
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 7, May 2010 
ISSN (Online): 1694-0784 
ISSN (Print): 1694-0814 
 

 

1

A practical application of software security in an undergraduate 
software engineering course 

Cynthia Y. Lester  
 Computer Science, Tuskegee University 

Tuskegee, Alabama 36088, USA 
 
 

 
Abstract 

Computer software is developed according to software 
engineering methodologies.  However, as more of the economy 
and our social lives move online, software security has become a 
topic of increasing importance. Traditionally, courses in software 
security are offered at the graduate level or in a stand-alone 
course at the undergraduate level, with many undergraduate 
students being required to apply security principles to their 
software development processes as soon as they complete their 
degrees. Therefore, this paper posits that software security can be 
effectively introduced to undergraduate students in a traditionally 
taught software engineering course.  The paper presents a 
modified software engineering course which introduces the 
secure development life cycle.  Several traditional software 
development methodologies are presented which provide a 
foundation for introducing secure software principles.  
Additionally, the paper introduces collaborative learning and 
service-learning which are used in the practical application of 
software security concepts.  Lastly, challenges and future work 
are presented. 
Keywords: Collaborative learning, Service-learning, Software 
development, Software engineering, Software security, 
Undergraduate students. 

1. Introduction 

Securing information is not a new idea.  In fact, securing 
data has its origins in World War II with the protection 
and safeguarding of data which resided on mainframes 
that were used to break codes [1].  However during the 
early years, security was uncomplicated since the primary 
threats included physical theft of the system, espionage 
and sabotage against product resources [1].  Yet, it was 
not until the early 1970s that the concept of computer 
security was first studied.  With the invention of the 
Advanced Research Projects Agency Network 
(ARPANET) by the U.S. Department of Defense in 1968 
and its growing popularity in the early 1970s, the chance 
for misuse increased for what is now known as the modern 
day Internet. Consequently, with the advent of the Internet 
and the World Wide Web, protecting data has become a 
topic of importance.   
 

In the Report of the Presidential Commission on Critical 
Infrastructure Protection, it was stated that “education on 
methods of reducing vulnerabilities and responding to 
attacks” and “programs for curriculum development at the 
undergraduate and graduate levels” were recommended to 
reduce the number of vulnerabilities and malicious attacks 
on software systems [2].  Additionally, in the 2003 
National Strategy to Secure Cyberspace four major 
actions and initiatives for awareness, education, and 
training were identified which included [3]: 

 Foster adequate training and education programs 
to support the Nation’s cyber security needs 

 Promote a comprehensive national awareness 
program to empower all Americans—businesses, 
the general workforce, and the general population 
- to secure their own parts of cyberspace 

 Increase the efficiency of existing federal cyber 
security training programs 

 Promote private-sector support for well-
coordinated, widely recognized professional 
cyber security certifications 

Therefore, in order to protect data from hackers and 
saboteurs in a global society where e-commerce, e-
business, and e-sharing are the “norm”, professionals 
should have sound knowledge in methods to protect data. 
Hence, the area of information assurance (IA) has become 
one of great significance. 
 
Information assurance as defined in the CNSS Instruction 
Handbook No. 4009 are measures that protect and defend 
information and information systems by ensuring their 
availability, integrity, authentication, confidentiality, and 
nonrepudiation. Additionally, the measures include 
providing for restoration of information systems by 
incorporating protection, detection, and reaction 
capabilities [4].  In order for students to gain training in 
information assurance, a series of courses are often taken 
which include traditional computer science courses but 
also courses in information security, network security, 
computer security, cryptography,  software security, etc.  
However, unless an institution has an information 
assurance track or program, students may not have the 



IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 7, May 2010 
www.IJCSI.org 

 

2

opportunity to gain exposure to many of these concepts, 
especially those concepts found in a software security 
course. 
 
Typically, undergraduate software engineering courses do 
not place an emphasis on security concepts.  
Consequently, it is difficult for students enrolled in an 
undergraduate software engineering course to gain 
training in the secure life cycle. However, undergraduate 
software engineering courses offer excellent opportunities 
to introduce the concepts of a trusted development 
environment and the cost of producing software under 
such restriction. Further, the identification and discovery 
of the system security policy and how one models the 
policy for implementation within a working system 
provide good opportunities for student exercises. 
 
Therefore, the aim of this paper is to present a modified 
software engineering course which introduces the secure 
development life cycle. The paper presents several 
traditional methodologies and the secure software 
development life cycle introduced to students.  
Additionally, the paper introduces the concepts of 
collaborative learning and service-learning which were 
used to enhance the practical application of software 
development and security concepts. 

