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Abstract 

This paper proposes a technique for image compression which 
uses the Wavelet-based Image/Texture Coding Hybrid (WITCH) 
scheme [1] in combination with Huffman encoder. It implements 
a hybrid coding approach, while nevertheless preserving the 
features of progressive and lossless coding. The hybrid scheme 
was designed to encode the structural image information by 
Embedded Zerotree Wavelet (EZW) encoding algorithm [2] and 
the stochastic texture in a model-based manner & this encoded 
data is then compressed using Huffman encoder. The scheme 
proposed here achieves superior subjective quality while 
increasing the compression ratio by more than a factor of three 
or even four.  With this technique, it is possible to achieve 
compression ratios as high as 10 to 12 but with some minor 
distortions in the encoded image. 
Keywords: Image compression, Huffman encoder, Zero tree 
Wavelet  
  
1. Introduction 
 
The Embedded Zero tree Wavelet (EZW) algorithm 
proposed by Shapiro [2] is a simple, yet remarkably 
effective, image compression algorithm, having the 
property that the bits in the bit stream are generated in the 
order of importance, yielding a fully embedded code. An 
EZW encoder is an encoder specially designed to use with 
wavelet transforms, which explains why it has the word 
wavelet in its name. 
 
Human observers are very sensitive to a loss of image 
texture in photo-realistic images. For example a portrait 
image without the fine skin texture appears unnatural. 
Once the image is decomposed by a wavelet 
transformation, this texture is represented by many 
wavelet coefficients of low- and medium-amplitude. The 
conventional encoding of all these coefficients by using 
EZW encoder is very bit rate expensive, because, 
although textured regions may exhibit high 
autocorrelation at larger scales (i.e., for macro-textures), 
they often show very little correlation at pixel-level. This 
has led to the idea that textured regions should be encoded 
using specially adapted techniques. Instead of using pixel-
based encoding, texture-models could be used to describe 
such regions. It would then be sufficient to transmit to the 
decoder only the model parameters, which are usually 
small in number. With these parameters, the decoder can 
reconstruct a texture that looks very similar to the original 
one.  
 

Instead of encoding the entire image using the EZW 
algorithm, the unstructured or stochastic texture in the 
image is modeled by a noise process and characterized 
with very few parameters. With these parameters, the 
decoder reconstructs a texture that looks very similar to 
the original one. The texture-modeling task imposes 
negligible computational complexity and the model 
parameters would require only a few bits per pixel to be 
encoded. Thus, by combining EZW encoding with texture 
modeling the coding costs are greatly reduced. Huffman 
encoding is an entropy-encoding algorithm which gives 
lossless data compression. It uses a variable-length code 
table for encoding the symbols generated by EZW 
algorithm where the variable-length code table has been 
derived in a particular way based on the estimated 
probability of occurrence for each possible value of the 
symbol. Nevertheless, this scheme delivers very good 
results.  This paper is an attempt in that direction.  
 

 
 
 
 
 
 
 
 
 
2. Texture Modeling 
 
Embedded Zero tree Wavelet (EZW) encoder, encode the 
wavelet coefficients bit plane by bit plane. First, the most 
significant bits of the largest wavelet coefficients are 
encoded. Then, progressively the large coefficients are 
refined and smaller coefficients are encoded as 
significant. Fig.1 (A) shows such a bit plane 
representation of wavelet coefficients. Decoded at a 
decent bit rate, the largest coefficients get restored [Fig.1 
(B)] and the rest are quantized to zero. These remaining 
coefficients nevertheless carry visually important texture 
information. Quantizing them to zero leads to visually 
discernible blurring of regions with stochastic textures. 
The WITCH-scheme [1] encodes this stochastic texture 
information, represented by the wavelet coefficients in the 
last 2 or 3 bit planes [Fig. 1(C)] using a model-based 
approach, and combines it in a smooth manner with the 
conventionally decoded portions of the image.  

Fig.1: Wavelet coefficients are encoded bit plane by bit plane 



IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 11, May 2010 
ISSN (Online): 1694-0784 
ISSN (Print): 1694-0814 

 

29

3. EZW Encoding 
 
The EZW algorithm is based on four key concepts: 1) a 
discrete wavelet transform or hierarchical sub band 
decomposition, 2) prediction of the absence of significant 
formation across scales by exploiting the self-similarity 
inherent in images, 3) entropy-coded successive-
approximation quantization, and 4) universal lossless data 
compression which is achieved via adaptive Huffman 
encoding. 
 
