
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 8, May 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

11

Model for Knowledge Bases of Computational Objects

Nhon Van Do

 Department of Computer Science, University of Information Technology,
Ho Chi Minh City, Vietnam

Abstract

In the artificial intelligence field, knowledge representation and
reasoning are important areas for intelligent systems, especially
knowledge base systems and expert systems. Knowledge
representation Methods has an important role in designing the
systems. There have been many models for knowledge such as
semantic networks, conceptual graphs, and neural networks.
These models are useful tools to design intelligent systems.
However, they are not suitable to represent knowledge in the
domains of reality applications. In this paper, new models for
knowledge representation called model for knowledge bases of
computational objects will be presented. We also present the
model for representing problems and algorithms, design methods
using the model to construct applications.
Keywords: knowledge base systems, knowledge representation,
intelligent systems, knowledge processing.

1. Introduction

In artificial intelligence science, models and methods for
knowledge representation play an important role in
designing knowledge base systems and expert systems.
Nowadays there are many various knowledge models
which have already been suggested and applied. In the
books [1], [2], [6] and [10] we have found popular
methods for knowledge representation in designing
knowledge base systems (KBS) and intelligent systems.
They include predicate logic, semantic nets, frames,
deductive rules. Many new methods and techniques were
presented in [12], [13], [14], and [15]. Among these
methods neural networks and fuzzy logic can be used for
computational intelligence. Some methods are suitable for
representing and processing semantics such as conceptual
graphs in [6], [10] and [11]. The above methods are very
useful for designing intelligent systems, and for solving
complex problems. However, they are not suitable to
represent knowledge in the domains of reality applications
in many cases, especially the systems that can solve
problems in practice based on knowledge bases.

Therefore, it is needed to develop new models to represent
knowledge in reality domains and also to represent
problems with knowledge. In this paper, we present

models for knowledge representation and they can be used
to design knowledge base systems and intelligent systems
in reality. The main model presented here is the model for
knowledge bases of computational objects. This model can
be used to represent the total knowledge and to design the
knowledge base component of systems. Next, networks of
computational objects can be used for modeling problems
in knowledge domains. These models are tools for
designing inference engine of systems. The models have
been used in designing some knowledge base systems in
education for solving problems such as the system that
supports studying knowledge and solving analytic
geometry problems, the program for studying and solving
problems in Plane Geometry, the program for solving
problems about alternating current in physics. These
applications have been implemented by using
programming tools and computer algebra systems such as
C++, JAVA, and MAPLE. They are very easy to use for
students in studying knowledge, to solve automatically
problems and give human readable solutions agree with
those written by teachers and students.

2. Model for Knowledge Bases of
Computational Objects

The traditional methods for knowledge representation such
as those presented in [2], [4], and [20] are interested and
useful for many applications. However, those methods are
not enough and not easy to use for constructing intelligent
programs or knowledge base systems in different domains
of knowledge, especially programs with human readable
output. The model for knowledge bases of computational
objects (KBCO model) has been established from Object-
Oriented approach to represent knowledge together with
programming techniques for symbolic computation. There
have been many results and tools for Object-Oriented
methods, and some principles as well as techniques were
presented in [16]. This way also gives us a method to
model problems and to design algorithms. The models are
very useful for constructing components and the whole
knowledge base of intelligent system in practice of
knowledge domains.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 8, May 2010
www.IJCSI.org

12

2.1 Computational Objects

In many problems we usually meet many different kinds
of objects. Each object has attributes and internal relations
between them. They also have basic behaviors for solving
problems on its attributes.

Definition 1: A computational object (or Com-object) has
the following characteristics:

(1) It has valued attributes. The set consists of all
attributes of the object O will be denoted by M(O).

(2) There are internal computational relations between
attributes of a Com-object O. These are manifested
in the following features of the object:
- Given a subset A of M(O). The object O can show

us the attributes that can be determined from A.
- The object O will give the value of an attribute.
- It can also show the internal process of

determining the attributes.
The structure computational objects can be modeled by
(Attrs, F, Facts, Rules). Attrs is a set of attributes, F is a set
of equations called computation relations, Facts is a set of
properties or events of objects, and Rules is a set of
deductive rules on facts. For example, knowledge about a
triangle consists of elements (angles, edges, etc) together
with formulas and some properties on them can be modeled
as a class of C-objects whose sets are as follows:

Attrs = {A, B, C, a, b, c, R, S, p, ...} is the set of all
attributes of a triangle,

F = {A+B+C = ; R
A

a
2

)sin(
 ; R

B

b
2

)sin(
 ;

R
C

c
2

)sin(
 ;

)sin()sin(B

b

A

a
 ;

)sin(
2

1
AbcS  ; ...},

Facts = {a+b>c; a+c>b; b+c>a ; …}, and
Rules = { {a>b}  {A>B}; {b>c}  {B>C};

{c>a}  {C>A}; {a=b}  {A=B};
{a^2= b^2+c^2}  {A=pi/2},
{A=pi/2}  {a^2 = b^2+c^2, b  c},
 ...}.