2. Traditional software development  

Software engineering is defined as “being concerned with 
all aspects of the development and evolution of complex 
systems where software plays a major role.  It is therefore 
concerned with hardware development, policy and process 
design and system deployment as well as software 
engineering [5].”   
 
The term software engineering was first proposed at the 
1968 NATO Software Engineering Conference held in 
Garmisch, Germany.  The conference discussed the 
impending software crisis that was a result of the 
introduction of new computer hardware based on 
integrated circuits [5].  It was noted that with the 
introduction of this new hardware, computer systems were 
becoming more complex which dictated the need for more 
complex software systems.  However, there was no 
formalized process to build these systems which put the 
computer industry at jeopardy because systems were often 
unreliable, difficult to maintain, costly, and inefficient [5].  
Consequently, software engineering surfaced to combat 
the looming software crisis. 
 
Since its inception, there have been many methodologies 
that have emerged that lead to the production of a software 

product.  The most fundamental activities that are common 
among all software processes include [5]: 

 Software specification – the functionality of the 
system and constraints imposed on system 
operations are identified and detailed 

 Software design and implementation –  the 
software is produced according to the 
specifications 

 Software validation – the software is checked to 
ensure that it meets its specifications and 
provides the level of functionality as required by 
the user 

 Software evolution – the software changes to 
meet the changing needs of the customer 

 
Typically, students are introduced to these activities in the 
undergraduate computer science curriculum through a 
software engineering course.  This course is sometimes a 
survey course which exposes students to a variety of life 
cycle models used in industry.   The course is often taught 
from a systems approach which places an emphasis on 
creating requirements and then developing a system to 
meet the requirements.  In the traditional view of software 
development, requirements are seen as the contract 
between the organization developing the system and the 
organization needing the system [6]. 

2.1 The waterfall model 

A traditional view of software development is the 
waterfall method.  The waterfall method was the first 
published software development process and forms the 
basis for many life cycles.  It was noted as a great step 
forward in software development [7].  The method has 
stages that cascade from one to the other, giving it the 
“waterfall” name.  Figure 1 is an example of the waterfall 
life cycle [8]. 
 
 

 
 

Figure 1. Waterfall model 

 
It has been noted that the method might work satisfactorily 
if design requirements could be addressed prior to design 



IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 7, May 2010 
www.IJCSI.org 

 

3

creation and if the design were perfect prior to 
implementation [7].  Consequently, one of the main 
disadvantages of this model is that requirements may 
change accordingly to meet the needs of the customer and 
the change is difficult to incorporate into the life cycle.  As 
a result of this shortcoming, additional life cycles emerged 
which allowed for a more iterative approach to 
development. 

2.2 Evolutionary development 

Evolutionary development is based on the idea of 
developing an initial implementation and then exposing 
the build to the user for comment and refinement [5].  
Figure 2 is an example of the evolutionary development 
method [5]. 

 

 
 

Figure 2. Evolutionary development 

 
There are two fundamental types of evolutionary 
development: 

 Exploratory development – developers work with 
customers to discern requirements and then the 
final system is delivered 

 Throwaway prototyping – used to quickly 
develop a concept and influence the design of the 
system  

 
The advantage of evolutionary development is that it is 
developing specifications incrementally [5].  As customers 
have an opportunity to interact with the prototype, 
specifications are refined which leads to a better, more 
useful, usable, and used software.  However, while this 
approach is somewhat better than the waterfall model, it is 
not without its criticisms.  Sommerville notes that the 
process is not visible and that the systems being developed 
are often poorly structured [5]. The next model presented 
is stated to be an improvement over both the waterfall and 
evolutionary development models.  

2.3 Spiral development 

The spiral development model is an example of an 
iterative process model that represents the software 

process as a set of interleaved activities that allows 
activities to be evaluated repeatedly.  The model was 
presented by Barry Boehm in his 1988 paper entitled A 
Spiral Model of Software Development and Enhancement 
[9].  The spiral model is shown in figure 3.  The spiral 
model differs from the waterfall model in one very distinct 
way because it promotes prototyping; and, it differs from 
the waterfall and evolutionary development methods 
because it takes into consideration that something may go 
wrong which is exercised through risk analysis.   
 

