
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 3, July 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

11

Design of Radial Basis Function Neural Networks for Software
Effort Estimation

Ali Idri1, Abdelali Zakrani1 and Azeddine Zahi2

 1 Department of Software Engineering, ENSIAS, Mohammed Vth –Souissi University,
BP. 713, Madinat Al Irfane, Rabat, Morocco

2 Department of Computer Science, FST, Sidi Mohamed Ben Abdellah University,

B.P. 2202, Route d’Imouzzer, Fès, Morocco

Abstract
In spite of the several software effort estimation models
developed over the last 30 years, providing accurate estimates of
the software project under development is still unachievable goal.
Therefore, many researchers are working on the development of
new models and the improvement of the existing ones using
artificial intelligence techniques such as: case-based reasoning,
decision trees, genetic algorithms and neural networks. This
paper is devoted to the design of Radial Basis Function Networks
for software cost estimation. It shows the impact of the RBFN
network structure, especially the number of neurons in the hidden
layer and the widths of the basis function, on the accuracy of the
produced estimates measured by means of MMRE and Pred
indicators. The empirical study uses two different software
project datasets namely, artificial COCOMO’81 and Tukutuku
datasets.

Keywords: software effort estimation, RBF Neural Networks,
COCOMO'81, Tukutuku dataset.

1. Introduction

As demand for software computer increases continually
and the software scope and complexity become higher
than ever, the software companies are in real need of
accurate estimates of the project under development.
Indeed, good software effort estimates are critical to both
companies and clients. They can be used for making
request for proposals, contract negotiations, planning,
monitoring and control [1]. Unfortunately, many software
development estimates are quite inaccurate. Molokken and
Jorgensen report in recent review of estimation studies
that software projects expend on average 30-40% more
effort than is estimated [2].

In fact, if the project is underestimated, once it seems
running out of the schedule, the project manager and his
team are put under high pressure to finish the software. As
a result, the manager may skimp on verification and
validation or quality assurance. For example, developers
might scrap unit testing or software integration and test or

rush a premature design into production [3]. Consequently,
the delivered product may be with poor quality and many
underdeveloped functions. On the other side, if the project
is overestimated, hence according to Parkinson’s Law, the
work will expand to fill available time, which leads the
company to miss opportunities to take on other projects.

In order to help solving the problems of making some
accurate software project predictions and supporting
managers in their task, many estimation models have been
developed over the last three decades [4], falling into three
general categories [5][6]:

Expert judgment: This technique evolves the
consultation of one expert in order to derive an estimate
for the project based on his experience and available
information about the project under development. This
technique has been used extensively. However, the
estimates are produced in intuitive and non-explicit way.
Therefore, it is not repeatable. According to Gray et al. [7]
although expert judgment is always difficult to quantify, it
can be an effective estimate tool to adjust algorithmic
models.

Algorithmic models: These are the most popular models
in the literature. They are based on mathematical formulae
linking effort with effort drivers to produce an estimate of
the project. Usually the principal effort driver used in these
models is software size (FP, source lines of code…). They
need to be calibrated to local circumstances.

Machine learning: The machine learning approaches
were appeared at the beginning of nineties to overcome the
drawbacks of the two previous categories. Examples of
these approaches include regression trees [8] [9], fuzzy
logic [1] [10], case based reasoning [6] [11], and artificial
neural networks [12] [13] [14] [15].

This paper is concerned with the design of the neural
networks approach, especially radial basis function neural

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 3, July 2010
www.IJCSI.org

12

networks, for development effort estimation models.
Artificial neural networks are recognized for their ability
to produce good results when dealing with problems where
there are complex relationships between inputs and
outputs, and where the inputs are distorted by high noise
levels [14]. The use of Radial Basis Function neural
Networks (RBFN) in software effort estimation requires
the determination of the structure of these latter and the
adjustment of their parameters.

