
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 6, May 2010 1
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

Domain-Independent Genotype to Phenotype Mapping through
XML Rules

Daniela Xhemali1, Christopher J. Hinde2 and Roger G. Stone3

1 Computer Science, Loughborough University,
Loughborough, LE11 3TU, UK

2 Computer Science, Loughborough University,
Loughborough, LE11 3TU, UK

3 Computer Science, Loughborough University,
Loughborough, LE11 3TU, UK

Abstract
This paper discusses an innovative approach to mapping
Genotypes to Phenotypes through XML rules. Specifically,
it concentrates on the mapping process using two very
different domains – Regular Expressions (REs) and
Software Program Statements. The paper shows that our
Genotype-Phenotype system can be applied to any domain
that requires the use of REs and it can be adapted to work
for any other domain with minimum effort.

Keywords: Genetic Evolution, Genotypes, Phenotypes, XML
Mapping, Regular Expressions, Complete Software Structures.

1. Introduction

GP research has attracted attention in various fields such
as: game strategies [14], military defence [13], plant
biology [7], electronics [20], railway platform allocation
[4], spam filtering [5], feature extraction from media files
[12], [16], automated web extraction [3], [31] etc. One can
use different terminologies to define GP, but
fundamentally: “At the most abstract level, GP is a
systematic, domain independent method for getting
computers to automatically solve problems starting from a
high-level statement of what needs to be done” [18].

This paper focuses on a specific part of GP – the
Genotype-Phenotype Mapping – thus other components of
GP will not be covered here. Readers are encouraged to
look at [31] for a discussion of the different GP
components in relation to a real project, as well as [1], [8]
and [9] for a large selection of GP papers and surveys of
the history of evolutionary computing.

The Genotype-Phenotype Mapping relates to the way
individuals in a population are represented, as this can
have a significant effect on the performance of GP. A
Genotype represents each individual in the search space,
whereas its Phenotype represents the individual in the
solution space [2]. Some research, particularly earlier GP
research, do not make a distinction between Genotypes
and Phenotypes [5], [17], [27]. Individuals in each genetic
population remain the same throughout the evolution
process. In these works the search space and the solution
space are identical.

In 1994, Banzhaf [2] suggested the separation of the two
spaces and introduced his work on the Genotype-
Phenotype mapping. The separation involves the encoding
of the individuals to a form known as the ‘Genotype’,
which is later on decoded back to the corresponding
program, referred to as the ‘Phenotype’. This separation
simplifies and increases the efficiency of certain genetic
operations such as: reproduction and mutation, because
these would no longer be constrained by the parameters
used in the program being evolved. In Genotype-
Phenotype based GP, genetic operators such as Crossover
and Mutation would be performed on the Genotype,
whereas other processes, such as the Fitness scoring,
would be performed on the Phenotype. Sections 3.1 and
3.4 explain this concept further through examples.

There are researchers who criticise the separation into
Genotypes and Phenotypes [19]. The main concern
expressed is that the conversion process of a mutated
Genotype into the Phenotype may result in anomalies that
could potentially lead to invalid solutions. A direct

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 6, May 2010 2
www.IJCSI.org

mapping between the encoded program and the actual
program is therefore vital to ensure the validity of the
solutions [23], [28].

In our research, the Genotypes are presented as strings of
integers. The direct mapping of these integers to the
corresponding structures is achieved through an
innovative approach involving XML rules as described in
section 3.4.

This research is part of a larger project in collaboration
with an independent brokerage – Apricot Training
Management (ATM) – which helps organisations to
identify and analyse their training needs and recommend
suitable courses for their employees. ATM currently uses
time-consuming, labour-intensive, manual techniques to
gather information related to training courses, however,
this process often results in out-of-date courses being
stored in the company’s database and many hours being
wasted on Web browsing and data entry. Our overall
project is to provide ATM with a system that will
automate the extraction and storing of training course
information into the company’s database, guaranteeing
always up-to-date training data [29], [30]. Specifically, the
research concentrates on the evolution of Regular
Expressions (REs) for the extraction of pieces of
information such as course names, prices, dates and
locations from training web pages.