 
 

Figure 3. Spiral model 

 
It is noted that this life cycle provides more flexibility than 
its more traditional predecessors.  Further, this method 
produces a preliminary design.  This phase of the life 
cycle was added specifically in order to identify and 
resolve all the possible risks in the project development. 
Therefore, if risks indicate any kind of uncertainty in 
requirements, prototyping may be used to proceed in order 
to determine a possible solution. 
 
However, in these approaches as with many of the other 
approaches to software development that are taught in 
traditional software engineering courses, security is mostly 
absent from the process. Hence, the increasingly important 
need to include a discussion of software security in the 
software development process taught to undergraduate 
students.  The next section explores secure software 
development and its life cycle. 

3. Characteristics of good software 

According to statistics published by the Computer 
Emergency Response Team (CERT), over 19,500 security 
vulnerabilities have been reported since 1995.  Figure 4 
shows the significant increase in vulnerabilities over a ten 
year period.  Similarly, in a report published by CERT in 



IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 7, May 2010 
www.IJCSI.org 

 

4

2005, the number of new security vulnerabilities reported 
each day almost doubled in comparison to those reported 
each day in 2004 [10].  It has been reported that these 
software vulnerabilities and software errors cost the U.S. 
approximately $59.5 billion annually [11].   

 

 
Figure 4. Vulnerabilities Report 

 
Software errors have grown in complexity.  In 2000, the 
National Institute of Standards and Technology (NIST) 
reported that the total sales of software reached 
approximately $180 billion and the software was 
supported by a workforce that consisted of 679,000 
software engineers and 585,000 computer programmers 
[11].  Some of the reasons that software errors have grown 
in complexity are that typically, software now contains 
millions of lines of code, instead of thousands; the average 
product life expectancy has decreased requiring the 
workforce to meet new demands; there is limited liability 
among software vendors; and, there is difficulty in 
defining and measuring software quality [11].  
 
Consequently, it is imperative that students in computer 
science and information technology be trained in the 
concepts of security and how to design and develop secure 
software so that they can contribute viably to the fast 
changing technological demands of this global society. 
The traditional development strategies expose students to 
the methods for software development, but as they 
consider how to guard against hackers, how to protect 
critical information, and how to lessen security threats, a 
question of what is “good” information arises.  Therefore, 
before students can understand and have an appreciation 
of the secure software development life cycle, they must 
first be exposed to the qualities and characteristics of 
“good” information.   
 
The value of information has been stated to come from the 
characteristics that it possesses [1]. While some 
characteristics may increase the value of the information 
as it relates to use by users, other characteristics may have 

a more significant value among security professionals.  
However, all characteristics as defined below are critical 
as it relates to secure information [1]. 

3.1 Availability  

Availability allows users who need to access information 
to access the information without impediment or intrusion.  
Further, availability means that users can receive 
information in the desired format. 

3.2 Accuracy 

Accuracy as defined by The American Heritage College 
Dictionary is conformity to fact; precision; exactness [12].  
As accuracy relates to secure software it means that the 
software has the value that the user expects and that it is 
also free from errors. 

3.3 Authenticity 

Authenticity is the state or quality of information being 
original or genuine.  The information should not be a 
replication of other information.  Whitman further reveals 
that information is authentic when it is the information that 
was originally created, placed, stored or transferred [1]. 

3.4 Confidentiality 

Confidentiality of information is another characteristic of 
“good” information.  While this concept is not difficult for 
students to understand and is one that comes to most 
minds of students, it is still important that students 
understand that confidentiality is more than protecting 
information.  Confidentiality of information means that 
only those persons with “certain” rights can have access to 
the information.  It means that only authorized persons or 
systems can gain access to the information. 

3.5 Integrity 

Another characteristic of information is that of integrity.  
Integrity is adherence to a strict code or the state of being 
unimpaired [12].  As it relates to the integrity of 
information it is the state of being uncorrupted or the state 
of being whole.  It is important to point out to students that 
corruption of information does not necessarily happen as a 
result of saboteurs, but also as data moves from one 
system to another. 

3.6 Utility 

The sixth characteristic of information is that of utility.  
Utility is the condition of being useful.  While students 
understand that information must be available, authentic, 
and accurate, if the information being provided is not 



IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 7, May 2010 
www.IJCSI.org 

 

5

useful or presented in a format that cannot be used, then 
the information loses its value or its quality of being 
“good” information.   

3.7 Possession 

The final characteristic of information as stated and 
defined by Whitman and Mattford is that of possession.  
Possession is the condition of being owned or controlled.  
Whitman and Mattord note that while a breach in 
confidentiality always results in a breach of possession, 
the opposite may not be true.  Consequently, students 
should understand the role that possession plays in the 
characteristics of quality information [1]. 

