
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 8, May 2010 21
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

Proactive Approach for Cooperative Caching in
Mobile Adhoc Networks

Prashant Kumar1, Naveen Chauhan2, LK Awasthi3, Narottam Chand4

Department of Computer Science, National Institute of Technology

Hamirpur, INDIA

Abstract
In Mobile Adhoc Networks (MANETs), due to frequent
network partition, data availability is lower than that in
traditional wired networks. Cooperative caching provides
an attractive solution for this problem. In this paper we
propose a new proactive approach for cooperative
caching in MANETs, in which we will cache the data of
leaving node. Here each mobile node will broadcast a
“LEAVE” message when it moves out from its zone.
Based upon its Caching Information Table (CIT) zone
manager will decide which data is to be cached. This will
help to improve the data availability and overall
performance of the network.

Keywords: Mobile adhoc networks, cooperative
caching, proactive approach.

1. INTRODUCTION

In recent years there has been a rapid growth in
mobile communication. Mobile Adhoc Networks
(MANETs) are very popular solution in the
situation where network infrastructure is not
available. MANETs can be extended by connecting
with some other wired or wireless networks like
Internet [10]. In adhoc networks, mobile nodes
communicate with each other using multihop
wireless links. As there is no infrastructure support,
mobile nodes cooperate with each other to forward
data. Each node acts as a router, forwarding data
packets for other nodes and mobile nodes have peer
to peer connection among themselves. Most
previous research in ad hoc networks focused on
the development of dynamic routing protocols that
can efficiently find routes between two
communicating nodes. Although routing is an
important issue, but the ultimate goal of adhoc
networks is to provide mobile nodes with access to
information. However, MANETs are limited by
intermittent network connections, restricted power
supplies, and limited computing resources. These
restrictions raise several new challenges for data
access applications with the respects of data
availability and access efficiency. In adhoc
networks, due to frequent network partition, data
availability is lower than that in traditional wired
networks. Cooperative caching provides an
attractive solution for this problem. Cooperative
caching is a technique that allows the sharing and
coordination among the mobile nodes. However,

the movement of nodes, limited storage space and
frequent disconnections limit the availability. By
the caching of frequently accessed data in adhoc
networks we can improve the data access,
performance and availability. Due to mobility and
resource constraints of adhoc networks, caching
techniques designed for wired network may not be
applicable to ad hoc networks.

In general, a good cooperative cache management
technique for MANETs should address these
issues:
1. A cache discovery algorithm that is efficient to
discover and deliver requested data items from the
neighbors node and able to decide which data items
can be cached for future use. In cooperative
caching this decision is taken not only on the behalf
of the caching node but also based on the other
nodes need.
2. There should be a cache replacement algorithm
to replace the cached data items when the caching
space is not enough to cache the new ones.
3. A cache consistency algorithm to ensure that the
cached data items are updated.

In this paper we considered all these issues and
proposed a new cooperative cache algorithm. The
ultimate goal of this approach is to improve the
data availability that means data is available in
minimum time and by utilizing fewer resources. In
this algorithm we consider that each node is
associated with a zone and each zone has a zone
manager. Each node will maintain a Caching
Information Table (CIT). When a node caches a
new data item or updates its CIT it will broadcasts
these updates to all its neighbors and to the zone
manager. Further when a node wants to move out
from its zone then it will broadcasts a “LEAVE”
message to its neighbors. Now neighbors will
decide whether the data of leaving node can be
cached for future use. These decisions will be
based on the information stored in the CIT of the
neighbor’s node. For cache replacement we will
use an access count policy with the TTL (Time-to-
Live) value. The cache consistency algorithm will
be based upon the TTL value.

The rest of this paper is organized as follows: We
review the related work in section 2. Section 3

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 8, May 2010 22
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

describes about the system model. In section 4 we
describe our proposed algorithm. Cache
replacement related issues will be discussed in
section 5. Section 6 will concludes the paper.