An object also has basic behaviors for solving problems on
its attributes. Objects are equipped abilities to solve
problems such as:

1. Determines the closure of a set of attributes.
2. Executes deduction and gives answers for questions

about problems of the form: determine some
attributes from some other attributes.

3. Executes computations
4. Suggests completing the hypothesis if needed.

For example, when a triangle object is requested to give a
solution for problem {a, B, C}  S, it will give a solution
consists of three following steps:

Step 1: determine A, by A =  -B-C;
Step 2: determine b, by b = a.sin(B)/sin(A);
Step 3: determine S, by S = a.b.sin(C)/2;

2.2 Components of the KBCO model

Definition 2: The model for knowledge bases of
computational objects (KBCO model) consists of six
components:

(C, H, R, Ops, Funcs, Rules).
The meanings of the components are as follows:

- C is a set of concepts of computational objects.
Each concept in C is a class of Com-objects.

- H is a set of hierarchy relation on the concepts.
- R is a set of relations on the concepts.
- Ops is a set of operators.
- Funcs is a set of functions.
- Rules is a set of rules.

There are relations represent specializations between
concepts in the set C; H represents these special relations on
C. This relation is an ordered relation on the set C, and H
can be considered as the Hasse diagram for that relation.
The figure 1 below represents special relations on the
classes of triangles.

 Fig. 1 Specialization relations on the classes of triangles

R is a set of other relations on C, and in case a relation r is a
binary relation it may have properties such as reflexivity,
symmetry, etc…. In plane geometry and analytic geometry,
there are many such relations: relation “belongs to” of a
point and a line, relation “central point” of a point and a line
segment, relation “parallel” between two line segments,
relation “perpendicular” between two line segments, the
equality relation between triangles, etc.

The set Ops consists of operators on C. This component
represents a part of knowledge about operations on the
objects. Almost knowledge domains have a component
consisting of operators. In analytic geometry there are
vector operators such as addition, multiplication of a vector
by a scalar, cross product, vector product; in linear algebra
there are operations on matrices. The KBCO model helps to
organize this kind of knowledge in knowledge domains as a

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 8, May 2010
www.IJCSI.org

13

component in the knowledge base of intelligent systems.

The set Funcs consists of functions on Com-Objects.
Knowledge about functions is also a popular kind of
knowledge in almost knowledge domains in practice,
especially fields of natural sciences such as fields of
mathematics, fields of physics. In analytic geometry we
have the functions: distance between two points, distance
from a point to a line or a plane, projection of a point or a
line onto a plane, etc. The determinant of a square matrix
is also a function on square matrices in linear algebra.

The set Rules represents for deductive rules. The set of
rules is certain part of knowledge bases. The rules
represent for statements, theorems, principles, formulas,
and so forth. Almost rules can be written as the form “if
<facts> then <facts>”. In the structure of a deductive rule,
<facts> is a set of facts with certain classification.
Therefore, we use deductive rules in the KBCO model.
Facts must be classified so that the component Rules can
be specified and processed in the inference engine of
knowledge base system or intelligent systems.

Base on the KBCO model, the knowledge base can be
organized by the following components:

1. The dictionary of concepts about kinds of objects,
attributes, operators, functions, relations and related
concepts.

2. The table of descriptions for structures and features
of objects. For example, we can request a triangle to
compute and to give us its attributes.

3. The tables for representing hierarchical relations of
concepts.

4. The tables for representing other relations of
concepts.

5. The tables for representing knowledge about
operators.

6. The tables for representing knowledge about
functions.

7. The tables of descriptions for kinds of facts. For
example, a relational fact consists of kind of the
relation and the list of objects in the relation.

8. The tables of descriptions for rules. For example, a
deductive rule consists of hypothesis part and
conclusion part. Both of them are lists of facts.

9. The lists or sets of rules.
10. The lists of problem patterns.

2.3 Kinds of facts in KBCO model

In the KBCO model there are 11 kinds of facts accepted.
These kinds of facts have been proposed from the
researching on real requirements and problems in different

domains of knowledge. The kinds of facts are as follows:
- Fact of kind 1: information about object kind. The

followings are some examples:
 ABC is a right triangle.
 ABCD is a parallelogram.
 The matrix A is a square matrix.

- Fact of kind 2: a determination of an object or an
attribute of an object. The following problem in
analytic geometry gives some examples for facts of
kind 2.