4. The secure development life cycle 

There are many approaches to the development of robust 
software that can ensure that the information being used 
by users is available, accurate, authentic, possesses 
confidentially, integrity, is useful and can be controlled.  
However, the question becomes how to introduce this 
model at the undergraduate level when a specialized 
course in software security is not available or when 
typically students only take one course in software 
development.  The following section presents the secure 
software development life cycle taught in a traditionally 
taught software engineering course and introduces a 
method which allows students to gain practical experience 
in implementing security concepts. 
  
A misconception among students as well as with 
computing professionals is that security should be thought 
of in the later phases of the software development life 
cycle.  However, if systems are to withstand malicious 
attack, a robust software development model or a secure 
software development method must be used. Figure 5 
presents one viewpoint of the secure life cycle discussed 
in class [13]. 
 

 
 

Figure 5. Secure life cycle 

4.1 Security requirements and analysis   

While requirements are being gathered from users and 
stakeholders, focus should also be placed on establishing a 
security policy.  In order to develop a security policy, 
attention needs to be given to what needs to be protected, 
from whom, and for how long [14].  Additionally, thought 
needs to be placed on the cost of protecting the 
information.  The result of this phase should be a set of 
guidelines that create a framework for security [1]. 

4.2 Security design 

During the design phase it has been stated that the security 
technology needed to support the framework outlined in 
the requirements phase is evaluated, alternative solutions 
are explored, and a final design is agreed upon [1].  It is 
recommended by Viega and McGraw that the following be 
the focus of this phase [14]: 

 How data flows between components 
 Users, roles and rights that are explicitly stated or 

implicitly included 
 The trust relationships between components 
 Solutions that can be applied to any recognized 

problem 
At the end of this phase a design should be finalized and 
presented.  The design should be one that can be 
implemented. 

4.3 Implementation 

The implementation phase in the secure development life 
cycle is similar to that which is found in traditional 
methodologies.  However, when implementing a software 
project with security in mind, it is important to consider a 
language or a set of languages that may have security 
features embedded, one that is reliable when it comes to 
denial-of-service attacks, and that can perform error 
checking statically, etc.  Further, it is important to 
understand the weaknesses of languages, for example 
buffer overflows in C and C++. 

4.4 Testing 

Testing in the secure development life cycle is different 
than in traditional methodologies.  In traditional 
methodologies, testing is done to ascertain the behavior of 
the system and to determine if the system meets the 
specifications.  Security testing is used to determine if a 
system protects data and maintains functionality as 
intended. As mentioned previously the six concepts that 
need to be covered by security testing are availability, 
accuracy, authenticity, confidentiality, integrity, utility, 
and possession.  It has been stated that security testing is 
most effective when system risks are uncovered during 



IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 7, May 2010 
www.IJCSI.org 

 

6

analysis, and more specifically during architectural-level 
risk analysis [14].    

4.5 Maintenance 

It has been stated that the maintenance and change phase 
may be the most important phase of the secure 
development life cycle given the high level of cleverness 
seen in today’s threats [1].  In order to keep up with the 
changing threats to systems, security systems need 
constant updating, modifying, and testing.  Constant 
maintenance and change ensure that systems are ready to 
handle and defend against threats. 

5. The modified software engineering course 

The next sections describe the modified software 
engineering course, CSCI 430-Software Engineering.  The 
course was revised to include software security concepts 
both in lecture materials and the semester long service-
learning project students were to complete.  Learning 
resources may be of the following two broad types: (a) 
lecture materials; and (b) modification of existing syllabi 
and project descriptions/laboratory exercises. Lecture 
materials introduce specific issues, concepts, terminology, 
and techniques to the students in the classroom.  Further 
the course introduced to students the concepts of 
collaborative learning and service-learning, which are 
presented in the next sections, as well as the course 
description.  

5.1 Collaborative learning  

Students learn best when they are actively involved and 
engaged in the learning process.  In educational 
environments, study groups are often formed to gain better 
insight on course topics through collaborative efforts. 
Collaborative learning is defined as the grouping and/or 
pairing of students for the purpose of achieving an 
academic goal [15].  Davis reported that regardless of the 
subject matter, students working in small groups tend to 
learn more of what is taught and retain it longer, than 
when the same content is presented in other more 
traditional instructional formats [16].   
 