2. RELATED WORKS

Caching is an important technique to enhance the
performance of both wired and wireless network. A
lot of researches have been done to improve the
caching performance in mobile adhoc network
environment. The two basic types of cache sharing
techniques are push based and pull based. In the
push based cache sharing, when a node caches a
new data item, it will proactively broadcast the
caching updates to its neighbors nodes. The
neighboring nodes update the caching information
for the future use. Push based scheme improves the
data availability at the cost of communication
overhead. The disadvantage of the scheme is that
an advertisement may become useless if no demand
for the cached data items occurs in the vicinity.
One more problem with the push based scheme is
that caching information may not be longer used if
the node moves out from the zone or due to the
cache replacement. This drawback may be
overcome with the pull based approach. In the pull
based cache scheme when a node wants to access a
data item, it broadcast a request packet to all its
neighbors node. A nearby node who has cached the
data item will send data item to the requester.
There are two drawbacks associated with this
scheme. First if the requested data item is not
cached by any node in the neighborhood then the
request originator will wait for the time out interval
to expire before it resend the request to the data
center. This will cause extra access latency.
Secondly if more than one node have cached the
requested data item then multiple copies will
returns to the request originator and this will cause
extra communication overhead.
Moriya et al. [12] proposed a “self-resolver”
paradigm, in which a client user itself queries and
measures which node it should access. In this
method if a node M requests the data D then it
forwards a query packet to its neighbor nodes. If
some node has the data D then it returns a REPLY
packet to S. Otherwise it recursively sends QUERY
packets to its neighboring nodes. The disadvantage
of this approach is that it uses flooding which
introduce high discovery overhead. Furthermore in
this paper this issue is not discussed that how the
request of M is fulfilled if the requested data is not
cached any node. Chow et al. [7, 8] have proposed
a cooperative caching protocol, called CoCa, for
mobile computing environments. In this protocol,
mobile nodes share their cache contents with each
other to reduce both the number of server requests

and the number of access misses. Further, built
upon the CoCa framework, a group-based
cooperative caching scheme, called GroCoCa, has
been proposed in [9], in which a centralized
incremental clustering algorithm is adopted by
taking into consideration node mobility and data
access pattern. GroCoCa improves system
performance at the cost of extra power
consumption. A caching algorithm is suggested by
Lim et al. in [6], to minimize the delay when
acquiring data. In order to retrieve the data as
quickly as possible, the query is issued and
broadcast to the entire network. All nodes that have
this data are supposed to send an acknowledgment
back to the source of the broadcast. The requesting
node will then issue a request for the data (unicast)
to the first acknowledging node it hears from. The
main advantage of this algorithm is its simplicity
and the fact that it does achieve a low response
delay. However, the scheme is inefficient in terms
of bandwidth usage because of the broadcasts,
which, if frequent, will largely decrease the
throughput of the system due to flooding the
network with request packets [12]. Additionally,
large amounts of bandwidth will also be consumed
when data items happen to be cached in many
different nodes because the system does not
account for controlling redundancy.

Yin and Cao [4, 5] presented three cache resolution
schemes: CacheData, CachePath, and
HybridCache. In CacheData, forwarding nodes
check the passing-by data requests. If a data item is
found to be frequently requested, forwarding nodes
cache the data, so that the next request for the same
data can be answered by forwarding nodes instead
of travelling further to the data server. A problem
for this approach is that the data could take a lot of
caching space in forwarding nodes. To overcome
this problem the authors present another cache
resolution scheme CachePath. In CachePath
forwarding nodes cache the path to the closest
caching node instead of the data and redirect future
requests along the cached path. This scheme saves
caching spaces compared to CacheData, but since
the caching node is dynamic, the recorded path
could become obsolete and this scheme could
introduce extra processing overhead. Trying to
avoid the weak points of those two schemes the
authors proposed HybridCache. In HybridCache,
when a mobile node forwards a data item, it caches
the data or the path based on some criteria. These
criteria include the data item size and the time-to-
live (TTL) of the item. Due to the mobility of
nodes the collected statistics about the popular data
may become useless. One another drawback of
these schemes is that if the node does not lie on the
forwarding path of a request to the data center the
caching information of a node cannot be shared.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 8, May 2010 23
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