Problem: Given the points E and F, and the line
(d). Suppose E, F, and (d) are determined. (P) is
the plane satisfying the relations: E  (P), F 
(P), and (d) // (P). Find the general equation of
(P). In this problem we have three facts of kind
3: (1) point E is determined or we have already
known the coordinates of E, (2) point F is
determined, (3) line (d) is determined or we
have already known the equation of (d).

- Fact of kind 3: a determination of an object or an
attribute of an object by a value or a constant
expression. The followings are some examples in
plane geometry and in analytic geometry:

 In the triangle ABC, suppose that the length
of edge BC = 5.

 The plane (P) has the equation 2x + 3y – z
+ 6 = 0, and the point M has the coordinate
(1, 2, 3).

- Fact of kind 4: equality on objects or attributes of
objects. This kind of facts is also popular, and there
are many problems related to it on the knowledge
base. The following problem in plane geometry
gives some examples for facts of kind 4.

Problem: Given the parallelogram ABCD.
Suppose M and N are two points of segment AC
such that AM = CN. Prove that two triangles
ABM and CDN are equal (see figure 2).

Fig. 2 Problem: prove that Δ ABM = Δ CDN

In the above problem we have to determine equality
between two C-objects, a fact of kind 4.

- Fact of kind 5: a dependence of an object on other
objects by a general equation. An example in
geometry for this kind of fact is that w = 2*u + 3*v;
here u, v and w are vectors.

- Fact of kind 6: a relation on objects or attributes of

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 8, May 2010
www.IJCSI.org

14

the objects. In almost problems there are facts of
kind 6 such as the parallel of two lines, a line is
perpendicular to a plane, a point belongs to a line
segment.

- Fact of kind 7: a determination of a function.
- Fact of kind 8: a determination of a function by a

value or a constant expression.
- Fact of kind 9: equality between an object and a

function.
- Fact of kind 10: equality between a function and

another function.
- Fact of kind 11: a dependence of a function on other

functions or other objects by an equation.

The last five kinds of facts are related to knowledge about
functions, the component Funcs in the KBCO model. The
problem below gives some examples for facts related to
functions.

Problem: Let d be the line with the equation 3x + 4y - 12
= 0. P and Q are intersection points of d and the axes
Ox, Oy.

(a) Find the central point of PQ
(b) Find the projection of O onto the line d.

For each line segment, there exists one and only one point
which is the central point of that segment. Therefore, there
is a function MIDPOINT(A, B) that outputs the central
point M of the line segment AB. Part (a) of the above
problem can be represented as to find the point I such that I
= MIDPOINT(P,Q), a fact of kind 9. The projection can
also be represented by the function PROJECTION(M, d)
that outputs the projection point N of point M onto line d.
Part (b) of the above problem can be represented as to find
the point A such that A = PROJECTION(O,d), which is
also a fact of kind 9.

The above models and kinds of facts can be used to
represent knowledge in practical applications. Unification
algorithms of facts were designed and used in different
applications such as the system that supports studying
knowledge and solving analytic geometry problems, the
program for studying and solving problems in Plane
Geometry, the knowledge system in linear algebra.

2.4 Specification Language

The language for the KBCO model is constructed to specify
knowledge bases in intelligent systems with knowledge of
the form KBCO model. This language includes the
following:

- A set of characters: letter, number, special letter.
- Vocabulary: keywords, names.

- Data types: basic types and structured types.
- Expressions and sentences.
- Statements.
- Syntax for specifying the components of KBCO

model.

The followings are some structures of definitions for
expressions, C-Objects, relations, facts, and functions.

Definitions of expressions:
expr ::= expr | rel-expr | logic-expr
expr ::= expr add-operator term |
 term
term ::= term mul-operator factor | factor
factor ::= – factor |
 element ^ factor |
 element
element ::= (expr) |
 name |
 number |
 function-call
rel-expr ::= expr rel-operator expr
logic-expr ::= logic-expr OR logic-term |
 logic-expr IMPLIES logic-term |
 NOT logic-term |
 logic-term
logic-term ::= logic-term AND logic-primary |
 logic-primary
logic-primary ::= expr |
 rel-expr |
 function-call |
 quantify-expr
 TRUE | FALSE
quantify-expr ::= FORALL(name <, name>*),
 logic-expr | EXISTS(name), logic-expr

Definitions of Com-object type:
cobject-type ::= COBJECT name;

 [isa]
 [hasa]
 [constructs]
 [attributes]
 [constraints]
 [crelations]
 [facts]
 [rules]
 ENDCOBJECT;

Definitions of computational relations:
crelations ::= CRELATION:
 crelation-def+
 ENDCRELATION;