A critical step among the RBF networks configuration is
the determination of the optimal structure of the hidden
layer. In particular the number of hidden neurons and the
formulae used to compute the widths of these kernels
functions. In our earlier work [15], we have conducted an
empirical study using two different designs of RBFN
networks, one time using APC-III clustering algorithm to
construct the hidden layer and another time using the well-
known algorithm K-means. The results obtained suggest
that RBFN with K-means performs better than that with
APC-III in terms of accuracy measures MMRE and Pred.
In addition, the results showed that the accuracy of RBFN
depends also on classification used in the hidden layer. For
instance, the classification obtained by minimizing
objective function J leads to better estimates than that
obtained by maximizing Dunn index D1.

The main goal of the present paper is to experiment two
designs of RBF neural networks for software effort
estimation. It focuses on the impact of the widths of the
Gaussian functions on accuracy of estimates generated by
RBFN network.

The remaining of this paper is organized as follows.
Section 2 reviews the basic principles of a RBF neural
network. Section 3 tackles the description of datasets used
to perform our empirical study and evaluation criteria
adopted to compare the predictive accuracy of the
designed models. Section 4 focuses on the configuration of
the proposed RBF network. Section 5 presents and
discusses the obtained results, and finally, in Section 6 we
provide a number of concluding comments.

2. RBF Neural Networks

The architecture of RBFN Neural Network is quite simple.
It involves three different layers. An input layer which
consists of sources nodes (cost drivers); a hidden layer in
which each neuron computes its output using a radial basis
function, which is in general a Gaussian function, and an
output layer which builds a linear weighted sum of hidden
neuron outputs and supplies the response of the network
(effort). A RBF neural network configured for software
effort estimation has only one output neuron. So, it

implements the output-input relation in Eq. (1) which is
indeed a composition of the nonlinear mapping realized by
the hidden layer with the linear mapping realized by the
output layer

ሻݔሺܨ ൌ ሻݔ߶ሺߚ
ெ

ୀଵ

 ሺ1ሻ

where M is the number of hidden neurons, ݔ א Թ is the
input, ߚ are the output layer weights of the RBFN
networks and ߶ሺݔሻ is Gaussian radial basis function given
by:

 ߶ሺݔሻ ൌ e
ቌି

ฮ୶ିୡౠฮ
మ

ౠ
మ ቍ

 ሺ2ሻ

where ܿ א Թ and ߪ are the center and the width of ݆௧
hidden neuron respectively and ԡ. ԡ denotes the Euclidean
distance.

Fig. 1 Radial Basis Function Network architecture for software

development effort estimation

3. Data Description and Evaluation Criteria

This section describes the datasets used to perform the
empirical study, and presents also the evaluation criteria
adopted to compare the estimating capability of the
developed models.

3.1 Data Description

The data used in the present study comes from two sources
namely, from the COCOMO'81 dataset published by
Boehm in his seminal book "software engineering
economics" [16] and from Tukutuku dataset.

 The Artificial COCOMO’81 dataset is generated
artificially from the original one. It contains 252 software
projects which are mostly scientific applications developed
by Fortran [16]; Each project is described by 13 attributes
(see Table 1) : the software size measured in KDSI (Kilo

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 3, July 2010
www.IJCSI.org

13

Delivered Source Instructions) and the remaining 12
attributes are measured on a scale composed of six
linguistic values: ‘very low’, ‘low’, ‘nominal’, ‘high’,
‘very high’ and ‘extra high’. These 12 attributes are related
to the software development environment such as the
experience of the personnel involved in the software
project, the method used in the development and the time
and storage constraints imposed on the software.

Table 1: Software attributes for COCOMO'81dataset
Software
attributes

Description

SIZE Software Size

DATA Database Size

TIME Execution Time Constraint

STOR Main Storage Constraint

VIRTMIN Virtual Machine Volatility

VIRT MAJ Virtual Machine Volatility

TURN Computer Turnaround

ACAP Analyst Capability

AEXP Applications Experience

PCAP Programmer Capability

VEXP Virtual Machine Experience

LEXP Programming Language Experience

SCED Required Development

 The Tukutuku dataset contains 53 Web projects [17].
Each Web application is described using 9 numerical
attributes such as: the number of html or shtml files used,
the number of media files and team experience (see Table
2). However, each project volunteered to the Tukutuku
database was initially characterized using more than 9
software attributes, but some of them were grouped
together. For example, we grouped together the following
three attributes: the number of new Web pages developed
by the team, the number of Web pages provided by the
customer and the number of Web pages developed by a
third party (outsourced) in one attribute reflecting the total
number of Web pages in the application (Webpages).