Du et al. [2, 3] proposed a cooperative caching
scheme called COOP for MANETs. To improve
data availability and access performance, COOP
addresses two basic problems of cooperative
caching. For cache resolution, COOP uses the
cocktail approach which consists of two basic
schemes: hop-by-hop resolution and zone-based
resolution. By using this approach, COOP
discovers data sources which have less
communication cost. For cache management,
COOP uses the inter- and intra-category rules to
minimize caching duplications between the nodes
within a same cooperation zone and this improves
the overall capacity of cooperated caches.
Disadvantage of the scheme is flooding that
introduce extra discovery overhead.

Chiu et al. [1] proposed to protocol IXP and DPIP.
The idea of IXP is based on having each node share
its cache contents with the nodes in its zone. To
facilitate exposition, authors call the nodes in the
zone of a node M the buddies of M. A node should
make its cache contents known to its buddies, and
likewise, its buddies should reveal their contents to
the node. IXP requires that, whenever a node
caches a data item, it broadcasts an index packet to
its buddies to advertise the caching event. Index
Push (IXP) is push based in the sense that a mobile
node broadcasts an index packet in its zone to
advertise a caching event. The Data Pull/Index
Push (DPIP) is a pull based one. DPIP offers an
implicit index push property by exploiting in-zone
request broadcasts. The disadvantage of the IXP
protocol is that when a node M enters in a new
zone, the nodes of the new zone are not aware
about M’s update. Further in their approaches the
authors use a cache replacement policy that based
on the Count Vector. According to the policy the
data item with higher Count Vector is replaced. A
data item with a Count Vector 0 will never be
replaced. This may cause the waste of cache
memory space.

3. SYSTEM MODEL

Let us consider a mobile adhoc network shown in
fig. 1. This network has no fixed infrastructure and
node are free to move anywhere in the network.
Since nodes are mobile so the topology is dynamic
and temporary. There exists a data server that
contains the database of n items D1, D2,..., Dn. This
data server may be connected to some external
wired or wireless network like Internet. When a
node requires some data item it sends request to
data server. When a node receives a data item it
cache the data item locally for future use. A zone is
associated with each mobile node and refers to the

set of nodes that can be reached by the node within
the given number of hops, called the radius of the
zone [1]. When a node wants to moves out from the
zone it will broadcast a “LEAVE” message before
leaving the zone.

Fig. 1 System Model

Each node in the zone will maintain a Caching
Information Table denoted as CIT. This CIT will
contain n elements where n is the number of the
data items. There will be four entries related to
each element.
Let consider the entries related of node A for the
data item d. The first entry is d.available that
shows whether d is locally cached at node A. This
is binary type value and is TRUE if data is locally
available. The second entry is d.nnode and shows
which neighbor node has cached d. The third entry
maintained to access count that show how many
times d is cached by neighbors node of node A after
d is cached by node A. This entry is denoted by
d.accesscount. The final entry is d.TTL shows the
TTL (time-to-live) value that after how much time
d is expired. This value is assigned by the data
server. Initially d.available is set to FALSE,
d.nnode is set to NULL and d.accesscount is set to
zero. For example node A will contain some data
(in its local cache) maintained a CIT that contains
the details about the data which is maintained by its
neighbors. The entries of CIT are summarized in
table 1.