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 8, May 2010
www.IJCSI.org

15

crelation-def ::= CR name;
 MF: name <, name>*;
 MFEXP: equation;
 ENDCR;
equation ::= expr = expr

Definitions of special relations:
isa ::= ISA: name <, name>*;
hasa ::= HASA:
 [fact-def]

Definitions of facts:
facts ::= FACT: fact-def+
fact-def ::= object-type | attribute | name |
 equation | relation | expression
object-type ::= cobject-type (name) |
 cobject-type (name <, name>*)
relation ::= relation (name <, name>+)

Definitions of relations based on facts:
relation-def ::= RELATION name;
 ARGUMENT: argument-def+
 [facts]
 ENDRELATION;
argument-def ::= name <, name>*: type;

Definitions of functions – form 1:
function-def ::= FUNCTION name;

ARGUMENT: argument-def+

RETURN: return-def;
 [constraint]
 [facts]
 ENDFUNCTION;
return-def ::= name: type;

Definitions of functions – form 2:
function-def ::= FUNCTION name;
 ARGUMENT: argument-def+
 RETURN: return-def;
 [constraint]
 [variables]
 [statements]
 ENDFUNCTION;
statements ::= statement-def+
statement-def ::= assign-stmt | if-stmt | for-stmt
asign-stmt ::= name := expr;
if-stmt ::= IF logic-expr THEN statements+
 ENDIF; |

 IF logic-expr THEN statements+
 ELSE statements+
 ENDIF;
for-stmt ::= FOR name IN [range] DO
 statements+
 ENDFOR;

3. Networks of Computational Objects

Definition 3: A computational relation f between
attributes of objects or between objects is called a relation
between the objects. A network of computational objects
consists of a set of Com-objects O = O1, O2, ..., On and
a set of computational relations F = f1, f2, ... , fm. This
network of Com-objects is denoted by (O, F). The
following are some notations:
 M(fi) = the set of attributes of C-objects in the

relation fi.

 M(F) = M(fi
i 1

m

)

 .

 M(O) = M(Oi
i 1

n

)

 .

 M = the set of attributes of C-objects are
considered in certain problem.

 Mi = M  M(Oi), for i=1,2, ... , m.
By the above notations, Mi is the set of attributes
considered of the object Oi.

On the network of Com-objects (O, F), we consider the
problem that to determine (or compute) attributes in set G
from given attributes in set H. The problem will be
denoted by HG.

Example 1: In the figure 3 below, suppose that AB =
AC, the values of the angle A and the edge BC are given
(hypothesis). ABDE and ACFG are squares. Compute EG.

Fig. 3 A problem in geometry.

The problem can be considered on the network of Com-
objects (O, F) as follows:

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 8, May 2010
www.IJCSI.org

16

O = {O1: triangle ABC with AB = AC, O2: triangle AEG,
O3: square ABDE, O4: square ACFG }, and F = {f1, f2, f3, f4,
f5} consists of the following relations
 f1 : O1.c = O3.a

The edge c of triangle ABC = the edge of the
square ABDE

 f2 : O1.b = O4.a
The edge b of triangle ABC = the edge of the
square ACFG

 f3 : O2.b = O4.a
The edge b of triangle AEG = the edge of the
square ACFG

 f4 : O2.c = O3.a
The edge c of triangle AEG = the edge of the
square ABDE

 f5 : O1.A + O2.A = .

Definition 4: Let (O, F) be a network of Com-objects, and
M be a set of concerned attributes. Suppose A is a subset of
M.

(a) For each f  F, denote f(A) is the union of the set A
and the set consists of all attributes in M deduced
from A by f. Similarly, for each Com-object Oi  O,
Oi(A) is the union of the set A and the set consists
of all attributes (in M) that the object Oi can
determine from attributes in A.

(b) Suppose D = [t1, t2, ..., tm] is a list of elements in
F  O. Denote

 A0 = A, A1 = t1(A0), . . ., Am = tm(Am-1), and
 D(A) = Am.
We have A0  A1  . . .  Am = D(A)  M.
A problem H  G is called solvable if there is a list
D  F  O such that D(A)  B. In this case, we say that D
is a solution of the problem.

The algorithm below is to find a solution of the problem
HG on the network of Com-objects. The objects may
participate in solutions as computational relations.