Supporters of collaborative learning suggest that the active 
exchange of ideas within small groups not only increases 
interest among group participants, but also helps to 
improve critical thinking skills.  The shared learning 
environment allows students to engage in discussion, take 
responsibility for their own learning, hence becoming 
critical thinkers [15]. Students are responsible for their 
own learning as well as the learning of others.  Research 
has shown that collaborative learning encourages the use 

of high-level cognitive strategies, critical thinking, and 
positive attitudes toward learning [17].  Further, Johnson 
and Johnson suggest that collaborative learning has a 
positive influence on academic performance [18].   
 
Informal learning groups.  Informal learning groups are 
ad hoc temporary grouping of students within a single 
class period. Informal groups can be organized at any time 
during class and are often used to monitor students’ 
understanding of material, to provide students an 
opportunity to implement what is being discussed or to 
change the pace of class discussion. 
 
Study teams.  Study teams are long-term groups with 
stable membership whose primary responsibility is to 
provide members with encouragement, support, and/or 
assistance in completing course requirements and 
assignments.  
 
Formal learning groups.  Formal learning groups are 
teams established to complete a specific task. These 
groups may complete their work in a single class period or 
over the course of several weeks. Students tend to work 
together until the task is finished, and their project is 
graded. 
 
The modified course made use of formal learning groups. 

5.2 Service-learning 

Research has found that of the females and the minority 
students who choose computer science as a major, many 
place an intrinsic value on how technology can “better the 
world and its people” and value the role that computers 
play in the future [19].  Consequently, the idea of service-
learning is appealing because it allows these students to 
see first hand how technology can improve processes and 
the way of life for citizens in the global society. 
 
Service-learning is defined as a method of teaching 
through which students apply their academic skills and 
knowledge to address real-life needs in their own 
communities [19].  Service-learning provides a compelling 
reason for students to learn; it teaches the skills of civic 
participation and develops an ethic of service and civic 
responsibility.  By solving real problems and addressing 
real needs, students learn to apply classroom learning to 
real world situations [19].  Service-learning has been 
shown to be an educational technique that facilitates a 
student’s growth in academics, social maturity, critical 
thinking, communication, collaboration, and leadership 
skills [19].  Students who are involved in meaningful 
service-learning have further been shown to perform better 
on tests, show a sense of self-esteem and purpose, connect 



IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 7, May 2010 
www.IJCSI.org 

 

7

with the community, and want to be more civically 
engaged than students who do not participate in service-
learning activities [19].   
 
There are many key components that are encompassed 
within service-learning.  The author has chosen some of 
the activities that were included in the redesigned CSCI 
430 and, they are presented in the next sections. 
 
Reflection. Reflection fosters the development of critical 
thinking in students. Reflection and critical thinking 
(problem-solving) are essential tools that will help 
students be successful in school, career, and life. Service-
learning reflection includes the following activities by the 
student:  
 Assessing personal interests, knowledge, skills, and 

attributes that will be useful in performing the 
service-learning project. 

 Thinking about how to take effective steps to meet 
the identified needs. 

 Self-evaluating one’s progress toward meeting the 
goals of the project. 

 
Working as a team. The students learn to work for a 
common goal and by doing so acquire a variety of skills, 
such as how to lead, how to be accountable, how to 
communicate ideas, how to listen to others, and how to set 
a goal and work effectively as a team to reach the goal.  
 
Experiential learning. Service-learning uses direct 
experience and hands-on learning to help the student learn 
to take the initiative, assume responsibility, and develop 
effective problem-solving skills.  
 
It was the anticipation of the author that through the 
hands-on experience of developing a project that included 
security concepts, students would gain an understanding 
of the importance of secure software engineering and their 
approach to development would be enhanced.   Further, as 
students use and understood the concepts presented during 
class, conceptually they would be able to apply the 
principles to a semester long service-learning project. 

5.3 Course description 

A brief description of CSCI 430 - Software Engineering, is 
to provide students with an engineering approach to 
software development and design; and, to expose students 
to current research topics within the field [20]. The 
software engineering course was modified to reinforce the 
need to think about security features and requirements 
early in the development process so that security 
protection mechanisms are designed and built into the 
system rather than added on at a later time. 

The prerequisites for the course are to have successfully 
completed CSCI 230 (Data Structures) and CSCI 300 
(Discrete Mathematical Structures) with a grade of C or 
better. 
 