Table 1: Entries of CIT

S

No.
Entry Name Meaning Initial

Value

A

C
D

B

G

F

E

H

Data Server

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 8, May 2010 24
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

1 d.available shows whether d
is locally cached
at node

FALSE

2 d.nnode shows which
neighbor node
has cached d

null

3 d.accesscount shows how many
times d is cached
by neighbors
node of node A
after d is cached
by node A

zero

4 d.TTL shows after how
much time d is
expired.

assigned
by the
data
server

 Here we assume that each mobile node has limited
cache space and only some data items can be
cached. When the cache space of a node is full then
the node will select some data items to remove
from the cache, when it has to cache the new one.
Before forwarding the request of a data item from a
node, each intermediate node will check it local
cache if it has the data then it will send directly and
stop the forwarding otherwise it redirect the to
some neighbor that it knows has cached the data
item.

4. PROPOSED ALGORITHM

The idea of our proposed algorithm is based upon
the fact that each node in the network is willing to
share its cache contents with its neighbors. When a
node updates its local cache it broadcasts these
updates to all neighbors node in the zone. Each
node in the zone will maintain a Caching
Information Table (CIT).

4.1 Cache Discovery

When a data item d is requested by a node A, first
the node will check whether d.available is TRUE or
FALSE to see the data is locally available or not. If
this is FALSE then the node will check d.nnode to
see whether the data item is cached by a node in its
neighbor. If the matching entry found then the
request is redirect to the node otherwise the request
is forwarded towards the data server. However the
nodes that are lying on the way to the data center
checks their own local cache and d.nnode entry in
their CIT. If any node has data in its local cache
then the data is send to requester node and request
forwarding is stop and if the data entry is matched
in the CIT then the node redirect the request to the
node. Here we checks who is close: data center or
the node and closer one is selected for the data

item. The complete process of cache discovery is
shown in fig. 2.

Fig. 2 Cache Discovery Process

Now we consider the movement of the nodes.
There are two situations one is that a node enters in
a new zone and second is a node leaves its zone.
We discuss both the cases separately.

1. When a node enters in a new zone: When a
node will enter in a new zone then it will
proactively broadcast its updates to all its neighbors
of the new zone. In other words we can say that its
sends the information of its local cache. This will
improve the data availability in the zone.

2. When a node leaves a zone: When a node
wants to leave its zone then the data cached by this
node will not be available for future use. So before
leaving its zone it will broadcast a “LEAVE”
message to its neighbors. Then the neighbors will
decide whether the data held by the leaving node
can be cached by them. These decisions will be
based on following criteria:-
1. First the nodes will check their local cache if the
same data item is found then this data will not
cached by these nodes.

2. After the local cache the nodes will check their
CIT to see whether the same data is cached by
some node in their vicinity. If the entries matched
then also this data will not be cached by these

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 8, May 2010 25
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

nodes because this data is already available in the
zone.

3. Now if the data is not present in the local cache
or in the vicinity then this data will be cached by
the node. If the free space is not available in the
node then by using cache replacement algorithm
some data is removed from the cache to save the
new one.

Let us consider that node B wants to leave its zone
then before leaving it will broadcasts a “LEAVE”
message to its neighbors i.e. to node A and node E.
Now these neighbor nodes will decide whether the
data held by node B can be cached by them for
future use. Then first these nodes will check their

local cache and if the same data is found then they
will not cache the data. If the data is not in their
local cache then they will check d.nnode entry in
their CIT to see whether the data is present or not
in their vicinity. If the then neither of these node
will cache the data as the data is available in the
zone. Now if the data is not found in their local
cache or in the vicinity then either of the nodes will
cache the data items. This will be depending on the
fact which node has enough space to cache the
data. If either node has not enough space to cache
the data then we will choose a node which has to
remove less content from its cache in order to make
the space free. Both nodes will cache the different
data.

