
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 8, May 2010 
ISSN (Online): 1694-0784 
ISSN (Print): 1694-0814 
 

 

Parameterization and Controllability of Linear  
Time-Invariant Systems 

 
S. M. Deshmukh1, Mrs. Seema S. Deshmukh2

, Dr. R. D. Kanphade3 
1Deptt. of Electronics & Tele-Com., P.R.M.I.T. & R., Badnera -444701 (INDIA). 

 
2Deptt. of Physics, P.R.M.I.T. & R., Badnera -444701 (INDIA). 

 
3Principal, Dhole-Patil Engineering College, Pune-412207 (INDIA) 

 
 
 

Abstract  

This paper presents a generalized method to implement the idea 
of parameterization and model realization to synthesize a control 
function that affects a possible state transfer that are equivalent to 
the controllability of the Linear Time-Invariant (LTI) control 
systems.  
 
The key idea here is that one should be able to link LTI control 
system with its system variables in parameterized form by the 
generalized term or the parametric function as mentioned in the 
generalized method, so that analysis of the system under study 
can be simplified. A generalized method is illustrated with 
significant results.   
Keywords: - parameterization, controllability, Linear Time-
Invariant systems. 
 
1. Introduction 
 
The theory of controllability plays an important role in 
design of modern control systems.  The development in 
this field appears to be proceeding along several distinct 
lines but mostly in parallel manner [1-4].  In studying the 
significant aspect of these different approaches, the 
problem based on the basic concept of controllability is 
considered here. 
 
In [4], concept of controllability is considered as a state 
transfer problem [STP] and proposed several methods for 
synthesizing a control function for steering the given 
initial state of the system to the origin.  The solution to 
state transfer problem was based on relating the given 
system to a family of phase variable canonical form 
systems and then by using the technique of Hermits 
interpolation, it is possible to synthesize a control function. 
 
Parameterization is the process of deciding and defining 
the parameters necessary for a complete or relevant 
specification of a model. Mostly it is a mathematical 
process of involving the identification of a complete set of 
effective coordinates of the system or model.  The concept 
of parameterization of boundary-value control systems 
with pseudo-differential operator have been discussed in 
[5].  The key idea here is to parameterize the system 
variables by some external parameters, to design linear 
boundary-controlled partial differential equation (PDE) 
systems. Parameterization and approximation methods in 
feedback theory with application in high-gain, fast 
sampling and cheap-optimal control based on first-order 

plant models have been discussed in [6].  The idea of 
parameterization and its extension to study controllability 
of the linear system with method of Laplace 
transformation have been discussed in [7]. 
 
We have extended ideas of parameterization to study 
controllability of linear time-invariant systems without any 
Laplace transformation approach and synthesize a control 
function u(t), which affects a possible state transfer of the 
system that satisfies conditions that are equivalent to the 
controllability of the system.       
 

2. Methodology 
 
Consider the time-invariant linear system of the form  

x(t) = Ax(t) + Bu(t)   (1) 
where x(t)  Rn, u  Rm, A, B are constant matrices. The 
equivalent representation in scalar differential equation of 
(1) as, 
             Dnx(t)+a1D

n-1x(t)+---+an-1Dx(t)+anx(t =u(t) (2) 
where a1, a2, ---, an are constant.  The system (2) has a 
single input u(t) and the system state can be described by 
the values of x(t), Dx(t),----, Dn-1x(t) at each instant of 
time. Here we consider problem of controllability as a 
state transfer problem.  If x(t) is any n-times differentiable 
function such that it and its derivatives Dx(t),--, Dn-1x(t) 
have the specified values at time ti and tf i.e.at initial and 
final time of specified time interval [ti, tf], then expression 
(2) looks like a formula for u(t) in terms of the response 
x(t). It is possible to determine a control function u(t) 
which affects possible state transfer, as providing two 
point boundary conditions on an n-times differentiable 
function x(t).  Such a system is said to be state 
controllable. 
The system (2) can be parameterized as  

Dn(t)+a1D
n-1(t)+--+an-1D(t)+an(t)=u(t) (3) 

where x(t) = (t) is any n-times differentiable function. 
The system (1) can rewrite as  