The EZW encoder was originally designed to operate on 
images (2D-signals) but it can also be used on other 
dimensional signals. The EZW encoder is based on 
progressive encoding to compress an image into a bit 
stream with increasing accuracy. This means that when 
more bits are added to the stream, the decoded image will 
contain more detail, a property similar to JPEG encoded 
images. Using an embedded coding algorithm, an encoder 
can terminate the encoding at any point thereby allowing 
a target rate or target accuracy to be met exactly. Also, 
given a bit stream, the decoder can cease decoding at any 
point in the bit stream and still produce exactly the same 
image that would have been encoded at the bit rate 
corresponding to the truncated bit stream. In addition to 
producing a fully embedded bit stream, EZW consistently 
produces compression results that are competitive with 
virtually all known compression algorithm on standard 
test images It is similar to the representation of a number 
like π (pi). Every digit we add increases the accuracy of 
the number, but we can stop at any accuracy we like. 
Progressive encoding is also known as embedded 
encoding, which explains the E in EZW. 
 
3.1 The Concept of Zerotree  
 
To improve the compression of significant maps (binary 
decisions as to whether a sample, i.e. a coefficient of a 2-
D discrete wavelet transform, has a zero or nonzero 
quantized value) of wavelet coefficients, a new data 
structure called a Zerotree is defined. 
 
A wavelet coefficient x is said to be insignificant with 
respect to a given threshold T  
if | x | < T. The Zerotree is based on the hypothesis that if 
a wavelet coefficient at a coarse scale is insignificant with 
respect to a given threshold T, then all wavelet 
coefficients of the same orientation in the same spatial 
location at finer scale are likely to be insignificant with 
respect to T. Empirical evidence suggests that this 
hypothesis is often true.  
 
More specifically, in a hierarchical sub band system, with 
the exception of the highest frequency sub bands, every 
coefficient at a given scale can be related to a set of 
coefficients at the next finer scale of similar orientation. 
The coefficient at the coarse scale is called the parent, and 
all coefficients corresponding to the same spatial location 
at the next finer scale of similar orientation are called 
children. For a given parent, the set of all coefficients at 

all finer scales of similar orientation corresponding to the 
same location are called descendents. Similarly, for a 
given child, the set of coefficients at all coarser scales of 
similar orientation corresponding to the same location are 
called ancestors. This parent-child dependency between 
wavelet coefficients in different sub bands is shown in 
Fig- 2. With the exception of the lowest frequency sub 
band, all parents have four children.  

 
 
A scanning of the coefficient is performed in such a way 
that no child node is scanned before its parent. For an N-
scale transform, the scan begins at the lowest frequency 
sub band, denoted as LLN, and scans sub bands HLN, 
LHN, and HHN, at which point it moves on to scale N-1 
etc. The two such scanning patterns for a three-scale 
pyramid can be seen in Fig. 3. Note that each coefficient 
within a given sub band is scanned before any coefficient 
in the next sub band.  
 
 
 
 
 
 
 
 
 
Given a threshold level T to determine whether a 
coefficient is significant, a coefficient x is said to be an 
element of a zerotree for threshold T if itself and all of its 
descendents are insignificant with respect to T. An 
element of a zerotree for threshold T is a zerotree root if it 
is not the descendents of a previously found zerotree root 
for threshold T, i.e., it is not predictably insignificant from 
the discovery of a zerotree root at  a coarser scale at the 
same threshold. A zerotree root is encoded with a special 
symbol indicating that the insignificance of the coefficient 
at finer scales is completely predictable. The significance 
map can be efficiently represented as a string of symbols 
from a 3-symbol alphabet which is then entropy encoded. 
The three symbols 
are 1) zerotree root, 2) isolated zero, which means  that 
the coefficient is insignificant but has some significant 
descendent and 3) significant.  
 