Table 2: Software attributes for Tukutuku dataset

Attributes Description

Teamexp
Average number of years of experience the
team has on Web development

Devteam
Number of people who worked on the
software project

Webpages Number of web pages in the application

Textpages
Number of text pages in the application (text
page has 600 words)

Img Number of images in the application

Anim Number of animations in the application

Audio/video
Number of audio/video files in the
application

Tot-high
Number of high effort features in the
application

Tot-nhigh
Number of low effort features in the
application

3.2 Evaluation Criteria

We employ the following criteria to assess and compare
the accuracy of the effort estimation models. A common
criterion for the evaluation of effort estimation models is
the magnitude of relative error (MRE), which is defined as

ܧܴܯ ൌ ฬ൬
௧௨ݐݎ݂݂ܧ െ ௦௧௧ௗݐݎ݂݂ܧ

௧௨ݐݎ݂݂ܧ
൰ฬ ሺ3ሻ

The MRE values are calculated for each project in the
datasets, while mean magnitude of relative error (MMRE)
computes the average over N projects

ܧܴܯܯ ൌ
1
ܰ

 ܧܴܯ

ே

ୀଵ

 ሺ4ሻ

Generally, the acceptable target value for MMRE is 25%.
This indicates that on the average, the accuracy of the
established estimation models would be less than 25%.

Another widely used criterion is the Pred(l) which
represents the percentage of MRE that is less than or equal
to the value l among all projects. This measure is often
used in the literature and is the proportion of the projects
for a given level of accuracy. The definition of Pred(l) is
given as follows:

ሺ݈ሻ݀݁ݎܲ ൌ
݇
ܰ

 ሺ5ሻ

Where N is the total number of observations and k is the
number of observations whose MRE is less or equal to l.
A common value for l is 0.25, which also used in the
present study. The Pred(0.25) represents the percentage of
projects whose MRE is less or equal to 25%. The
Pred(0.25) value identifies the effort estimates that are
generally accurate whereas the MMRE is fairly
conservative with a bias against overestimates.

4. RBF Network Construction

As we have mentioned earlier in this paper, the use of RBF
neural network to estimate software development effort
requires the determination of the network architecture and
its parameters, namely the number of input and hidden
neurons, the centers ܿ, widths ߪ, and the weights ߚ.

The number of the input neurons is, usually and simply,
the number of the attributes describing the historical

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 3, July 2010
www.IJCSI.org

14

software projects in the used dataset. Therefore, when
applying RBF network to COCOMO’81, the number of
input neurons is equal to 9 and in the case of Tukutuku
dataset, the number of input neurons is equal to 13.
Concerning the number of hidden neurons, C, is
determined using clustering algorithms. The following
subsection deals with the initialization of the centers of
hidden layer by means of k-means algorithm.

4.1 Construction of the Hidden Layer of RBFN

The construction of hidden layer of the proposed network
is achieved using clustering techniques. The role of
clustering in the design of RBFN is to set up an initial
distribution of receptive fields (hidden neurons) across the
input space of the input variables (software attributes). In
literature, clustering techniques have been successfully
used in the configuration of the hidden layer of RBFN [18]
[19].

K-means clustering algorithm, developed by MacQueen in
1967 [20], is a popular clustering technique which is used
in numerous applications. It is a multi-pass clustering
algorithm. The k-means algorithm partitions a collection
of N vectors into c clusters ݅ܥ, i=1,..,c. The aim is to find
cluster centers (centroids) by minimizing a dissimilarity
(or distance) function which is given in below.

ܬ ൌ ݀
௫ೖאೕ

ୀଵ

ሺݔ, ܿሻ ሺ6ሻ

where ܿ is the center of cluster ܥ; ݀ሺݔ, ܿሻ is the distance
between ith center ሺܿሻ and kth data point (ݔ). For
simplicity, the Euclidean distance is used as dissimilarity
measure and the overall dissimilarity function is expressed
as follows.