(DIn – A) x(t) = Bu(t)    (4)  
where DIn is a diagonal matrix, with all entries D on the 
diagonal.  The solution x(t) of (1) will be  

x(t) = |DI-A| [DIn-A]-1. B u(t) (5) 
As per binomial expression given in [8], 
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If p(D) = |DI-A| is the characteristic polynomial of A, of 
degree n and p1(D), p2(D),----, pn-1(D), pn(D) are its 
associated polynomials as given below 
       p(D) = Dn + a1D

n-1 + ----- + an-1D + an , 
      p1(D) = Dn-1 + a1D

n-2 + ----- + an-2D + an-1 , 
      p2(D) = Dn-2 + a1D

n-3 + ----- + an-3D + an-2 , 
 ------------ 
      pn-1(D) = D + a1, 
      pn(D) = 1     (7) 
then solution x(t) of (1) will be  
x(t) = [p1(D) I + p2 (D) A + p3 (D)A2 + --] Bu(t)     
      = 1(t) B + 2(t) AB + 3(t) A

2B +--+n-1(t).   
         An-2B + n(t)A

n-1B     (8) 

where 1(t) = p1(D) u(t), etc. It is observed for (8) that 
solution x(t) is spanned by the n-vectors   

[B, AB, A2B, -----,An-1B]    (9) 
 
If (4) is controllable, then it should be possible to transfer 
the system state from x(0) to any x(T) within specified 
time interval [0, T].  So this set (9) must be basis for Rn. 
 
If x(t) is a solution of (4) and (9) is the basis for Rn, then 
for each t, x(t) is a linear combination of these vectors and 
so there exist functions 1(t), 2(t),----,n(t) such that (8) is 
true.  Now substitute this expansion for x(t) into (1), use 
the fact that the characteristic polynomial annihilates the 
matrix A. 

An+a1A
n-1 + --+ an-1A + anIn=0    (10)   

If we multiply by B and rearranged, we get 
AnB =  - a1A

n-1B – a2A
n-2 B - ---- - an-1AB - anB 

so that AnB is a linear combination of (9).  Substitute (8) 
into (1) and simplify 
1(t)B + 2(t)AB + --- + n-1(t)A

n-2B + n(t)A
n-1B 

  =  1(t)AB + 2(t)A
2B + ---- + n-1(t)A

n-1B – a1n(t)A
n-1B  

–  a2n(t)A
n-2B - ---- - an-1n(t)AB  - ann(t)B + Bu(t)  (11) 

 
Match the coefficient on both the sides of these vectors to 
obtain the equations with, ‘  ’ or ‘D’ represent as 
differential operator with respect to time t. 

1(t)  =  -  ann(t)  +  u(t) 
2(t)  =  -  an-1n(t)  +  1(t) 
………… 
n-1(t) =  -  a2 n (t)  +  n-2(t) 
n(t)  =  -  a1n (t)  +  n-1(t) (12) 

 
Thus it is possible to obtain the system (1) in the form of 
scalar differential equation with the parameterize function 
n(t) from (12).  We can eliminate all these functions i(t), 
i = 1, 2, ---, n-1 except n(t) by differentiating the second 
equation in (12) once, the third equation twice, ------ and 
the last equation (n-1) times and by adding to get, 
              Dnn(t) +a1D

n-1n(t)+a2D
n-2n(t)+----+ an-1Dn(t)  

+ ann(t) = u(t)    (13) 
Thus the state transfer problem for (1) reduces to the state 
transfer problem for (13), which can be solved easily by 
interpolation. The response x(t) determines 1(t),2(t),--
,n(t) uniquely from (8) and 1(t), 2(t),-----,n(t) 
determines Dn-1n(t), D

n-2n(t),-----, Dn(t) and n(t)  from 
(12).   

Further, instead of solving (13) for response n(t), we look 
it as a formula for a control function u(t), which transfer 
the system states of linear time-invariant system and 
satisfies conditions that are equivalent to the controllability 
of the system. 
 
3. Discussion of Results 
 
Consider the system (1) as,  

0 1 0 0

( ) 0 0 1 ( ) 0 ( )

6 11 6 1

x t x t u t

   
       
        

 

with boundary conditions for T = 1 sec. 
x(0) = [0    1   -2]T  and   x(1) = [0    0    0]T (14)  

 
Here we are considering problem of controllability as the 
problem of state transfer.  Hence we are synthesizing a 
control function u(t) which transfer the system states from 
x(0)  to x(T) within specified time interval of T = 1 sec.  
For the system (14) is to be controllable, solution x(t) must 
be spanned by the controllability space formed by n-
vectors [B, AB, A2B,---,An-1B].  The controllability 
subspace <A|B> is the space spanned by the column of 
matrix B with respect to the linear transformation A.  This 
is necessary and sufficient condition for the pair <A|B> to 
be controllable [4].  If (14) is to be controllable, then it 
should be possible to transfer the system state from x(0) to 
any x(T) within specified time interval [0,T].  So the set 
(9) must be basis for Rn. 
 