Fig 2: The relation between wavelet coefficients in sub 
bands as quad tree 

Fig 3: Different scanning patterns for scanning wavelet 
coefficients 
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In addition to encoding the significance map, it is useful 
to encode the sign of significant coefficients along with 
the significance map. Thus, in practice, four symbols are 
used: (1) zerotree root - ‘t’, (2) isolated zero – ‘z’, (3) 
positive significant – ‘p’, and (4) negative significant – 
‘n’. This minor addition will be useful for embedding. 
The flowchart for the decisions made at each coefficient is 
shown in Fig 4. 

 
4. EZW Algorithm 

 
Uses successive approximation quantization together with 
zerotree coding to provide embedded bit stream for 
image. Morton scan order is used to scan the coefficients. 
 
Initialize:  
to, k=0, dominant list = all coefficients, subordinate list = 
empty. 
 
Maintain two separate lists: 
Dominant list: contains those coefficients not yet found to 
be significant 
subordinate list: magnitudes of those coefficients found to 
be significant 
 
For each threshold, perform two passes: Dominant Pass 
followed by Subordinate Pass 
 
 
4.1 Dominant Pass (Significance Pass) 
 
Coefficients w (m) on the Dominant List are compared to 
Tk to determine significance and, if significant, their sign 
 
If |w (m)| ≥Tk [i.e. w (m) is significant] 
    If w (m) is positive → Output symbol ‘p’ 
    Else [i.e., w (m) is negative] → Output symbol ‘n’ 
 
Put w (m) on the Subordinate List 
Fill their position in Dominant List with zeros. 
Calculate reconstruct value (Rv

* ) using formula: 

Rv
* = ± (Tk + Tk /2). 

Rv
*  is +ve if w (m) is +ve, and is -ve if w (m) is –ve. 

 
Else [i.e., |w (m)| < Tk ; insignificant] 
    If w (m) is a zerotree root → Output symbol ‘t’      
    Else w (m) is an isolated zero→Output symbol ‘z’ 
 
The resulting stream of symbols is stored in significance 
map and sent to decoder.  
 
4.2 Subordinate Pass (Refinement Pass) 
 
Provide additional precision to the magnitudes on the 
Subordinate List as follows: 
 
Halve the quantizer width: 
 [Tk: 2Tk] into → [Tk: Rv

*] and [Rv
*:2Tk] 

 
If magnitude of w (m) is in upper half 
 i.e. in [Rv

*: 2Tk]: →  encode ‘1’ 
  
If w (m) is positive: Rv = Rv

* + Tk/4 
Else (w (m) is positive): Rv = Rv

*  - Tk/4 
  
Else magnitude of w (m) is in lower half 
 i.e. in [Tk: Rv

* Rv]: →  encode ‘0’ 
If w (m) is positive: Rv = Rv

* - Tk/4 
Else (w (m) is positive): Rv = Rv

* + Tk/4 
 
Rv is the value corresponding to w (m) which is 
reconstructed by the decoder. 
 
Send refinement data i.e. stream of ‘1’s and ‘0’s to the 
decoder. 
 
Update: Tk+1 = Tk/2; k = k+1. 
 
Stop when the threshold reaches final threshold value. 
 
The encoded data i.e. significant map, refinement data are 
then encoded using Huffman Encoder. This is where the 
compression takes place. The compressed image along 
with texture list, symbol count (no. of symbols generated 
during each Dominant pass), refinement code (no. of 
refinement codes generated during each Subordinate 
pass), initial threshold, image size and image mean are 
then stored, transmitted or passed to the decoder. 
 
5. Analysis of Texture 

 
The WITCH-scheme [1] operates entirely in the wavelet 
domain. As shown in Fig. 5, the luminance channel of the 
input image is first decomposed by standard wavelet 
decomposition, for example, using the Daubechies 9/7 
filters, or the 5/3 integer filters, which permits lossless 
coding. The texture modeling is only applied to the first 
two levels of decomposition (highest frequencies and 
finest details, gray shaded in Fig. 5. The sub bands of the 
other levels are relatively small and can thus be encoded 
efficiently by the conventional codec.  