Learning outcomes are extremely important when 
developing a course.  The learning outcomes describe the 
specific knowledge and skills that students are expected to 
acquire.  The learning outcomes for the CSCI 430 course 
include the following: at the end of the course, a student 
should be able to: 

 Describe in detail the software process 
 Identify various software process models and 

determine which model should be used for a 
specific project 

 Implement each phase of the software process 
 Work effectively and efficiently in a team 

environment to produce a large scale project 
 Identify and discuss current research topics 

related to the software engineering discipline 
 
To meet the objectives of the learning outcomes, Table 1 
presents an outline of the topics covered during the sixteen 
week semester [20]. 

Table 1. Weekly course schedule 

WEEK TOPIC 
1 Introduction to Software engineering 
2 Traditional software processes 
3 Traditional software processes 
4 Security development life cycle model 
5 Software requirements 
6 Requirements engineering 
7 Managing software security risk 
8 Midterm 
9 Software security in design 
10 Architectural design 
11 Object-oriented design 
12 User-interface design 
13 Verification & validation 
14 Software testing 
15 Software testing 
16 Project implementation 

 
Students were assessed through homework, a semester 
long service-learning project, and a paper in special topics.  
Additionally, two exams are administered.  The next 
section presents the service-learning project. 



IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 7, May 2010 
www.IJCSI.org 

 

8

6. Service-learning project 

6.1 Problem statement 

The semester long project selected for the fall 2009 
semester was to develop an electronic voting/tallying 
system for the hotly contested position of the University’s 
Queen.  During past years, there have been errors in the 
selection process of the University’s Queen which has 
resulted in a process where contestants and the student 
body have little confidence.  Students were required to 
develop a software product that meets the needs of the 
customer and helps to refine the election process and 
ballot-counting process for the University’s Queen 
contest.  The selection of this project was appealing 
because students would be able to see how the 
development of this technology could improve the process 
and its impact on contestants, the student body, and 
administrators.   
 
Students were part of a formal learning group/team which 
was expected to meet with the customer (or representative) 
so that each phase of the process could be implemented.  
The team was also expected to produce a deliverable by 
the set deadline for each phase of the process and to also 
deliver it and make presentations to the customer (or 
representative).   

6.2 Learning outcomes 

The learning outcomes of the semester long service-
learning project stated that after completion the students 
would: 

 Have a working knowledge of the secure 
software development life cycle 

 Understand and have a working knowledge of 
secure software engineering principles 

 Be able to describe software vulnerabilities 
 Develop and execute security measures 
 Work effectively and efficiently in a team 

environment to produce the semester long 
project 

6.3 Project requirements 

Students were given basic requirements by the author for 
the software application; however, the majority of the 
requirements were gathered from stakeholders. Since the 
project was infused with software security concepts there 
were both standard project requirements as well as 
security requirements.  

 

6.4 Project deliverables 

Each item that the student team submitted was considered 
a deliverable. The project had four deliverables which 
were the requirements document, design document, 
implementation, and the test plan. The following is an 
overview of the project deliverables. 
 
Requirements Document.  The first document students 
were required to submit was the requirements document. 
The requirements document was considered the official 
statement of what the students would implement.  It 
included both the stakeholder requirements for the 
software application, which students named the MISS 
System, and a detailed specification of system 
requirements.  To gather the requirements, students met 
with stakeholders who included Administrators in the 
Office of Student Life, contestants from past elections, and 
student body leaders who were in charge of election 
results. The initial document was meant to get the students 
active in the planning and development of the system. 
After completion of the requirements document, students 
had an idea of the way they wanted the system to look, 
how the system would be accessed, and by whom. 
 
Design Document.  The team was required to use one of 
the decomposition styles discussed in the course. The 
design document was required to have an introduction, an 
overview of the design strategy chosen, and the diagrams, 
charts, and/or details required as part of the decomposition 
strategy chosen. The design document was also meant to 
be an in-depth description of the system design. The 
design showed how data flowed between system 
components and the trust relationships between 
components. Both the system and security requirements 
were described and explained how they would be 
implemented. Further the document identified 
vulnerabilities to the system and possible solutions were 
presented. 
 
Implementation.  Students were required to implement 
the project based on the requirements and design 
documents.  To implement the project students chose the 
Java programming language. 
 
Testing.  This was probably the most difficult part of the 
life cycle for students along with the implementation.  
Students were required to develop a test plan which 
required them to perform functional testing and security 
testing.  Further, the system would undergo acceptance 
testing.   
 



IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 7, May 2010 
www.IJCSI.org 

 

9

To ensure that students stayed on task during the sixteen 
week semester, a deliverable timeline was created. Table 2 
presents the deliverable timeline for the project [20].  

