the project under development. This 
technique has been used extensively. However, the 
estimates are produced in intuitive and non-explicit way. 
Therefore, it is not repeatable. According to Gray et al. [7] 
although expert judgment is always difficult to quantify, it 
can be an effective estimate tool to adjust algorithmic 
models.   
 
Algorithmic models: These are the most popular models 
in the literature. They are based on mathematical formulae 
linking effort with effort drivers to produce an estimate of 
the project. Usually the principal effort driver used in these 
models is software size (FP, source lines of code…). They 
need to be calibrated to local circumstances. 
 
Machine learning: The machine learning approaches 
were appeared at the beginning of nineties to overcome the 
drawbacks of the two previous categories. Examples of 
these approaches include regression trees [8] [9], fuzzy 
logic [1] [10], case based reasoning [6] [11], and artificial 
neural networks [12] [13] [14] [15]. 
 
This paper is concerned with the design of the neural 
networks approach, especially radial basis function neural 
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networks, for development effort estimation models. 
Artificial neural networks are recognized for their ability 
to produce good results when dealing with problems where 
there are complex relationships between inputs and 
outputs, and where the inputs are distorted by high noise 
levels [14]. The use of Radial Basis Function neural 
Networks (RBFN) in software effort estimation requires 
the determination of the structure of these latter and the 
adjustment of their parameters. 
 
A critical step among the RBF networks configuration is 
the determination of the optimal structure of the hidden 
layer. In particular the number of hidden neurons and the 
formulae used to compute the widths of these kernels 
functions. In our earlier work [15], we have conducted an 
empirical study using two different designs of RBFN 
networks, one time using APC-III clustering algorithm to 
construct the hidden layer and another time using the well-
known algorithm K-means. The results obtained suggest 
that RBFN with K-means performs better than that with 
APC-III in terms of accuracy measures MMRE and Pred. 
In addition, the results showed that the accuracy of RBFN 
depends also on classification used in the hidden layer. For 
instance, the classification obtained by minimizing 
objective function J leads to better estimates than that 
obtained by maximizing Dunn index D1. 
 
The main goal of the present paper is to experiment two 
designs of RBF neural networks for software effort 
estimation. It focuses on the impact of the widths of the 
Gaussian functions on accuracy of estimates generated by 
RBFN network. 
 
The remaining of this paper is organized as follows. 
Section 2 reviews the basic principles of a RBF neural 
network. Section 3 tackles the description of datasets used 
to perform our empirical study and evaluation criteria 
adopted to compare the predictive accuracy of the 
designed models. Section 4 focuses on the configuration of 
the proposed RBF network. Section 5 presents and 
discusses the obtained results, and finally, in Section 6 we 
provide a number of concluding comments. 

2. RBF Neural Networks 

The architecture of RBFN Neural Network is quite simple. 
It involves three different layers. An input layer which 
consists of sources nodes (cost drivers); a hidden layer in 
which each neuron computes its output using a radial basis 
function, which is in general a Gaussian function, and an 
output layer which builds a linear weighted sum of hidden 
neuron outputs and supplies the response of the network 
(effort).  A RBF neural network configured for software 
effort estimation has only one output neuron. So, it 

implements the output-input relation in Eq. (1) which is 
indeed a composition of the nonlinear mapping realized by 
the hidden layer with the linear mapping realized by the 
output layer 
 

ሻݔሺܨ                                   ൌ  ሻݔ߶ሺߚ
ெ

ୀଵ

                             ሺ1ሻ 

where M is the number of hidden neurons, ݔ א Թ is the 
input, ߚ  are the output layer weights of the RBFN 
networks and ߶ሺݔሻ is Gaussian radial basis function given 
by: 

                                 ߶ሺݔሻ ൌ e
ቌି
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where ܿ א Թ  and ߪ  are the center and the width of ݆௧ 
hidden neuron respectively and ԡ. ԡ denotes the Euclidean 
distance. 

 
Fig. 1 Radial Basis Function Network architecture for software 

development effort estimation 

3. Data Description and Evaluation Criteria 

This section describes the datasets used to perform the 
empirical study, and presents also the evaluation criteria 
adopted to compare the estimating capability of the 
developed models.  