Fig. 3 Pseudocode of Algorithm

4.2 Data Caching and Data Consistency

When a node A receives the data item d, it caches
it. During this process it may happen the node need

//A is the node requesting a data item d
//P is an intermediate node on the forwarding path of the data request packet

(A) When a node P receives a data request packet for item d
if (d.available==TRUE)
 send d to A;
elseif (d.nnode!=NULL)
 redirect the request to d.nnode;
else
 forward the request to the data center;

(B) When node A cache a new data item d
 dc=d // dc refers to data item cached
if (the cache space is full)
 {
 select a victim item c whose c.accesscount is maximum for the cache replacement;
 c.available =FALSE;
 dr= c; // dr refers to data item removed
 }
else
 dr = NULL;
cache d;
d.available = TRUE;
d.accesscount= 0;
Broadcast the cache update packet <A, dc, dr> to neighbors node;

(C) When a neighbors node receives the cache update packet <A, dc, dr>
Dc.nnode=A;
if (dc.available== TRUE)
 dc.accesscount++;
if (dr!=NULL)
 {
 if (dc.available==TRUE && dr.accesscount>0)
 Dr.accesscount--;
 if (dr.nnode==A)
 dr.nnode= NULL;
 }

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 8, May 2010 26
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

to remove another data item from its cache. Now
we assume that the victim item is c. After caching d
node A will set d.available is TRUE and
c.available is FALSE. Now A will reset the
d.accesscount to 0. Now node will broadcast its
updates to its neighbors. These updates will include
information about both (cached item d and
removed item c) data items. By doing so the
neighbors will make changes in their CIT, this will
improve the information accuracy.

Now when A’s neighbors receives the update from
A, they will set their d.available to A. Further if
these nodes have already cached these data items (d
and c) then they will increase d.accesscount by 1
and decrease the c.accesscount by 1. And also if a
node has set c.nnode to A then they will set it to
NULL because the data item c is no longer with A.
Cache consistency algorithm ensures that the
cached data items are updated and clients get fresh
copy of data items. There are two widely used
cache consistency models one is the weak
consistency and the second is strong consistency
model. In the weak consistency model, a stale data
might be returned to the client. In the strong
consistency model, after an update completes, no
stale copy of the modified data will be returned to
the client [11]. In MANETs due to bandwidth and
power constraints it is too expensive to maintain
strong consistency, and the weak consistency
model is done well. Here in our proposed algorithm
we use a simple weak consistency model based on
the time-to-live (TTL) value. For this we maintain
an entry (d.TTL) in the CIT. The data is considered
as a fresh copy until its TTL value is not expired.
When TTL is expired the node removes the cached
data and broadcast updates to its neighbors so that
they can updates their CIT.

5. CACHE REPLACEMENT

As in cooperative caching in MANETs the data is
not stored only on behalf of caching node but
interest of the neighbor’s node is also considered.
For this reason LRU, LFU [16] and SXO [5] are
not suitable for the MANETs. Here our emphasis to
remove such data items whose removals introduce
the least effect on the requirement of the neighbor’s
node and also on the data availability in the zone.
Here we use a cache replacement policy based on
the access count.

As we have maintains an entry [d].accesscount in
the CIT. in our cache replacement policy we
replace a data item which has maximum
[d].accesscount among all the caching items. We
use this replacement policy because by removing a
data item with highest access count has least effect

on the data availability as other neighbors node has
cached the same data item. Because as many times
a data item will access by a neighbor’s node its
[d].accesscount will be increased by one. By
removing such an item we have the least cache
duplicacy in the zone. This is the reason that’s why
we initially set the [d].accesscount to zero. This
policy is better than the LRU, LFU and SXO
because this is based upon the recent behavior of
the nodes.

Now what happens if some data item is not
accessed by any of the neighbor node in the zone.
Then that item will not be replaced and this will
cause the waste of storage. To overcome this
problem we will check the TTL values of the data
items. When the TTL value is expired then the data
item will be removed from the cache.