Fig 4: Flowchart for encoding a coefficient of the 
significance map 
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Then groups the coefficients of wavelet decomposition 
sub band into several sub blocks of coefficients and 
determine the corresponding noise parameters separately 
for each sub block. This method has the advantage of low 
computational complexity and less overhead information. 
In each sub block all wavelet coefficients with small 
amplitudes (i.e., coefficients represented only by the last 
two or three biplanes), are assumed to represent stochastic 
textures. The texture model is fitted separately to each sub 
block. The resulting texture-model parameters are stored 
as additional side-information using a very small portion 
of the bit stream. 
At the decoder, the model-parameters for each sub block 
are read from the bit stream, as shown in Fig.6. They are 
used to initiate a random noise process with a Probability  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Density Function (PDF) that is described by the model-
parameters. This synthesizes the wavelet coefficients that 
are inserted at every position where, at the decoding bit 
rate, no information about the original wavelet amplitude 
is available. Thus, the texture information lost from the 
last two or three biplanes is replaced by the synthesized 
texture. 
The stochastic texture is assumed to be given by the set Ф 
(k, l, a) of all wavelet coefficients d i, j with 

d i, j (k, l, a) ε Ф (k, l, a)   for |d i, j (k, l, a)|  ≤ TA
(K) 

 
Where, i, j describes the position of the coefficient in the 
ath sub block of the subband at level k with orientation l. 
Since the goal is to imitate the stochastic texture lost when 
quantizing the last two or three bit planes to zero, the 
threshold is chosen so that only the last two or three bit 

Fig 5: Texture Encoding

Fig 6: Texture Decoding
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planes at decomposition levels k = 1 and k = 2 and are 
considered. 
 
The texture model used in the WITCH-system describes 
the distribution of the amplitudes of the wavelet 
coefficients in set Ф (k, l, a). That is, the model basically 
characterizes the local histogram of the wavelet 
coefficient amplitudes. Therefore the sub block-size n 
used to compute the local histogram is an important 
parameter. The visual quality was best for subblock-sizes 
of n = 16 or n = 32. Therefore, to compute the local 
histograms for each subblock, block-size of n = 32 is 
chosen. 
 
A good PDF approximation for the wavelet coefficient 
amplitudes, which describe the stochastic texture, at a 
particular subband produced by various types of wavelet 
transforms may be achieved by adaptively varying two 
parameters of the generalized Gaussian distribution 
(GGD) [4], which is defined as 
 

[ ]( )υσ
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Where σ models the width of PDF peak (standard 
deviation and υ is inversely proportional to the decreasing 
rate of the peak. Sometimes σ is referred to as the scale 
parameter while υ is called the shape parameter. The 
GGD model contains the Gaussian and Laplacian PDF as 
special cases, using υ = 2 and υ = 1, respectively. The 
gamma function is given by 

( )∫
∞

−−=Γ
0

1exp)( dtttx x  

As a result, with only two parameters for the GGD, we 
can accurately capture the marginal distribution of 
wavelet coefficients, which represents stochastic texture, 
in a subband that otherwise would require hundreds of 
parameters by conventional coding techniques. This 
significantly reduces the storage of the image features, as 
well as the time required for encoding and decoding of the 
image. Besides the two noise-parameters σ and υ, the 
maximum amplitude α of the generated wavelet 
coefficients of set Ф (k, l, a) is also introduced. It is 
necessary to limit the maximum amplitude to values 
smaller than TA

(K), because very homogeneous regions 
without texture are also represented by coefficients with 
negligible amplitudes in the non quantized wavelet 
decomposition. 
 
Since all the model-parameters have to be transmitted for 
each subblock, they need to be represented in a compact, 
quantized form. In this work the appropriate quantization 
levels for the parameters σ, υ and α, have been determined 
empirically, using a two-step method. First, the GGD was 
fitted, without any constraints on the parameters, to about 
10000 different histograms taken from various images and 
sub bands. In more than 80% of the cases, the parameters 
were found to be within the following range: 

α Є [ 0 : 1 ] *  TA
 (K) 

υ Є [1 : 3 ] 
σ Є [ 0.5 : 1.5 ] * α 
 
In the second step, experiments were performed by 
quantizing the parameters within this range with the 
resolution varying between 1 and 8 bits. The visual 
fidelity of the generated texture improved up to a 
quantization precision of 3 bits, but further increases in 
resolution did not result in a visible difference.  
Therefore each parameter is quantized with a precision of 
3 bits. 
 