Algorithm 1: Find a solution of the problem HG on a
network of Com-objects.
 Step 1: Solution  empty;
 Step 2: if G  H then
 begin
 Solution_found  true;
 goto step 5;
 end
 else
 Solution_found  false;
 Step 3: Repeat
 Hold  H;
 Select f  F;

 while not Solution_found and (f found) do
 begin
 if (applying f from H produces
 new facts) then
 begin
 H  H  M(f);
 Add f to Solution;
 end;
 if G  H then
 Solution_found  true;
 Select new f  F;
 end;  while 
 Until Solution_found or (H = Hold);
 Step 4: if not Solution_found then
 begin
 Select Oi  O such that Oi(H)  H;
 if (the selection is successful) then
 begin
 H  Oi(H);
 Add Oi to Solution;
 if (G  H) then
 begin
 Solution_found  true;
 goto step 5;
 end;
 else
 goto step 3;
 end;
 end;
 Step 5: if not Solution_found then
 There is no solution found;
 else
 Solution is a solution of the problem;

Example 2: Consider the network (O, F) in example 1, and
the problem HG, where H = O1.a, O1.A, and
G = O2.a.
Here we have:

M(f1) =  O1.c , O3.a ,
M(f2) =  O1.b , O4.a ,
M(f3) =  O2.b , O4.a ,
M(f4) =  O2.c , O3.a ,
M(f5) =  O1. , O2. ,
M =  O1.a, O1.b, O1.c, O1.A, O2.b, O2.c, O2.A ,
O2.a,
 O3.a, O4.a .

The above algorithm will produce the solution
D = [f5, O1, f1, f2, f3, f4, O2],

And the process of extending the set of attributes as
follows:

 A0
5f  A1

1O  A2
1f 

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 8, May 2010
www.IJCSI.org

17

 A3
2f  A4

3f  A5
4f 

 A6
2O  A7

Where
A0 = A = O1.a , O1.A,

 A1 = O1.a , O1.A, O2.A,
 A2 =  O1.a , O1.A, O2.A, O1.b, O1.c ,
 A3 = O1.a , O1.A, O2.A, O1.b, O1.c, O3.a,
 A4 = O1.a , O1.A, O2.A, O1.b, O1.c, O3.a,
 O4.a,
 A5 = O1.a , O1.A, O2.A, O1.b, O1.c, O3.a,
 O4.a, O2.b,
 A6 = O1.a , O1.A, O2.A, O1.b, O1.c, O3.a,
 O4.a, O2.b, O2.c,
 A7 = O1.a , O1.A, O2.A, O1.b, O1.c, O3.a,
 O4.a, O2.b, O2.c, O2.a.

4. Design Method

In this section, we will present a process to construct a
knowledge base system for solving problems based on the
knowledge base. Besides, techniques in each phase will be
presented also.

4.1 Structure of Systems

A knowledge base system, which supports searching,
querying and solving problems, has the structure of an
expert system. We can design the system which consists of
six components:

- The knowledge base.
- The inference engine.
- The explanation component.
- The working memory.
- The knowledge manager.
- The interface.

The figure 4 below shows the structure of the system.

Fig. 4 Structure of a system

The Knowledge Base contains the knowledge for solving

some problems in a specific knowledge domain. The
Inference engine will use the knowledge stored in
knowledge base to solve problems, to search or to answer
for the query. It must identify problem and use suitable
deductive strategies to find out right rules and facts for
solving the problem. The working memory stores the facts
and rules in the process of searching and deduction. The
explanation component supports to explain the phases,
concepts in the process of solving the problem. The
knowledge manager aims to support updating knowledge
into knowledge base. It also supports to search the
knowledge and test consistence of knowledge. The
interface component of the system is required to have a
specification language for communication between the
system and learners, between the system and teachers as
well.

4.2 Design Techniques

The process of analysis and design the components of the
systems consists of the following stages.

Stage 1: Collecting real knowledge based on KBCO
model.

Stage 2: Classifying the knowledge in the Stage 1, to
analyze requirements.

Stage 3: Establishing knowledge base organization for
the system based on KBCO model and its specification
language. Knowledge base can be organized by structured
text files. They include the files below.

- File OBJECT_KINDS.txt stores names of concepts.
- File HIERARCHY.txt stores information of the

Hasse diagram representing for the component H of
COKB model.

- Files RELATIONS.txt and RELATIONS_DEF.txt
store the specification of relations (the component R
of KBCO model).

- Files OPERATORS.txt and OPERATORS_DEF.txt
store the specification of operators (the component
Ops of KBCO model).

- Files FUNCTIONS.txt and FUNCTIONS_DEF.txt
store the specification of functions (the component
Funcs of KBCO model).

- File FACT_KINDS.txt stores the definition of kinds
of facts.

- File RULES.txt stores deductive rules.
- File SOMEOBJECTS.txt stores certain objects.
Stage 4: In this stage we do Modeling of problems and

designing algorithms. Problems are represented using
networks of Com-Objects. It consists of three sets below.

 O = O1, O2, . . ., On,
 F = f1, f2, . . ., fm,
 Goal =  g1, g2, . . ., gm .

In the above model the set O consists of n Com-objects, F is

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 8, May 2010
www.IJCSI.org

18

the set of facts given on the objects, and Goal consists of
goals.