3.1 Data Description 

The data used in the present study comes from two sources 
namely, from the COCOMO'81 dataset published by 
Boehm in his seminal book "software engineering 
economics" [16] and from Tukutuku dataset.  
 
 The Artificial COCOMO’81 dataset is generated 
artificially from the original one. It contains 252 software 
projects which are mostly scientific applications developed 
by Fortran [16]; Each project is described by 13 attributes 
(see Table 1) : the software size measured in KDSI (Kilo 
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Delivered Source Instructions) and the remaining 12 
attributes are measured on a scale composed of six 
linguistic values: ‘very low’, ‘low’, ‘nominal’, ‘high’, 
‘very high’ and ‘extra high’. These 12 attributes are related 
to the software development environment such as the 
experience of the personnel involved in the software 
project, the method used in the development and the time 
and storage constraints imposed on the software. 

Table 1: Software attributes for COCOMO'81dataset 
Software 
attributes 

Description 

SIZE Software Size 

DATA Database Size 

TIME Execution Time Constraint 

STOR Main Storage Constraint 

VIRTMIN Virtual Machine Volatility 

VIRT MAJ Virtual Machine Volatility 

TURN Computer Turnaround 

ACAP Analyst Capability 

AEXP Applications Experience 

PCAP Programmer Capability 

VEXP Virtual Machine Experience 

LEXP Programming Language Experience 

SCED  Required Development 

 The Tukutuku dataset contains 53 Web projects [17]. 
Each Web application is described using 9 numerical 
attributes such as: the number of html or shtml files used, 
the number of media files and team experience (see Table 
2). However, each project volunteered to the Tukutuku 
database was initially characterized using more than 9 
software attributes, but some of them were grouped 
together. For example, we grouped together the following 
three attributes: the number of new Web pages developed 
by the team, the number of Web pages provided by the 
customer and the number of Web pages developed by a 
third party (outsourced) in one attribute reflecting the total 
number of Web pages in the application (Webpages). 

Table 2: Software attributes for Tukutuku dataset 

Attributes Description 

Teamexp 
Average number of years of experience the 
team has on Web development 

Devteam 
Number of people who worked on the 
software project 

Webpages Number of web pages in the application 

Textpages 
Number of text pages in the application (text 
page has 600 words) 

Img Number of images in the application 

Anim Number of animations in the application 

Audio/video 
Number of audio/video files in the 
application 

Tot-high 
Number of high effort features in the 
application 

Tot-nhigh 
Number of low effort features in the 
application 

3.2 Evaluation Criteria 

We employ the following criteria to assess and compare 
the accuracy of the effort estimation models. A common 
criterion for the evaluation of effort estimation models is 
the magnitude of relative error (MRE), which is defined as  
 

ܧܴܯ      ൌ ฬ൬
௧௨ݐݎ݂݂ܧ െ ௦௧௧ௗݐݎ݂݂ܧ

௧௨ݐݎ݂݂ܧ
൰ฬ          ሺ3ሻ 

 
 
The MRE values are calculated for each project in the 
datasets, while mean magnitude of relative error (MMRE) 
computes the average over N projects 
 

ܧܴܯܯ                          ൌ
1
ܰ
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ே

ୀଵ

                                  ሺ4ሻ 

 
Generally, the acceptable target value for MMRE is 25%. 
This indicates that on the average, the accuracy of the 
established estimation models would be less than 25%. 
 
Another widely used criterion is the Pred(l) which 
represents the percentage of MRE that is less than or equal 
to the value l among all projects. This measure is often 
used in the literature and is the proportion of the projects 
for a given level of accuracy. The definition of Pred(l) is 
given as follows: 
 

ሺ݈ሻ݀݁ݎܲ                                   ൌ
݇
ܰ

                                         ሺ5ሻ 

 
Where N is the total number of observations and k is the 
number of observations whose MRE is less or equal to l. 
A common value for l is 0.25, which also used in the 
present study. The Pred(0.25) represents the percentage of 
projects whose MRE is less or equal to 25%. The 
Pred(0.25) value identifies the effort estimates that are 
generally accurate whereas the MMRE is fairly 
conservative with a bias against overestimates. 