This choice implies that only 28 = 256 different 
distributions can be distinguished. Consequently the 
fitting process can be implemented by a lookup 
procedure. The smallest least-mean square error between 
the GGD and the real distribution indicates the best fitting 
entry in the look-up table (LUT). This requires only a few 
bits per pixel to encode. This could be reduced even 
further by exploiting the high correlation among the 
model parameters for adjacent sub blocks. 
 
Due to the simplicity of the chosen texture model 
(histograms) the overhead information is kept small and 
the additional computational complexity is negligible. To 
capture high-order statistics more sophisticated models 
are necessary. However, only an improvement of the 
visual quality would justify the additional complexity and 
bit rate for encoding their parameters. While such an 
improvement can surely be observed for more structured 
texture, preliminary experiments did not show such an 
improvement for the synthesized texture represented by 
the small wavelet coefficients in the last two or three bit 
planes. Nevertheless, the issue requires further studies. 
 
6. Huffman Encoding 

 
Huffman coding is an entropy-encoding algorithm used 
for lossless data compression [6]. The term refers to the 
use of a variable-length code table for encoding a source 
symbol (such as a character in a file) where the variable-
length code table has been derived in a particular way 
based on the estimated probability of occurrence for each 
possible value of the source symbol. Huffman coding uses 
a specific method for choosing the representation for each 
symbol, resulting in a prefix-free code (that is, the bit 
string representing some particular symbol is never a 
prefix of the bit string representing any other symbol) that 
expresses the most common characters using shorter 
strings of bits than are used for less common source 
symbols. Huffman coding is such a widespread method 
for creating prefix-free codes that the term "Huffman 
code" is widely used as a synonym for "prefix-free code."  
 
For a set of symbols with a uniform probability 
distribution and a number of members which is a power of 
two, Huffman coding is equivalent to simple binary block 
encoding. 
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Assertions of the optimality of Huffman coding should be 
phrased carefully, because its optimality can sometimes 
accidentally be over-stated. For example, arithmetic 
coding ordinarily has better compression capability, 
because it does not require the use of an integer number of 
bits for encoding each source symbol. The efficiency of 
Huffman coding also depends heavily on having a 
estimate of the true probability of the value of each input 
symbol. 
 
7. Proposed Work 
 
This paper combines WITCH (Wavelet Based 
Image/Texture Codec Hybrid) scheme proposed by 
Nadenau, Reichel and Kunt (see ref. [1]), which combines 
the conventional wavelet based coding with model-based 
texture coding with Huffman encoding to achieve image 
compression. EZW Encoding combined with texture 
modeling based on Generalized Gaussian Distribution is 
used here. I have applied different possible combinations 
of these techniques briefed earlier in this paper to find out 
which technique gives the best results. 
 
This technique can be applied to compress all types of 
images in grayscale domain. Consider the standard 
grayscale test image lena.pgm having 256 X 256 pixels 
and 256 grayscale levels to compare the different case 
studies. The different cases are compared on the bases of 
objective and subjective fidelity criteria and compression 
ratio obtained in each case. 
 
Consider case I. The image is encoded using EZW 
algorithm upto the last bit plane including the texture 
details and then compressed using Huffman encoder. The 
compression ratio obtained is just above 1 (1.033). This is 
because while encoding the coefficients by EZW encoder 
in the last three bit planes, too many symbols are 
generated which occupy larger space. The decoded image 
is very similar to the original image but it is not same 
because of quantization error. The time required for 
encoding & decoding is very high owing to large number 
of symbols especially in the last three bit planes. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In case II, the image is compressed directly using 
Huffman encoder. The decoded image is exact 
reproduction of the original image hence this technique is 
lossless. But, the compression ratio is just 1.124. Hence 
no significant gain in compression ratio is achieved. 
Another important factor in this case will be the space 
required to store the Huffman dictionary. For 256 
grayscale levels we need to store 256 symbols along with 
their probabilities. 
 
Consider cases III & IV. The image is encoded using 
EZW algorithm upto threshold 8 (in 256 grayscale levels, 
this means upto the last three bit planes) and further 
texture data is encoded using random process. The EZW 
encoded data is then applied to Huffman encoder. It can 
be seen that the compression ratio is around 3-4 which is 
even better than what is proposed in the WITCH scheme 
[1]. This is because only four different symbols (p, n, z, 
and t) are generated by EZW algorithm. After adding the 
texture details in the image (case IV), Signal to noise ratio 
improves. However, very minor visual degradation can be 
observed (in comparison to the quality of the encoded 
image without using texture modeling as in case III) due 
to the limitation to a block-wise characterization of the 
texture properties. This degradation can occur when half 
of the texture subblock covers a highly structured region 
and the other half a homogeneous region. 
 