Table 2. Deliverable timeline 

Deliverable  Deadline  

Requirements document  Week 8  

Design document  Week 12 

Implementation  Week 16 

Test Plan  Week 16 

7. Results 

A version of the course was piloted during the fall 2007 
semester.  During the fall 2008 semester the course was 
once again revised in terms of content and project 
deliverables.  The modified course presented in the paper 
was offered during the fall 2009 semester and 
encompassed the change in content and deliverables, with 
the addition of collaborative learning and service-learning. 
The results of the study are as follows: 

 The formal learning group/team created complete 
deliverables by specified due dates. 

 Rotation of team leaders proved helpful in 
encouraging leadership skills. 

 Soft skills of personal communication, 
collaboration, and interactivity were practiced. 

 
Students were asked to conduct an exit interview after the 
completion of the course and the service-learning project.  
The exit interviews revealed the following: 

 Students left the course with an appreciation for 
the software engineering discipline and the secure 
software development process. 

 Students understood the need for documentation 
throughout the development life cycle. 

 Students stated that developing software 
specifications proved to be extremely challenging 
and stakeholders are not always sure about the 
product they want developed. 

 Students also stated that performing all phases of 
life cycle proved to be time consuming. 

 
When asked about the course itself, the students expressed 
the following: 

 They appreciated the opportunity to be engaged 
in a service-learning project. 

 Although difficult, they enjoyed creating a 
software application for “real-customers.” 

 They enjoyed the collaborative learning 
experience and desired more courses that infused 
collaborative learning into the learning 
experience. 

8. Challenges and future work 

Developing a course that exposes students to an 
innovative way of learning proved to be quite challenging.  
This section describes some of the challenges that the 
author encountered as well as suggestions for change. 
 
One of the challenges that the author faced was selecting a 
course project for students that could be completed in one 
semester.  Although the students liked the idea of the 
service-learning project, they expressed certain levels of 
discomfort. While the students were very sure of their 
computing ability, they were less confident with their 
technical writing skills, and with their ability to ascertain 
correctly system specifications from their “customers.”   
 
An additional challenge was getting students to understand 
that software engineering is more than just programming.  
The service-learning project was introduced to students at 
the beginning of the semester; however, the team waited to 
start the project thinking that “coding” the software 
application would not be time consuming.  While this 
assumption might have been true if “coding” was the only 
part required in the project, once students understood that 
the specifications had to be gathered from customers, they 
expressed feelings of hesitation about the service-learning 
project. 

 
The exit interviews also revealed some concerns by the 
students, which the author has noted for the next course 
offering which include: 

 To choose a service-learning project in which the 
development life cycle can be completed in one 
sixteen week semester.  Although the project was 
introduced early and students and the author 
thought that the project could be completed, there 
was still not enough time left in the semester to 
complete the software development life cycle (i.e., 
testing was not complete). 

 To have a better method for choosing team leaders.  
Students expressed concerns about the method for 
choosing team leaders for various parts of the 
project (i.e., strengths and weaknesses should be 
taken into account). 

 To provide a mechanism for rewarding active team 
members.  Students often expressed their 
disappointment with classmates who did not 
actively participate in team meetings, etc. 



IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 7, May 2010 
www.IJCSI.org 

 

10

9. Conclusion 

In conclusion, the aim of this paper was to present a 
modified software engineering course which introduces 
the secure development life cycle to undergraduate 
students.  The author acknowledges that while there are 
many development methodologies that exist to train 
students in software security, many consist of steps that 
cannot be covered and implemented in one course 
especially with undergraduate students.   
 
As software becomes more complex and vulnerabilities 
and threats to these systems become just as complex, it is 
important to introduce to the next generation of 
technologist ways that systems can be made more secure.  
As educators it becomes our responsibility to train these 
students so that developing secure software is not just 
introduced in theory, but in practice as well. 

Acknowledgments 

The author thanks the students enrolled in the CSCI 430-
Software Engineering course, fall 2009 semester, more 
specifically J. Brazelton, T. Carroll, and E. Mike for their 
invaluable contribution to the project. 
 

References 
[1] M.E. Whitman and H.J. Mattford. (2004). Principles of 

Information Security.  Boston: Course Technology. 
[2] J. Elli, D. Fisher, T. Longstaff, L. Pesante, and R.  Pethia. 

“A Report to the President’s Commission on Critical 
Infrastructure Protection.” [Electronic Version] 
http://www.cert.org/pres_comm/cert.rpcci.ex.sum.html#ed
u (Accessed on April 1, 2008). 