6. CONCLUSIONS

In this paper we discuss the cooperative cache
algorithm based on proactive approach. This
algorithm is unique because this caches the data of
leaving node. In order to cache discovery in this
algorithm first the node will check its local cache if
cache miss occurs then it will check its CIT to see
whether the data is available in the neighborhood.
If the matching entries are found then the data is
returned to the requester otherwise the request is
forward to data server. However nodes those are
lying on the way to the data server check their own
local cache and there CIT. If any node has data in
its local cache then the data is send to requester
node and request forwarding is stop and if the data
entry is matched in the CIT then the node redirect
the request to the node. For the cache replacement
we use a policy based on the access count in such a
way that removing data leave least impact on data
availability in the zone. Cache consistency is
maintained by using the approach based upon the
TTL value.

REFERENCES
1. Ge-Ming Chiu and Cheng-Ru Young, Exploiting In-
Zone Broadcasts for Cache Sharing in Mobile Ad Hoc
Networks IEEE TRANSACTIONS ON MOBILE
COMPUTING, VOL. 8, NO. 3, MARCH 2009.
2. Y. Du and S. Gupta, COOP – A Cooperative Caching
Service in MANETs, Proceedings of the IEEE
ICAS/ICNS (2005), 58–63.
3. Yu Du, Sandeep K.S. Gupta and Georgios
Varsamopoulos, Improving on-demand data access
efficiency in MANETs with cooperative caching, Ad
Hoc Networks, 7 (3), p.579-598, May 2009.
4. L. Yin and G. Cao, “Supporting Cooperative Caching
in Ad Hoc Networks,” Proc. IEEE INFOCOM ’04, pp.
2537-2547, 2004.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 8, May 2010 27
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

5. L. Yin and G. Cao, “Supporting Cooperative Caching
in Ad Hoc Networks,” IEEE Trans. Mobile Computing,
vol. 5, no. 1, pp. 77-89, Jan. 2006.
6. S. Lim, W. Lee, G. Cao, and C. Das, “A Novel
Caching Scheme for Internet Based Mobile Ad Hoc
Networks Performance,” Ad Hoc Networks, vol. 4, no. 2,
pp. 225-239, 2006.
7. C.-Y. Chow, H.V. Leong, and A. Chan, “Peer-to-Peer
Cooperative Caching in Mobile Environments,” Proc.
24th Int’l Conf. Distributed Computing Systems
Workshops (ICDCSW ’04), pp. 528-533, 2004.
8. C.-Y. Chow, H.V. Leong, and A. Chan, “Cache
Signatures for Peer-to-Peer Cooperative Caching in
Mobile Environments,” Proc. 18th Int’l Conf. Advanced
Information Networking and Applications (AINA ’04),
pp. 96-101, 2004.
9. C.-Y. Chow, H.V. Leong, and A.T.S. Chan, “Group-
Based Cooperative Cache Management for Mobile
Clients in Mobile Environments,” Proc. 33rd Int’l Conf.
Parallel Processing (ICPP ’04), pp. 83-90, 2004.
10. Y. Sun et al. Internet connectivity for ad hoc mobile
networks. International Journal of Wireless Information
Networks, 9(2), April 2002.
11. N. Chand, R.C. Joshi, and M. Misra, “Cooperative
Caching in Mobile Ad Hoc Networks Based on Data
Utility,” Mobile Information System, vol. 3, no. 1, pp.
19-37, 2007.
12. T. Moriya and H. Aida, “Cache Data Access System
in Ad Hoc Networks,” Proc. Vehicular Technology Conf.
(VTC ’03), vol. 2, pp. 1228-1232, Apr. 2003.
13. P. Gupta and P. Kumar, “The Capacity of Wireless
Networks,” IEEE Trans. Information Theory, vol. 46, no.
2, pp. 388-404, 2000
14. G. Cao, L. Yin, and C.R. Das, “Cooperative Cache-
Based Data Access in Ad Hoc Networks,” Computer,
vol. 37, no. 2, pp. 32-39, Feb. 2004.
15. Y. Du, S. Gupta, Handbook of Mobile Computing,
CRC Press, 2004. Chapter 15, pp. 337–360.
16. A. Silberschatz, P.B. Galvin, and G. Gagne,
Operating System Concepts. John Wiley and Sons, 2004.