4. RBF Network Construction 

As we have mentioned earlier in this paper, the use of RBF 
neural network to estimate software development effort 
requires the determination of the network architecture and 
its parameters, namely the number of input and hidden 
neurons, the centers ܿ, widths ߪ, and the weights ߚ. 
 
The number of the input neurons is, usually and simply, 
the number of the attributes describing the historical 
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software projects in the used dataset.  Therefore, when 
applying RBF network to COCOMO’81, the number of 
input neurons is equal to 9 and in the case of Tukutuku 
dataset, the number of input neurons is equal to 13. 
Concerning the number of hidden neurons, C, is 
determined using clustering algorithms. The following 
subsection deals with the initialization of the centers of 
hidden layer by means of k-means algorithm. 

4.1 Construction of the Hidden Layer of RBFN 

The construction of hidden layer of the proposed network 
is achieved using clustering techniques. The role of 
clustering in the design of RBFN is to set up an initial 
distribution of receptive fields (hidden neurons) across the 
input space of the input variables (software attributes). In 
literature, clustering techniques have been successfully 
used in the configuration of the hidden layer of RBFN [18] 
[19]. 
 
K-means clustering algorithm, developed by MacQueen in 
1967 [20], is a popular clustering technique which is used 
in numerous applications. It is a multi-pass clustering 
algorithm. The k-means algorithm partitions a collection 
of N vectors into c clusters ݅ܥ, i=1,..,c. The aim is to find 
cluster centers (centroids) by minimizing a dissimilarity 
(or distance) function which is given in below.  

ܬ                                  ൌ   ݀
௫ೖאೕ



ୀଵ

ሺݔ, ܿሻ                                ሺ6ሻ 

 
where ܿ is the center of cluster ܥ; ݀ሺݔ, ܿሻ is the distance 
between ith center ሺܿሻ  and kth data point ( ݔ ). For 
simplicity, the Euclidean distance is used as dissimilarity 
measure and the overall dissimilarity function is expressed 
as follows. 

ܬ                                 ൌ   ԡݔ െ ܿԡଶ

௫ೖאೕ



ୀଵ

                              ሺ7ሻ 

The outline of the k-means algorithm can be stated as 
follows: 

 
1- Define the number of the desired clusters, C.   
2- Initialize the centers ܥ , i=1..C. This is typically 

achieved by randomly selecting c points from among 
all of the data points. 

3- Compute the Euclidean distance between ݔ  and ܿ , 
j=1..N and i=1..c 

4- Assign each ݔ to the most closer cluster ܥ 
5- Recalculate the centers ܿ 
6- Compute the objective function J given in Eq. (7). 

Stop if its improvement over previous iteration is 
below a threshold. 

7- Iterate from step 3. 
 

The above k-means based initialization process produces a 
set of centers ሺܿሻ, which are the kernels of Gaussian basis 
function.  

4.2 Computation of the widths 

One of the most important aspects to be addressed is the 
determination of the widths of unit function and its 
inherent complexity [21]. These parameters control the 
amount of overlapping of kernels functions as well as the 
network generalization. Small values lead a rapidly 
decreasing function while a larger values result in more 
varying function. Hence, it is clear that the setting of the 
widths ( σ୨ሻ is critical step to the RBF network 
generalization. To address this issue, many heuristics and 
techniques based on solid mathematical concepts have 
been proposed in the literature [21] [22] [23]. The main 
idea is to determine ሺσ୨ሻ in order to cover the input space 
as uniformly as possible [19]. However, covering the 
historical software project space uniformly implies that the 
RBFN will be able to generate an estimate for a new 
project even though it is not similar to any historical 
project. In such a situation, we prefer that the RBFN does 
not provide any estimate than one that may easily lead to 
wrong managerial decisions and project failure. In [24] 
and [25], we have adopted a simple strategy based 
primarily on assigning one value to all ሺσ୨ሻ. In the present 
paper we are interested in studying the impact of the 
widths on the accuracy of RBFN. The empirical study uses 
the following formulae: 

 