ܬ ൌ ԡݔ െ ܿԡଶ

௫ೖאೕ

ୀଵ

 ሺ7ሻ

The outline of the k-means algorithm can be stated as
follows:

1- Define the number of the desired clusters, C.
2- Initialize the centers ܥ , i=1..C. This is typically

achieved by randomly selecting c points from among
all of the data points.

3- Compute the Euclidean distance between ݔ and ܿ ,
j=1..N and i=1..c

4- Assign each ݔ to the most closer cluster ܥ
5- Recalculate the centers ܿ
6- Compute the objective function J given in Eq. (7).

Stop if its improvement over previous iteration is
below a threshold.

7- Iterate from step 3.

The above k-means based initialization process produces a
set of centers ሺܿሻ, which are the kernels of Gaussian basis
function.

4.2 Computation of the widths

One of the most important aspects to be addressed is the
determination of the widths of unit function and its
inherent complexity [21]. These parameters control the
amount of overlapping of kernels functions as well as the
network generalization. Small values lead a rapidly
decreasing function while a larger values result in more
varying function. Hence, it is clear that the setting of the
widths (σ୨ሻ is critical step to the RBF network
generalization. To address this issue, many heuristics and
techniques based on solid mathematical concepts have
been proposed in the literature [21] [22] [23]. The main
idea is to determine ሺσ୨ሻ in order to cover the input space
as uniformly as possible [19]. However, covering the
historical software project space uniformly implies that the
RBFN will be able to generate an estimate for a new
project even though it is not similar to any historical
project. In such a situation, we prefer that the RBFN does
not provide any estimate than one that may easily lead to
wrong managerial decisions and project failure. In [24]
and [25], we have adopted a simple strategy based
primarily on assigning one value to all ሺσ୨ሻ. In the present
paper we are interested in studying the impact of the
widths on the accuracy of RBFN. The empirical study uses
the following formulae:

ሻݔሺ݉ܽߪ ൌ ቐ
max
௫ೕא

݀൫ݔ, ܿ൯ , ሻܥሺ݀ݎܽܿ ݂݅ 1

max
/ௗሺೖሻவଵ

ߪ , ሻܥሺ݀ݎܽܿ ݂݅ ൌ 1
 ሺ8ሻ

ሺ݉݅݊ሻߪ ൌ ቐ
max
௫ೕא

݀ሺݔ, ܿሻ , ሻܥሺ݀ݎܽܿ ݂݅ 1

min
/ௗሺೖሻவଵ

ߪ , ሻܥሺ݀ݎܽܿ ݂݅ ൌ 1
 ሺ9ሻ

where CardሺC୩ሻ is the cardinality of cluster ܥ.

4.3 Computation of weights

Provided that the centers ܿ and the widths ߪ of the basis
functions have been determined, the weights of the output
layer can be calculated and adjusted using a well-known
supervised learning algorithm Backpropagation, which
based on following formula:

 Δߚ ൌ ௦௧௧ௗݐݎሺ݂݂݁ߟ െ ௧௨ሻ߶ ሺ10ሻݐݎ݂݂݁

where ߟ is the learning rate and ߶ is the output of the jth
basis function of the hidden layer.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 3, July 2010
www.IJCSI.org

15

5. Overview of Empirical Results

The following section presents and discusses the results
obtained when applying the RBFN to the artificial
COCOMO’81 and Tukutuku datasets. The calculations
were made using two software prototypes developed with
C language under a Microsoft Windows PC environment.
The first software prototype implements the k-means
clustering algorithm, providing the clusters ሺݏݎ݁ݐݏݑ݈ܿ ܥሻ
and their centers ሺ ܿሻ from the used dataset. The second
software prototype implements a cost estimation model
based on an RBFN architecture in which the hidden layer
parameters are determined by means of the first software
prototype.

The two datasets used to carry out the empirical study
were prepared and analyzed. For example all numeric
types of effort drivers were normalized within 0 to 1 in
both datasets in order to have the same degree of
influence. Afterwards, we conducted several experiments
using different configurations of RBFN. These
experiments use the full dataset for training and testing.

5.1 COCOMO'81 dataset

Our first experiment is performed using COCOMO’81
dataset containing 252 historical software projects. Two
models of RBF networks were designed to examine the
impact of basis function widths on accuracy of estimates
produced by the network. The first RBFN effort estimation
model uses the formula of widths given in Eq. (8) and the
second model uses the formula of widths given in Eq. (9).