If x(t) is a solution of (14) and (9) is the basis for Rn, then 
for each t, x(t) is a linear combination of these vectors and 
so there exist functions 1(t), 2(t),----,n(t) such that (8) is 
true.  Hence solution x(t) of (14) as,  

x(t)=1(t)B+2(t)AB+3(t)A
2B   (15) 

By substituting (15) in (14) and with some efforts we can 
show that, 

1(t)B + 2(t)AB + 3(t)A
2B  

=  (-63(t) + u(t))B + (-113(t)+1(t))AB +    
    (-63(t)+2(t))A

2B 
Match the coefficients of these vectors on both sides to 
obtain the equations as, 

1(t)  =  - 63(t)  +  u(t) 
2(t)  =  - 113(t)  + 1(t) 
3(t)  = - 6 3(t) + 2(t)   (16) 

 
We can eliminate 1(t), 2(t) except 3(t) by 
differentiating the second equation in (16) once, the third 
equation twice and by adding, we get the system (14) into 
an equivalent form with the parameterized function 3(t) 
as, 
         D33(t)+ 6D23(t)+11D3(t)+63(t) = u(t) (17) 
The terminal values for the parameterize function i(t) can 
be determined uniquely from (15) for boundary conditions 
as,  

3(0) = [0   1   -2]T,  3(1) = [0   0   0]T 
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By using polynomial interpolation approach we get 
response 3(t) for (17) with (2n-1)th degree polynomial and 
a control function u(t) as,    

3(t) = t – t2 –3t3 + 5t4 – 2t5    (18) 
  u(t) = -19 – 4t + 135t2 – 38t3 – 80t4 – 12t5 (19) 

with terminal values u(0) = -19 and u(1) = -18. 
Further, from (8), we get expression for the state variables 
for the system (14) as:  

x1(t) = 3(t) = t – t2 – 3t3  + 5t4 – 2t5 (20) 
x2(t)=D3(t)=1-2t–9t2+20t3-10t4          (21) 
x3(t)=D23(t)= -2 –18t+60t2-40t3   (22) 

 
The transfer characteristic of a control function u(t) and 
the system states x1(t), x2(t), x3(t) that satisfies boundary 
conditions are as shown in  Fig. 1, 2, 3 & 4 respectively. 
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Fig.1 Transfer char. of a control function u(t) 
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Fig. 2 Transfer char. of  the system state x1(t).  
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Fig. 3 Transfer char. of the system state x2(t). 
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Fig.4  Transfer char. of the system state x3(t). 

 
4. Conclusion 
 
The main objective in design of modern control system is 
its controllability. This paper presents problem of 
controllability as a state transfer problem. Here a simple 
solution is proposed for the problem of determining a 
control function in parameterized form that affects a 
possible state transfer of a LTI system. The solution is 
based on relating the given system to a family of scalar 
differential equation in parameterized form and solving 
problem latter by two point interpolation.  
 
A simple generalized method is presented here to analyze 
LTI systems in parameterized form. This generalized 
approach may extend to analyze any other parameterized 
LTI control systems so that study can be simplified. It is 
possible to realize the concept of controllability without 
using any laplace approach. This generalized approach has 
few more advantages as follows :  
i) No computation of the state transition matrix is 
involved.  
ii) No computation of the eigenvalues of system matrix A 
is required to check the suitability of the duration T of 
control.  
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iii) This method has the flexibility of choosing the time 
interval during which the transfers of the system states 
from initial to final values are desired.  
iv) It applies to uncontrollable systems as well with 
suitable modifications.  For uncontrollable systems, not all 
state transfers to the origin are possible.  
 
This method of solving the state transfer problem can be 
generalized to those classes of functions for which the 
two-point interpolation problem can be solved. It may be 
possible to extend this approach for time-varying systems 
and singular systems. 
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