ሻݔሺ݉ܽߪ   ൌ ቐ
max
௫ೕא

݀൫ݔ, ܿ൯ , ሻܥሺ݀ݎܽܿ ݂݅  1

max
/ௗሺೖሻவଵ

ߪ , ሻܥሺ݀ݎܽܿ ݂݅ ൌ 1
    ሺ8ሻ 

 

ሺ݉݅݊ሻߪ   ൌ ቐ
max
௫ೕא

݀ሺݔ, ܿሻ , ሻܥሺ݀ݎܽܿ ݂݅  1

min
/ௗሺೖሻவଵ

ߪ , ሻܥሺ݀ݎܽܿ ݂݅ ൌ 1
     ሺ9ሻ 

 
where CardሺC୩ሻ is the cardinality of cluster ܥ. 

4.3 Computation of weights  

Provided that the centers ܿ and the widths  ߪ of the basis 
functions have been determined, the weights of the output 
layer can be calculated and adjusted using a well-known 
supervised learning algorithm Backpropagation, which 
based on following formula: 
 
         Δߚ ൌ ௦௧௧ௗݐݎሺ݂݂݁ߟ െ  ௧௨ሻ߶      ሺ10ሻݐݎ݂݂݁
 
where ߟ is the learning rate and ߶ is the output of the jth 
basis function of the hidden layer. 
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5. Overview of Empirical Results 

The following section presents and discusses the results 
obtained when applying the RBFN to the artificial 
COCOMO’81 and Tukutuku datasets. The calculations 
were made using two software prototypes developed with 
C language under a Microsoft Windows PC environment. 
The first software prototype implements the k-means 
clustering algorithm, providing the clusters ሺݏݎ݁ݐݏݑ݈ܿ ܥሻ 
and their centers ሺ ܿሻ from the used dataset. The second 
software prototype implements a cost estimation model 
based on an RBFN architecture in which the hidden layer 
parameters are determined by means of the first software 
prototype. 
 
The two datasets used to carry out the empirical study 
were prepared and analyzed. For example all numeric 
types of effort drivers were normalized within 0 to 1 in 
both datasets in order to have the same degree of 
influence. Afterwards, we conducted several experiments 
using different configurations of RBFN. These 
experiments use the full dataset for training and testing. 
 

5.1 COCOMO'81 dataset 

Our first experiment is performed using COCOMO’81 
dataset containing 252 historical software projects. Two 
models of RBF networks were designed to examine the 
impact of basis function widths on accuracy of estimates 
produced by the network. The first RBFN effort estimation 
model uses the formula of widths given in Eq. (8) and the 
second model uses the formula of widths given in Eq. (9). 

 
Model 1:   ܴܰܨܤሺߪሺ݉ܽݔሻ,  ሻܥ
Model 2:   ܴܰܨܤሺߪሺ݉݅݊ሻ,  ሻܥ

 
From each model, different configurations have been 
obtained by varying the number of hidden neurons C. the 
aim was to determine which widths formula improve the 
estimates. So, we have trained and tested the above models 
using COCOMO’81 dataset. The learning rate was set to 
0.03 for the all experiments in this paper. 
 
Fig. 2 shows and compares the results of the two models. 
From this figure we note that the RBFN models using 
 ሻݔሺ݉ܽߪ ሺ݉݅݊ሻ generate a lower MMRE than that usingߪ
for each number of hidden neurons. For example, for 
C=120 the model 1 made a higher prediction error 
(MMRE=60.81) than the Model 2 (MMRE=34.96). Then, 
in terms of MMRE, Model 2 performs better than Model 1.  
 

Fig. 2 Relationship between the accuracy of RBFN (MMRE) and used 
classification k-means for COCOMO'81 dataset. 

 
Fig. 3 compares the accuracy of the two above models, in 
terms of Pred(0.25), when varying the number of hidden 
neurons. As can be seen, the accuracy of RBF networks 
using ߪሺ݉݅݊ሻ performs much better than RBF Networks 
using ሻݔሺ݉ܽߪ  . Indeed, the Model 1 produced poor 
estimates even when increasing the number of hidden 
neurons until 160. Whereas Model 2 generates acceptable 
effort estimates with a number of hidden neurons C=120.  