The design of deductive algorithms for solving problems
and the design of interface of the system can be developed
by three steps for modeling:

Step 1: Classify problems such as problems as frames,
problems of a determination or a proof of a fact,
problems of finding objects or facts, etc…

Step 2: Classify facts and representing them based on the
kinds of facts of KBCO model.

Step 3: Modeling kinds of problems from classifying in
step 1 and 2. From models of each kind, we can
construct a general model for problems, which are
given to the system for solving them.

The basic technique for designing deductive algorithms is
the unification of facts. Based on the kinds of facts and their
structures, there will be criteria for unification proposed.
Then it produces algorithms to check the unification of two
facts.

The next important work is doing research on strategies for
deduction to solve problems on computer. The most
difficult thing is modeling for experience, sensible reaction
and intuitional human to find the heuristics rules, which
were able to imitate the human thinking for solving
problems.

Stage 5: Creating a query language for the model. The
language helps to design the communication between the
system and users by words.

Stage 6: Designing the interface of software and
programming the software. Our application has been
implemented by using programming tools and computer
algebra systems such as Visual Basic.NET or C#,
SQL Server. They are very easy to use for students, to
search, query and solve automatically problems.

Stage 7: In this stage we do testing, maintaining and
developing the application. The work is similar as in other
computer systems.

5. Applications

Some practical intelligent systems were produced with
designing based on KBCO model and the above
specification language. Applications include:

- The system that supports studying knowledge and
solving analytic geometry problems. The system
consists of three components: the interface, the
knowledge base, the knowledge processing modules
or the inference engine. The program has menus for

users searching knowledge they need and they can
access knowledge base. Besides, there are windows
for inputting problems. Users are supported a simple
language for specifying problems. There are also
windows in which the program shows solutions of
problems and figures.

- The program for studying and solving problems in
plane geometry. It can solve problems in general
forms. Users only declare hypothesis and goal of
problems base on a simple language but strong enough
for specifying problems. The hypothesis can consist of
objects, relations between objects or between
attributes. It can also contain formulas, determination
properties of some attributes or their values. The goal
can be to compute an attribute, to determine an object,
a relation or a formula. After specifying a problem,
users can request the program to solve it automatically
or to give instructions that help them to solve it
themselves. The program also gives a human readable
solution, which is easy to read and agree with the way
of thinking and writing by students and teachers. The
second function of the program is "Search for
Knowledge". This function helps users to find out
necessary knowledge quickly. They can search for
concepts, definitions, properties, related theorems or
formulas, and problem patterns.

- Examples below illustrate the functions of a system
for solving problems of analytic geometry and a
system for solving problems in plane geometry.
The systems are designed by using COKB model,
its language and algorithms. The system was
implemented in JAVA and MAPLE. Each example
presents the problem in natural language, specifies
the problem in specification language to input into
the system, and a solution produced from the
system.

Example 1: Let d be the line with the equation 3x + 4y
- 12 = 0. P and Q are intersection points of d and the
axes Ox, Oy.

(a) Find the midpoint of PQ
(b) Find the projection of O on the line d.

Specification of the problem:
Objects = {[d,line], [P,point], [Q,point]}.
Hypothesis = { d.f = (3*x+4*y-12 = 0), Ox.f = (y = 0),

O = [0, 0], P = INTERSECT(Ox, d),
Q = INTERSECT (Oy, d),
H = PROJECTION(O, d), Oy . f = (x = 0) }.

Goal = { MIDPOINT(P, Q), H }.
Solution found by the system:

Step 1: {d.f = (3*x+4*y-12 = 0), Ox.f = (y = 0),
Oy.f = (x = 0)}  {d.f, Ox.f , Oy.f }.
Step 2: {Ox.f, Oy.f, d.f}

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 8, May 2010
www.IJCSI.org

19

  {Ox, Oy, d}.
Step 3: {P = INTERSECT(Ox,d), d, Ox}
 {P = [4, 0]}.
Step 4: {d, Oy, Q = INTERSECT(Oy,d)}
  {Q = [0, 3]}.
Step 5: {P = [4, 0], Q = [0, 3]}
  {P, Q}.
Step 6: {P, Q}
  {MIDPOINT(P,Q) = [2, 3/2]}.
Step 7: {d, H = PROJECTION(O,d), O}
 { H = [36/25, 48/25]}.
Step 8: {H = [36/25, 48/25]}
  {H}.
Example 2: Given two points P(2, 5) and Q(5,1).
Suppose d is a line that contains the point P, and the
distance between Q and d is 3. Find the equation of line d.
Specification of the problem:
Objects = {[P, point], [Q, point], [d, line]}.
Hypothesis = {DISTANCE(Q, d) = 3, P = [2, 5],

Q = [5, 1], ["BELONG", P, d]}.
Goal = [d.f].
Solution found by the system:
Step 1: {P = [2, 5]}
  {P}.
Step 2: {DISTANCE(Q, d) = 3}
  {DISTANCE(Q, d)}.
Step 3: {d, P}
  {2d[1]+5d[2]+d[3] = 0}.
Step 4: {DISTANCE(Q, d) = 3}

  3
]2[]1[

]3[]2[]1[5
22






dd

ddd .