In the WITCH scheme [1], the authors suggested that the 
texture data in an image is represented by the last three bit 
planes in wavelet domain and it can be encoded by using 
random noise process and remaining structural data is 
encoded by EZW algorithm. I have extrapolated this idea 
further and tried a different threshold value to check 
weather this technique works well for a different threshold 
or not. Consider case V and VI. The image is encoded 
using EZW algorithm upto threshold 32 (in 256 grayscale 
levels, this means upto the last five bit planes) and further 
texture data is encoded using random process. The EZW 
encoded data is then applied to Huffman encoder. The 
results achieved are spectacular. It can be seen that the 
compression ratio is as high as 12, but some visual 
degradations can be observed in the image.  

Fig 7: Fit of the GGD to the distribution of wavelet coefficient amplitudes in the analyzed subblock. 
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Sr. 
No. Details Original Image 

Data Case I Case II Case III Case IV Case V Case VI 

  Final Threshold 
(EZW) NA 0.0025 NA 0.03125 0.03125 0.125 0.125 

1 Image sol.jpg sol.jpg sol.jpg sol.jpg sol.jpg sol.jpg sol.jpg 

  Image Size 128 X 128 128 X 128 128 X 128 128 X 128 128 X 128 128 X 128 128 X 128 

2 
Original File size 
(bytes) 16384 16384 16384 16384 16384 16384 16384 

  (kB)   16.38 16.38 16.38 16.38 16.38 16.38 16.38 

3 
Compressed File Size 
(bytes) --- 17014 15536 7049 7229 2719 2899 

  (kB)   --- 17.01 15.54 7.05 7.23 2.72 2.89 

4 Compression Ratio 1 0.963 1.055 2.324 2.267 6.027 5.652 

5 Bits Per Pixel (Bpp) 8 8.308 7.586 3.442 3.53 1.327 1.415 

6 RMS Error --- 0 0 0.003906 0.003906 0.015624 0.015624 

7 
Signal to Noise Ratio 
(dB) --- 105.15 Infinity 66.0879 65.6338 45.296 44.9847 

8 Encoding time (sec) --- 63.38 26.52 64.58 64.58 17.36 17.36 

9 Decoding Time (sec) --- 233.89 258.23 200.06 200.06 46.11 46.11 

10 Total Time (sec) --- 297.27 284.75 264.64 264.64 63.47 63.47 

Sr. 
No. Details Original Image 

Data Case I Case II Case III Case IV Case V Case VI 

 Final Threshold 
(EZW) NA 0.0025 NA 0.03125 0.03125 0.125 0.125 

1 Image lena.pgm lena.pgm lena.pgm lena.pgm lena.pgm lena.pgm lena.pgm 

 Image Size 256 X 256 256 X 256 256 X 256 256 X 256 256 X 256 256 X 256 256 X 256 

2 
Original File size 

(bytes) 65536 65536 65536 65536 65536 65536 65536 

 (kB) 65.54 65.54 65.54 65.54 65.54 65.54 65.54 

3 
Compressed File Size 

(bytes) --- 63462 58324 18138 18858 5193 5913 

 (kB) --- 63.46 58.32 18.14 18.86 5.19 5.91 

4 Compression Ratio 1 1.033 1.124 3.613 3.475 12.62 11.08 

5 Bits Per Pixel (Bpp) 8 7.747 7.12 2.214 2.302 0.6339 0.7218 

6 RMS Error --- 0.000846 0 0.003383 0.003383 0.013532 0.013532 

7 
Signal to Noise Ratio 

(dB) --- 106.44 Infinity 66.203 65.7959 49.2948 48.7652 

8 Encoding time (sec) --- 972.64 107.33 686.19 686.19 144.94 144.94 

9 Decoding Time (sec) --- 3345.97 902.09 2333.28 2333.28 391.11 391.11 

10 Total Time (sec) --- 4318.61 1009.42 3019.47 3019.47 536.05 536.05 

Case I Image encoded using EZW algorithm upto the last bit plane & compressed using Huffman Encoder 