[3] The National Strategy to Secure Cyberspace. (2003). 
[Electronic Version]. http://www.uscert.gov/ 
reading_room/cyberspace_strategy.pdf  (Accessed on 
November 7, 2007). 

[4] http://www.cnss.gov/Assets/pdf/cnssi_4009.pdf. 
[5] I. Sommerville.  (2007). Software Engineering 8th Ed.  

Addison Wesley, 978-0-321-31379-9, Boston, MA. 
[6] C. Angelov, R.V.N. Melnik, & J. Buur. (2003). The 

synergistic integration of mathematics, software 
engineering, and user-centered design: exploring new 
trends in education. Future Generation Computer Systems. 
Vol. 19, 299 – 1307. 

[7] B. K. Jayaswal and P.C. Patton. (2007). Design for 
trustworthy software: Tools, techniques for developing 
robust software. Prentice Hall, 0-13-187250-8, Upper 
Saddle Rover, NJ. 

[8] Codebetter.com http://codebetter.com/blogs/raymond. 
lewallen/downloads/waterfalllModel.gif. (Accessed on 
October 10, 2009). 

[9] B. Boehm. (1988). A Spiral Model of Software 
Development and Enhancement. IEEE Computer 21, 5, 61-
72. 

[10] CERT Coordination Center, CERT/CC statistics 1998 – 
2005.  [Electronic Version]. http://www.cert.org/stats 
/cert_stats.html (Assessed January 17, 2008) 

[11] Software Errors Cost U.S. Economy $59.5 Billion 
Annually: NIST Assesses Technical Needs of Industry to 
Improve Software-Testing [Electronic Version] 
http://www.nist.gov/public_affairs/releases/n02-10.htm 
(Accessed on April 1, 2008). 

[12] Accuracy; Integrity. American Heritage College 
Dictionary. (1993). New York: Houghton Mifflin 
Company. 

[13] A. Apvrille and M. Purzandi. “Secure Software 
Development by Example,” IEEE Security & Privacy, vol. 
3, no. 4, July/August, 2005. p. 10 – 17. 

[14] J. Viega and G. McGraw. (2001). Building Secure 
Software: How to Avoid Security Problems the Right Way.  
Boston: Addison-Wesley. 

[15] Gokhale, A.  “Collaborative learning enhances critical 
thinking.” Journal of Technology Education 7, no. 1. 1995. 

[16] Davis, B.G. Tools for Teaching.  San Francisco:  Jossey-
Bass Publishers. 1993. 

[17] Wang, S. and S. Lin. The effects of group composition of 
self-efficacy and collective efficacy on computer-
supported collaborative learning.  Computer and Human 
Behavior. 2006. 

[18] Johnson, R. T and D.W. Johnson.  “An Overview of 
collaborative learning.”  Creativity and Collaborative 
Learning; Baltimore: Brookes Press. 1994. [Electronic 
Version]. http://www.cooperation.org/pages/ 
overviewpaper.html (Accessed on August 31, 2006). 

[19] McPherson, K.  Service Learning. New Horizons for 
Learning. http://www.newhorizons.org/strategies/service_ 
learning/front_service.htm. 2005. 

[20] C. Lester.  CSCI 430 – Software Engineering Syllabus.  
2009. 

 
Dr. Cynthia Lester earned the B.S. degree in Computer Science 
from Prairie View A&M University, Prairie View, Texas (1994) and 
both the M.S. (1996) and Ph.D. (2004) degrees from The 
University of Alabama, Tuscaloosa, Alabama.  She joined the 
Tuskegee University, Tuskegee, Alabama, faculty in 2005 in her 
current rank of Assistant Professor of Computer Science. She has 
held positions as an Instructor of Computer Science at Tuskegee 
University and at IBM as a Technical Sales Representative. Dr. 
Lester’s areas of specialization are Human Computer Interaction 
and Software Engineering. She has authored more ten peer-
reviewed publications, two magazine articles which appear in the 
IANewsletter, and one book chapter.  Her current work in human-
computer interaction focuses on training and educating 
undergraduate computer science majors in user-centered design.  
For her work in this area, she garnered the Best Paper Award at 
the 2008 International Conference on Advances in Computer 
Human Interaction.  Most recently, Dr. Lester was named as a 
2010 International Academy, Research, and Industry Association 
Fellow.  She is a member of Sigma Xi, The Scientific Research 
Society. 