Step 5: {d[1] = 1, 2d[1] + 5d[2] + d[3] = 0,

 3
]2[]1[

]3[]2[]1[5
22






dd

ddd }

  {d.f = (0
7

134

7

24
 yx),

 d.f = (x – 2 = 0)}.

Step 6: {d.f = 0
7

134

7

24
 yx , d.f = x - 2= 0}

  {d.f}

Example 3: Given the parallelogram ABCD. Suppose M
and N are two points of segment AC such that AM = CN.
Prove that two triangles ABM and CDN are equal (see
figure 2 in section II-B above).
Specification of the problem:
Objects = {[A, POINT], [B, POINT], [C, POINT],

[D, POINT], [M, POINT], [N, POINT],
[O1, PARALLELOGRAM[A, B, C, D],
[O2, TRIANGLE[A, B, M]],
[O3, TRIANGLE [C, D, N]]}.

Hypothesis = { [« BELONG », M, SEGMENT[A, C]],
 [« BELONG », N, SEGMENT[A, C]],
 SEGMENT[A, M] = SEGMENT[C, N] }.
Goal = { O2 = O3}.
Solution found by the system:
Step 1: Hypothesis
  {O2.SEGMENT[A, M] = O3. SEGMENT[C, N],
 O2.SEGMENT[A, B] = O1. SEGMENT[A, B],
 O3.SEGMENT[C, D] = O1.SEGMENT[C, D]}.
Step 2: Produce new objects related to O2, O3, and O1
  {[O4, TRIANGLE[A, B, C]],
 [O5, TRIANGLE[C, D, A]]}.
Step 3: {[O1, PARALLELOGRAM[A, B, C, D]}
 {O4 = O5, SEGMENT[A, B] = SEGMENT[C, D]}.
Step 4: { O2.SEGMENT[A, B] = O1.SEGMENT[A, B],
 O3.SEGMENT[C, D] = O1.SEGMENT[C, D],
 SEGMENT[A, B] = SEGMENT[C, D]}
 {O2.SEGMENT[A, B] = O3.SEGMENT[C, D]}.
Step 5: {[« BELONG », M, SEGMENT[A, C]]}
  {O4.angle_A = O2.angle_A}.
Step 6: {[« BELONG », N, SEGMENT[A, C]]}
  { O5.angle_A = O3.angle_A }.
Step 7: {O4 = O5 }
  {O4.angle_A = O5.angle_A}.
Step 8: { O4.angle_A = O2.angle_A ,
 O5.angle_A = O3.angle_A ,
 O4.angle_A = O5.angle_A }
 { O2.angle_A = O3.angle_A}.
Step 9: { O2.SEGMENT[A, M] = O3. SEGMENT[C, N],
 O2.SEGMENT[A, B] = O3.SEGMENT[C, D],
 O2.angle_A = O3.angle_A }
  {O2 = O3}.

6. Conclusions

The KBCO model is a knowledge representation tool that
can be used to design and to implement intelligent systems
for solving problems based on a knowledge base. It also
has the specification language, the network of Com-
Objects for modeling problems, algorithms for automated
problem solving.

The models proposed provide a natural way for
representing knowledge. By Object-Oriented approach the
highly intuitive representation for knowledge has been
established. These are the bases for designing the
knowledge base of the system. The knowledge base is
convenient for accessing and for using by the inference
engine. The methods of modeling problems and
algorithms for automated problem solving represent a
normal way of thinking and writing of people.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 8, May 2010
www.IJCSI.org

20

KBCO model is a useful tool and method for designing
practical knowledge bases, modeling complex problems
and designing algorithms to solve automatically problems
based on a knowledge base. It is also used for designing
other components of knowledge base systems. The KBCO
model was used to produce intelligent educational
softwares for e-learning, and they were implemented by
using C++, JAVA, and MAPLE. Besides applications
were presented here, it is able to use in other domain of
knowledge such as physics and chemistry. Moreover, it
also has been used to develop applications for e-
government.

References
[1] John F. Sowa, Knowledge Representation: Logical,

Philosophical and Computational Foundations, Brooks/Cole,
2000.

[2] George F. Luger & William A Stubblefield, Artificial
Intelligence, Addison Wesley Longman, Inc. 1998.