Case II Image Compressed Directly using Huffman Encoder 

Case III Image encoded using EZW algorithm without texture data upto threshold 8 & compressed using Huffman Encoder 

Case IV Image encoded using EZW algorithm with texture data upto threshold 8 & compressed using Huffman Encoder 

Case V Image encoded using EZW algorithm without texture data upto threshold 32 & compressed using Huffman Encoder 

Case VI Image encoded using EZW algorithm with texture data upto threshold 32 & compressed using Huffman Encoder 
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8. Results 
 
In the experiment various images are used in the program 
and results are obtained for each of the six cases discussed 
in the last section. The results of two such different test 
images lena.pgm, sol.jpg are shown below.  
 
 

 
 
 
 
 
 
 
 

The different statistical values are summarized in the 
table. Thus, it can be concluded that EZW encoding 
supported by texture modeling combined with Huffman 
encoder gives excellent results. By choosing suitable 
threshold value compression ratio as high as 12 can be 
achieved. 
 
 
 

 
 
 

Results: lena.pgm (256 X 256) 

Fig 3: Reconstructed Image - Case II (58.32 KB)

Fig 2: Reconstructed Image - Case I (63.46 KB) Fig 1: Original Grayscale Image (64 KB) 

Fig 4: Reconstructed Image - Case III (18.14 KB) 
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Fig 5: Reconstructed Image - Case IV (18.86 KB)

Fig 7: Reconstructed Image - Case VI (5.91 KB)

Fig 6: Reconstructed Image  - Case V (5.19 KB)
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Fig 1: Original Grayscale Image (16 KB)      Fig 2: Reconstructed Image - Case I (17.01 KB) 

 
 
 
 
 
 
 
 
 
 

 
Fig 3: Reconstructed Image - Case II (15.54 KB)     Fig 4: Reconstructed Image - Case III (7.05 KB) 
 

 
 
 
 
 
 
 
 
 
 

Fig 5: Reconstructed Image - Case IV (7.23 KB)     Fig 6: Reconstructed Image - Case V (2.72 KB) 
 

 
 
 
 
 
 
 
 
 

Fig 7: Reconstructed Image - Case VI (2.89 KB) 

Results: sol. jpg (128 X 128) 
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9. Conclusion 
 
A technique for image compression which uses the 
Wavelet-based Image/Texture Coding Hybrid (WITCH) 
scheme [1] in combination with Huffman encoder is 
proposed here. It combines EZW encoding with stochastic 
texture modeling using Generalized Gaussian Distribution 
to encode the image which is further compressed by using 
Huffman encoder. It is clear from above that this 
technique yields spectacular results with compression 
ratio as good as 3 to 4 times the original image with high 
visual quality of the reconstructed image. The Bits per 
pixel required is as low as 2 to 2.5. This approach utilizes 
zerotree structure of wavelet coefficients very effectively, 
which results in higher compression ratio and better signal 
to noise ratio. Experimental results have proved that the 
EZW encoding supported by texture modeling combined 
with Huffman encoder provides significant performance 
improvement.  
 
A wavelet codec (EZW) encodes contours and structured 
pictorial elements efficiently, but it performs very badly 
on fine stochastic textures. In contrast, it is difficult to 
design a universal model for all kinds of textures. 
However, once the image is represented in the wavelet 
domain, the properties of stochastic texture can be 
captured relatively easily, and therefore modeled 
efficiently. The proposed scheme combines these two 
advantages in a very flexible manner into a hybrid system. 
Furthermore, the system has extremely low computational 
complexity. Further improvements in terms of the texture 
model are possible without affecting the general structure 
of the proposed system. Very minor visual degradation 
could be observed (in comparison to the quality of the 
encoded image without using texture modeling) due to the 
limitation to a block-wise characterization of the texture 
properties. This degradation can occur when half of the 
texture sub block covers a highly structured region and 
the other half a homogeneous region. In this case the same 
texture properties are synthesized for both halves. While 
the local activity masks the added texture in one-half, the 
homogeneous half might get noisier. However, only very 
small amplitude texture of the last two or three bit planes 
are added, and the described constellation is of low 
probability. 
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