The following section focuses on research and techniques
related to Genotype-Phenotype based GP.

2. Related Research

Many researchers have embraced the separation of the
search space from the solution space through the use of
Genotypes and Phenotypes [2], [15], [28]. This, however,
adds an additional step to the genetic evolution process –
the translation or mapping of the Genotypes to their
corresponding Phenotypes. This step occurs after the
genetic reproduction stage (i.e. the crossover and mutation)
and before the Fitness test can take place.

The following concentrates on the different methods that
have been used to achieve the mapping process.

Banzhaf [2] represented his Genotypes as linear binary
strings. The mapping stage then processed these
Genotypes from left to right in 5-bit sections, where each
5-bit code mapped to a pre-specified symbol. For example:
00000 mapped to PLUS, 00100 mapped to POW, 11000
mapped to variable X etc. The first bit indicated whether
the code represented a function (PLUS, POW etc.) or a
terminal (X, Y etc.). The research also discussed their

concern about generating constant numbers. Koza [17]
solved this problem by defining “random ephemeral
constants” where constants are only generated once for a
particular program and then reused wherever they are
needed within that program.

Keller [15] continued in the footsteps of Banzhaf,
concentrating on providing experimental evidence for
choosing the Genotype-Phenotype approach instead of the
normal GP approach. Keller’s system however, could only
evolve programs in languages defined by the LALR (Look
Ahead Look Recursive) grammar, as this was the grammar
chosen for the repairing stage of the Genotype-Phenotype
mapping process.

There was a certain amount of redundancy in the genetic
coding in both Banzhaf’s and Keller’s works. They both
admitted that, in their works, different binary strings could
correspond to the same symbol, which could lead to
inconsistencies e.g. 000 and 100 both mapping to ‘a’.

A slightly different Genotype representation is seen in the
work of Withall et al. [28]. In here Genotypes are
represented as linear blocks of integers. Each block
comprises exactly four integers, each representing a
different gene. Although both research works used fixed-
length genomes, in [2] the resulting Phenotypes could vary
in length, whereas in [28] they remained fixed.

The first integer in Withall’s Genotype determines the
type of function that follows. Similarly, the Genotype in
our research is represented as a string of integers. There
are no fixed length genomes determined however; instead
the Genotype can contain any number of genes.

The unique feature of our research is the use of XML to
define the necessary rules to achieve the Genotype-
Phenotype mapping. The first gene in the string
determines the XML rule to be followed, which in itself
guides the mapping of the rest of the genes into a valid
Phenotype. This is explained in detail in section 3.4.

3. Genotype to Phenotype Mapping

Before discussing our mapping approach, it is important to
explain a few related topics in order for the reader to fully
understand how the approach works. The following
discusses the main representation chosen for the system, as
well as the different domains on which this approach was
tested. Specifically, the two domains relate to the
Genotype-Phenotype mapping of: REs and Software
Program Statements. The Software Program Statements
domain was chosen because it is very different from that

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 6, May 2010 3
www.IJCSI.org

of REs and thus, it can truly illustrate the extent to which
our system needs to be changed to apply to such a domain.

Section 3.4 explores the XML mapping process in detail.

3.1 GP Representation

There are two main representations in GP: the Tree-Based
GP and the Linear GP [28]. The Tree-Based GP represents
programs as syntax trees (Fig. 1), where program variables
and constants make up the tree leaves (x, 1, 5, y, 2),
whereas the program operators (*, +, –, /) are the internal
nodes. The tree leaves are also known as the terminals,
whereas the internal nodes are known as the functions. Fig.
1 shows the tree representation of program “(x+1)*(5-
(y/2))”. For complex programs, the main tree may contain
many sub trees.

Fig. 1 Tree-based GP Representation

Linear GP represents programs as a linear sequence of
instructions (Fig. 2). Based on biological evolution, the sets
of instructions are known as Genomes and each individual
instruction is called a gene. All the available Genomes for
a particular program form the Genotype. Linear GP
representations may have either fixed length Genomes i.e.
the same number of genes for every instruction, or
variable ones. This depends on the problem to be solved.