Fig. 3 Relationship between the accuracy of RBFN (Pred) and the used 
formula of σ according to the number of hidden neurons. 

Table 3 shows the results obtained using different 
configurations of RBF networks. 
 
 
 
 
 
 
 
 
 
 



IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 3, July 2010 
www.IJCSI.org 

 

16

 

Table 3: MMRE and Pred results of different RBFN configurations for 
COCOMO'81 dataset 

Number 
of hidden 
neurons 

Accuracy of RBFN 
using  ࣌ሺ࢞ࢇሻ Eq. 8 

Accuracy of RBFN 
using  ࣌ሺሻ Eq. 9 

MMRE Pred(0.25) MMRE Pred(0.25)
120 60.81 61.9 34.96 75.4
130 129.13 52.78 89.69 69.84
140 88.35 58.73 92.46 69.84
150 81.08 58.33 38.34 80.56
160 54.41 59.13 42.38 81.75
170 47.2 75.79 31.81 86.9
180 46.47 70.63 20.48 87.7
190 50.74 78.17 35.61 89.29
200 13.78 86.09 2.59 97.62
210 5.99 94.05 4.03 96.83
220 6.49 93.65 3.56 96.43
230 5.68 94.84 1.21 98.41
240 1.55 98.02 1.66 98.02
250 0.02 100 0.01 100

 

5.1 Tukutuku dataset 

In [22], the authors state that the problem of fixing width 
of Gaussian kernels is not evident since it is largely data-
dependent and depends also on the dimension of input 
space. In this regard, we have replicated the previous 
empirical study using Tukutuku dataset to verify how 
much the Eq. (9) improves the accuracy of RBF Network 
in estimating software effort. 
 
So, we have conducted several experiments, one time 
using RBFN with ߪሺ݉ܽݔሻ and another time using RBFN 
with ሺ݉݅݊ሻߪ  . In addition, for each RBFN design we 
varied the number of hidden neurons from 32 to 52.  Fig. 4 
and Fig. 5 show the accuracy of both models (1 and 2), 
measured in terms of MMRE and Pred, on Tukutuku 
dataset. These figures confirm the superiority of the RBFN 
network that uses Eq. (9) to compute Gaussian kernels 
widths over that one using Eq. (8).  
 

Fig. 4 Relationship between the accuracy of RBFN (MMRE) and the 
used formula of σ according to the number of hidden neurons. 

 

Fig. 5 Relationship between the accuracy of RBFN (Pred) and the used 
formula of σ according to the number of hidden neurons. 

 
The following table (4) summarizes the results produced 
by RBFN network using the above formulae to calculate 
the Gaussian kernels widths. 
 

Table 4: MMRE and Pred results of different RBFN configurations for 
Tukutuku dataset 

Number 
of hidden 
neurons 

Accuracy of RBFN 
using  ࣌ሺ࢞ࢇሻ Eq. 1 

Accuracy of RBFN 
using  ࣌ሺሻ Eq. 2 

MMRE Pred(0.25) MMRE Pred(0.25)
34 91.24 52.83 75.46 67.92
36 117.99 39.62 77.3 60.38
38 71.65 62.26 28.96 69.81
40 139.67 41.51 49.56 67.92
42 286.16 28.3 39.91 77.36
44 67.84 73.58 47.69 77.36
46 30.35 81.13 17.64 86.79
48 60.63 73.58 43.47 84.91
50 8.68 96.23 8.67 96.23
52 2.23 96.23 2.23 96.23

6. Conclusion 

The aim of this work was to examine the impact of the 
radial basis widths on the accuracy of RBF Network in the 
context of software effort estimation. Some empirical 
studies in the literature have shown that in many situations, 
a bad choice of the widths can easily lead to poor 
approximation ability.  
In this paper, we have designed two RBF networks for 
software effort estimation. Each one of these networks 
used a different formula to compute the widths of the 
Gaussian kernels. These RBFN models were trained and 
tested using two software projects datasets. The results 
show that the use of an adequate formula of width which 
controls the overlap between Gaussian kernels, according 
to the number of projects placed in the region covered by 
centers, improves greatly the estimates generated by 
RBFN network model. 
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