Model 1: ܴܰܨܤሺߪሺ݉ܽݔሻ, ሻܥ
Model 2: ܴܰܨܤሺߪሺ݉݅݊ሻ, ሻܥ

From each model, different configurations have been
obtained by varying the number of hidden neurons C. the
aim was to determine which widths formula improve the
estimates. So, we have trained and tested the above models
using COCOMO’81 dataset. The learning rate was set to
0.03 for the all experiments in this paper.

Fig. 2 shows and compares the results of the two models.
From this figure we note that the RBFN models using
 ሻݔሺ݉ܽߪ ሺ݉݅݊ሻ generate a lower MMRE than that usingߪ
for each number of hidden neurons. For example, for
C=120 the model 1 made a higher prediction error
(MMRE=60.81) than the Model 2 (MMRE=34.96). Then,
in terms of MMRE, Model 2 performs better than Model 1.

Fig. 2 Relationship between the accuracy of RBFN (MMRE) and used
classification k-means for COCOMO'81 dataset.

Fig. 3 compares the accuracy of the two above models, in
terms of Pred(0.25), when varying the number of hidden
neurons. As can be seen, the accuracy of RBF networks
using ߪሺ݉݅݊ሻ performs much better than RBF Networks
using ሻݔሺ݉ܽߪ . Indeed, the Model 1 produced poor
estimates even when increasing the number of hidden
neurons until 160. Whereas Model 2 generates acceptable
effort estimates with a number of hidden neurons C=120.

Fig. 3 Relationship between the accuracy of RBFN (Pred) and the used
formula of σ according to the number of hidden neurons.

Table 3 shows the results obtained using different
configurations of RBF networks.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 3, July 2010
www.IJCSI.org

16

Table 3: MMRE and Pred results of different RBFN configurations for
COCOMO'81 dataset

Number
of hidden
neurons

Accuracy of RBFN
using ࣌ሺ࢞ࢇሻ Eq. 8

Accuracy of RBFN
using ࣌ሺሻ Eq. 9

MMRE Pred(0.25) MMRE Pred(0.25)
120 60.81 61.9 34.96 75.4
130 129.13 52.78 89.69 69.84
140 88.35 58.73 92.46 69.84
150 81.08 58.33 38.34 80.56
160 54.41 59.13 42.38 81.75
170 47.2 75.79 31.81 86.9
180 46.47 70.63 20.48 87.7
190 50.74 78.17 35.61 89.29
200 13.78 86.09 2.59 97.62
210 5.99 94.05 4.03 96.83
220 6.49 93.65 3.56 96.43
230 5.68 94.84 1.21 98.41
240 1.55 98.02 1.66 98.02
250 0.02 100 0.01 100

5.1 Tukutuku dataset

In [22], the authors state that the problem of fixing width
of Gaussian kernels is not evident since it is largely data-
dependent and depends also on the dimension of input
space. In this regard, we have replicated the previous
empirical study using Tukutuku dataset to verify how
much the Eq. (9) improves the accuracy of RBF Network
in estimating software effort.

So, we have conducted several experiments, one time
using RBFN with ߪሺ݉ܽݔሻ and another time using RBFN
with ሺ݉݅݊ሻߪ . In addition, for each RBFN design we
varied the number of hidden neurons from 32 to 52. Fig. 4
and Fig. 5 show the accuracy of both models (1 and 2),
measured in terms of MMRE and Pred, on Tukutuku
dataset. These figures confirm the superiority of the RBFN
network that uses Eq. (9) to compute Gaussian kernels
widths over that one using Eq. (8).

Fig. 4 Relationship between the accuracy of RBFN (MMRE) and the
used formula of σ according to the number of hidden neurons.

Fig. 5 Relationship between the accuracy of RBFN (Pred) and the used
formula of σ according to the number of hidden neurons.

The following table (4) summarizes the results produced
by RBFN network using the above formulae to calculate
the Gaussian kernels widths.