1st Instruction 2nd Instruction ... nth Instruction

Fig. 2 Linear GP Representation

We have chosen the linear approach for our research,
because it is more appropriate for the representation of
non-standard models like REs. Furthermore, linear GP
runs faster than tree-based GP [21]. This is because almost
all computer architectures represent computer programs in
a linear fashion – as a sequence of commands to execute.
The execution of tree-shaped programs is not natural for
computers, thus interpreters or compilers would need to be

used as part of the tree-based GP [21], which is
computationally expensive.

3.2 Regular Expressions (REs)

REs [26], [10], [22], [25] are powerful tools used to detect
patterns in data. They can range from basic to very
complex, matching from just literal text1 to very specific
instances of text based on certain criteria. For example:
^[A-Z][a-z]+ matches all instances that begin (^) with an
uppercase letter ([A-Z]) followed by one or more (+)
lowercase letters ([a-z]) such as “Regular” or
“Expression” but not “RE” or “REs”.

 REs are very well known, particularly in the UNIX
community and they feature largely in some programming
languages such as Perl, PHP or AWK. However, the
manual generation of REs can be a difficult, error-prone
and time consuming undertaking, especially for complex
patterns. This is due to the fact that although REs are built
up from small building blocks, where each block is fairly
simple; all the available blocks can be combined in an
infinite number of ways [10], which may result in a highly
complex RE. Tools have been developed to evaluate the
validity of REs [11], [24], however, very little, if anything
has been done towards the automatic generation of REs.

Our research focuses on the automatic generation of REs
through the use of genetic programming principles in
order to automate web extraction. This paper concentrates
on the mapping of Genotypes (strings of meaningless
numbers) to Phenotypes (REs) through XML rules as
explained in section 3.4.

3.3 Software Program Statements

The research in this paper is based on the work of Withall
et al. [28]. The examples are kept as close to the original
as possible in order to ensure their integrity. The only
difference is that the Software Program Statements in [28]
were evolved to be valid in Perl, whereas in this paper
their validity is ensured against VB.NET 2008. Fig. 3
shows an example of the syntax differences in both
languages.

1 / all this is literal text and will be matched /

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 6, May 2010 4
www.IJCSI.org

PERL: if ($x != $y) {
 $z = $z + 1;
 }

VB.NET: IF x <> y THEN
 z = z + 1
 END IF

Fig. 3 PERL vs. VB.NET

The Software Program Statements that are considered in
this paper include simple structures that are commonly
used in programming such as: FOR … NEXT; IF …
THEN … ELSE, WHILE … END WHILE as well as
useful statements such as Addition (x = y + z), Subtraction
(x = y - z), Multiplication (x = y * z) and Division (x = y /
z).

The following section will explain in detail how
Genotypes are converted to either REs or Software
Program Statements using XML rules.

3.4 XML Mapping – REs

It is very important for the Genotypes and Phenotypes to
have a direct relationship between them, in order for
essential characteristics to be preserved from the parents
and inherited by the offspring [28]. Koza [17] did not
encounter this problem, because the Genotypes were not
separated from the Phenotypes in his work, however,
representations such as grammatical evolution [20] could
be in danger of creating offspring that do not inherit
important qualities from their parents, due to a lack of
direct mapping between the parent and offspring
Phenotypes.

Our Genotype to Phenotype mapping is similar to the
work of Withall et al. [28], whereby the Genotypes are
used for the genetic manipulation, whereas the Phenotypes
are used for the Fitness Test. One of the differences,
however, is the length of the Genomes. Withall et al. use
fixed-length gene blocks or Genomes, where each block
comprises four genes, however, they allow for variable-
length Genomes through padding – in cases of shorter
program structures or statements, left over genes are
ignored. In this research, we only use variable-length
Genomes. This is because different REs may contain a
varying number of components (i.e. tags, RE structures,
keywords etc.). One can create a regular expression that is
a centimetre long or one that covers a whole A4 page.
Withall et al., however, deal with the evolution of
structures, as discussed in section 3.3, which are more

rigid when it comes to the number of components they
contain.