[3] L. Stojanovic, J. Schneider, A. Maedche, S. Libischer, R.
Suder, T. Lumpp, A. Abecker, G. Breiter, J. Dinger, The
Role of Ontologies in Autonomic Computing Systems, IBM
Systems Journal, Vol 43, No 3, 2004.

[4] Stuart Russell & Peter Norvig, Artificial Intelligence – A
modern approach (second edition), Prentice Hall, 2003.

[5] Nhon Do, “An ontology for knowledge representation And
Applications”. WASET, International Conference on Data,
Information and Knowledge Management, Singapore, 2008.

[6] Michel Chein & Marie-Laure Mugnier, Graph-based
Knowledge representation: Computational foundations of
Conceptual Graphs, Springer-Verlag London Limited 2009.

[7] Gruber, T. R., “Toward Principles for the Design of
Ontologies Used for Knowledge Sharing”. International
Journal Human-Computer Studies, 43(5-6):907-928, 1995.

[8] Do Van Nhon, “A Program for studying and Solving
problemsin Plane Geometry”, in proceedings of International
Conference on Artificial Intelligence 2000, Las Vegas, USA,
2000, pp. 1441-1447.

[9] Do Van Nhon, “A system that supports studying knowledge
and solving of analytic geometry problems”, 16th World
Computer Congress 2000, Proceedings of Conference on
Education Uses of Information and Communication
Technologies, Beijing, China, 2000, pp. 236-239.

[10] Frank van Harmelem, Vladimir, and Bruce, Handbook of
Knowledge Representation, Elsevier, 2008.

[11] F. Lehmann, Semantic Networks in Artificial Intelligence,
Elsevier Science Ltd, 2008.

[12] Amit Konar, Computational Intelligence : Principles,
Techniques and Applications, Springer-Verlag Berlin
Heidelberg, 2005.

[13] Leszek Rutkowski, Computational Intelligence: Methods
and Techniques, Springer-Verlag Berlin Heidelberg, 2008.

[14] ToshinoriMunakata, Fundamentals of the New Artificial
Intelligence: Neural, Evolutionary, Fuzzy and More,
Springer-Verlag London Limited, 2008.

[15] M. Tim Jones, Artificial Intelligence : A System Approach,
Infinity Science Press LLC, 2008.

[16] Berge, J.M., Levia, O., and Rouillard, J., Object-Oriented
Modeling. Netherlands: Kluwer Academic Publishers, 1996.

[17] Joseph C. Giarratano, and Gary D. Riley, Expert Systems:
Principles and programming, fourth edition, International
Thomson Publishing (2004).

[18] Nhon Van Do & Tam Pham Huu, “The Extensive
Computational Network and Applying in an Education
Software”, in proceedings of ICAIE 2009 – Wuhan, P.R
China, August, 22-23, 2009, pp 720-727, ISBN 978-1-
84626-010-0 (Volume 2).

[19] Asunción Gómez-Pérez, Mariano Férnandez-López, and
Oscar Corcho, Ontological Engineering. Springer-Verlag,
2004.

[20] Chitta Baral, Knowledge Representation, Reasoning and
Declarative Problem Solving, Cambridge University Press,
2003.

[21] Guarino, N., “Formal Ontology, Conceptual Analysis and
Knowledge Representation”, International Journal of
Human-Computer Studies, 43(5-6):625–640, 1995.

[22] Wen-tsun Wu, Mechanical Theorem Proving in Geometries.
Springer-Verlag, 1994.

[23] Chou, S.C., Gao, X.S., and Zhang, J.Z., Machine Proofs in
Geometry, Singapore: Utopia Press, 1994.

[24] Pfalzgraf, J., and Wang D., Automated Practical Reasoning.
NewYork: Springer-Verlag, 1995.

[25] Lakemeyer G., and Nebel B., Foundations of Knowledge
representation and Reasoning. Berlin Heidelberg: Springer-
Verlag, 1994.

[26] Nie Guihua, Jiang Xiangjie, Chen Donglin, Liang Yueling,
Li Xiaofei, “The Research of Personalized Learning Based
On Ontology”,in proceedings of ICAIE 2009 – Wuhan, P.R
China, August, 22-23, 2009, pp 22-26, ISBN 978-1-84626-
010-0 (Volume 1).

Nhon Van Do is currently a senior lecturer in the faculty of
Computer Science at the University of Information Technology, Ho
Chi Minh City, Vietnam. He got his MSc and Ph.D. in 1996 and
2002 respectively, from The University of Natural Sciences –
National University of Ho Chi Minh City. His research interests
include Artificial Intelligence, computer science, and their practical
applications, especially intelligent systems and knowledge base
systems.