Table 4: MMRE and Pred results of different RBFN configurations for
Tukutuku dataset

Number
of hidden
neurons

Accuracy of RBFN
using ࣌ሺ࢞ࢇሻ Eq. 1

Accuracy of RBFN
using ࣌ሺሻ Eq. 2

MMRE Pred(0.25) MMRE Pred(0.25)
34 91.24 52.83 75.46 67.92
36 117.99 39.62 77.3 60.38
38 71.65 62.26 28.96 69.81
40 139.67 41.51 49.56 67.92
42 286.16 28.3 39.91 77.36
44 67.84 73.58 47.69 77.36
46 30.35 81.13 17.64 86.79
48 60.63 73.58 43.47 84.91
50 8.68 96.23 8.67 96.23
52 2.23 96.23 2.23 96.23

6. Conclusion

The aim of this work was to examine the impact of the
radial basis widths on the accuracy of RBF Network in the
context of software effort estimation. Some empirical
studies in the literature have shown that in many situations,
a bad choice of the widths can easily lead to poor
approximation ability.
In this paper, we have designed two RBF networks for
software effort estimation. Each one of these networks
used a different formula to compute the widths of the
Gaussian kernels. These RBFN models were trained and
tested using two software projects datasets. The results
show that the use of an adequate formula of width which
controls the overlap between Gaussian kernels, according
to the number of projects placed in the region covered by
centers, improves greatly the estimates generated by
RBFN network model.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 3, July 2010
www.IJCSI.org

17

References
[1] M. W. Nisar, and Y.-J. Wang, and M. Elahi, "Software

Development Effort Estimation Using Fuzzy Logic - A
Survey", in 5th International Conference on Fuzzy Systems
and Knowledge Discovery, 2008, pp. 421-427.

[2] K. Molokken, and M. Jorgensen, "A Review of Surveys on
Software Effort Estimation", in International Symposium on
Empirical Software Engineering, 2003, pp. 223-231.

[3] T. Menzies, and J. Hihn, "Evidence-Based Cost Estimation
for Better-Quality Software", IEEE Software, Vol. 23, No. 4,
2006, pp. 64-66.

[4] M. Jorgensen, and M. Shepperd, "A Systematic Review of
Software Development Cost Estimation Studies", IEEE
Transactions on Software Engineering, Vol. 33, No. 1, 2007,
pp. 33-53.

[5] M. J. Shepperd, and C. Schofield, and B. Kitchenham, "Effort
Estimation Using Analogy", in International Conference on
Software Engineering, 1996, pp. 170-178.

[6] E. Mendes, and I. D. Watson, and C. Triggs, and S. Counsell,
"A Comparative Study of Cost Estimation Models for Web
Hypermedia Applications", Empirical Software Engineering,
Vol. 8, No. 2, 2003, pp. 163-196.

[7] A. R. Gray, and S. MacDonell, and M. Shepperd, "Factors
Systematically Associated with Errors in Subjective
Estimates of Software Development Effort: The Stability of
Expert Judgment", in 6th IEEE International Software Metrics
Symposium, 1999, pp. 216-227.

[8] R. W. Selby, and A.A. Porter, "Learning from examples:
generation and evaluation of decision trees for software
resource analysis", IEEE Transactions on Software
Engineering, Vol. 14, No. 12, 1988, pp. 1743-1757.

[9] A. S. Andreou, and E. Papatheocharous, "Software Cost
Estimation using Fuzzy Decision Trees", in 23rd IEEE/ACM
International Conference on Automated Software
Engineering, 2008, pp. 371-374.

[10] V. Sharma, and H. K. Verma, "Optimized Fuzzy Logic
Based Framework for Effort Estimation in Software
Development", Computer Science Issues, Vol. 7, Issue 2, No.
2, 2010, pp. 30-38.

[11] A. Idri, and T. M. Khoshgoftaar, and A. Abran,
"Investigating Soft Computing in Case-based Reasoning for
Software Cost Estimation", Engineering Intelligent Systems
for Electrical Engineering and Communications, Vol. 10, No.
3, 2002, pp. 147-157.

[12] K. Srinivasan, and D. Fisher, "Machine Learning
Approaches to Estimating Software Development effort",
IEEE Transactions on Software Engineering, Vol. 21, No. 2,
1995, pp. 126-137.

[13] G. R. Finnie, and G. Witting, and J.-M. Desharnais, "A
Comparison of Software Effort Estimation Techniques:
Using Function Points with Neural Networks, Case-Based
Reasoning and Regression Models", Systems and Software,
Vol. 39, No. 3, 1997, pp. 281-289.

[14] G. R. Finnie, and G. Witting, "AI Tools for Software
Development Effort", In International Conference on
Software Engineering: Education and Practice, 1996, pp.
346-289.

[15] A. Idri, and A. Abran, and S. Mbarki, "An Experiment on
the Design of Radial Basis Function Neural Networks for
Software Cost Estimation", in 2nd IEEE International
Conference on Information and Communication

Technologies: from Theory to Applications, 2006, Vol. 1, pp.
230-235.

[16] B.W. Boehm, Software Engineering Economics, Place:
Prentice-Hall, 1981.

[17] B.A. Kitchenham, and E. Mendes, "A Comparison of Cross-
company and Within-company Effort Estimation Models for
Web Applications", In 8th International Conference on
Empirical Assessment in Software Engineering, 2004, pp.
47-56.

[18] W. Pedrycz, "Conditional Fuzzy Clustering in the Design of
Radial Basis Function Neural Networks", IEEE Transactions
on Neural Networks, Vol. 9, No. 4, 1998, pp. 601-612.

[19] Y.-S. Hwang, and S.-Y. Bang, "An Efficient Method to
Construct a Radial Basis Function Network Classifier",
Neural Networks, Vol. 10, No. 8, 1997, pp. 1495-1503.

[20] J. B. MacQueen, "Some Methods for Classification and
Analysis of Multivariate Observations", in Fifth Berkeley
Symposium on Mathematical Statistics and Probability, 1967,
pp. 281-297.

[21] F. Ros, and M. Pintore, and J. R. Chretien, "Automatic
design of growing radial basis function neural networks
based on neighboorhood concepts", Chemometrics and
Intelligent Laboratory Systems, Vol. 81, Issue 2, 2007, pp.
231-240.

[22] N. Benoudjit, and M. Verleysen, "On the Kernel Widths in
Radial-Basis Function Networks", Neural Processing Letters,
Vol. 18, No. 2, 2003, pp. 139-154.

[23] F. Schwenker, and C. Dietrich, "Initialisation of Radial
Basis Function Networks Using Classification Trees", Neural
Networks World, Vol. 10, 2000, pp. 476-482.

 [24] A. Idri, and A. Zahi, and E. Mendes, and A. Zakrani,
"Software Cost Estimation Models Using Radial Basis
Function Neural Networks", in International Conference on
Software Process and Product Measurement, 2007, pp. 21-31.

[25] A. Idri, and A. Zakrani, and A. Abran, "Functional
Equivalence between Radial Basis Function Neural Networks
and Fuzzy Analogy in Software Cost Estimation", in 3rd
IEEE International Conference on Information and
Communication Technologies: from Theory to Applications,
2008, pp. 1-5.

A. Idri is a Professor at Computer Science and Systems Analysis
School (ENSIAS, Rabat, Morocco). He received DEA (Master)
(1994) and Doctorate of 3rd Cycle (1997) degrees in Computer
Science, both from the University Mohamed V of Rabat. He has
received his Ph.D. (2003) in Cognitive Computer Sciences from
ETS, University of Quebec at Montreal. His research interests
include software cost estimation, software metrics, fuzzy logic,
neural networks, genetic algorithms and information sciences

A. Zakrani received the B.Sc. degree in Computer Science from
Hassan II University, Casablanca, Morocco, in 2003, and his
DESA degree (M.Sc.) in the same major from University
Mohammed V, Rabat, in 2005. Currently, he is preparing his Ph.D.
in computer science in ENSIAS. His research interests include
software cost estimation, software metrics, fuzzy logic, neural
networks, decision trees.

A. Zahi is an assistant professor at faculty of Sciences and
techniques (FST, Fès, Morocco). He received his Doctorate of 3rd
Cycle (1997) degree in Computer Science from Mohamed V
University in Rabat. His research interests include software cost
estimation, software measurement, fuzzy analogy, neural
networks.