As mentioned previously, a unique attribute of this
research is that it achieves the Genotype to Phenotype
conversion through XML rules (Fig. 4). This technique
has many advantages including: improved readability,
compatibility with many programming languages,
portability and extendibility (XML is not restricted to a
limited set of keywords defined by the proprietary
vendors, which aids the process of creating rules of
different levels of complexity).

The initial XML rules were created manually after an
extensive analysis of a number of web pages. However, in
the future, new rules will be able to be added to the XML
file automatically (Hinde, Stone and Siau are currently
working towards implementing this functionality).

The rest of this section explains the way XML is used to
guide the mapping of Genotypes to valid Phenotypes. The
Genotype-Phenotype mapping process for the REs domain
is shown below:

Pseudo-code: Genotype-Phenotype Mapping Process
1) Determine the XML rule to follow
2) Follow the chosen XML rule to the end
3) IF the Genotype has fewer genes than the rule

requires
a) Follow the rule for the number of genes available
b) Repair outcome to create a valid partial solution.

4) IF the Genotype has enough genes for the XML rule
a) Follow all the components within the rule
b) Repair outcome (if necessary) to create a valid

and complete solution.
5) IF the Genotype has more genes than the rule

requires
a) Follow the same steps as above (4a and 4b)
b) Ignore the rest of the genes in the Genotype

Note that this is not a character by character evolution,
because this would increase the search space and
dramatically increase the execution time. Instead REs are
divided into three collections: HTML tags (e.g. “title”, “tr”
etc.), keywords (e.g. “course”, “title” etc.) and RE
substructures (e.g. “.*?” or “[\s]?” etc.). Each evolved
gene will be translated to an element of one of these
collections. Each collection is further divided into a
number of components e.g. the Start-Tag component
determines an opening tag, the End-Tag determines a
closing tag, the Start-REStructure determines an opening
RE structure, an RE-Structure determines a normal
structure that does not need closing etc.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 6, May 2010 5
www.IJCSI.org

Fig. 4 Sample of XML Rules for REs

These components are important for ensuring consistency
and accuracy in the Phenotypes created. For example once
a Start-Tag has been determined, the system automatically

knows that it needs to reuse this tag as an End-Tag when
told so by the rules.

We have also introduced some additional components that
are not related to the specified collections e.g. the Start-
Capture component translates to the symbol ‘(‘ and
indicates the beginning of a capturing group i.e. the part of
the RE, which will capture the part of the results needed;
the End-Capture component indicates the end of the
capturing group etc. These additional components do not
use any genes from the Genotype. They were introduced
simply to help the mapping process to translate Genotypes
into syntactically correct REs. Fig. 4 shows a partial list of
the components needed for the Genotype-Phenotype
Mapping process and the order in which they are used
within the XML rules.

Each XML rule (Fig. 4) determines the necessary
components and the order in which they are to be chosen
by the mapping stage in order to create a valid and
efficient RE. The first gene in the Genotype is always
associated with the RE rule choice. The remaining string
of integers in the Genotype maps to the different
components within that RE rule.

The modulo function is used for this purpose, e.g. Table 1
shows the Genotype to be translated using the information
in Fig. 4. The value of the first gene is 5. This represents
the RE rule to be used. In this case, there are two different
rules in the XML file, so 5 mod 2 = 1, which means that
the second rule (id = 1) is chosen. This rule contains five
different components. The first component number is 4
(Table 2). This corresponds to the Start-Tag component
(Fig. 4), which means the next gene in the Genotype (gene
7) needs to be mapped to one of the tags in the ‘tags’
collection. In this case, the collection has three tags, thus 7
mod 3 = 1 gives the ‘td’ tag. The following component
number is 6. This corresponds to the Start-Capture
component, which maps to the symbol “(“ without using
any genes from the Genotype.

The remaining components are dealt with in the same
manner (see Table 2). Note that in this example, only the
first three genes of the Genotype were needed; the
remaining two are simply ignored.

Table 1: Genotype

5 7 15 22 43

Table 2: Genotype to RE Mapping

Component Component Gene Modulo Translation

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 6, May 2010 6
www.IJCSI.org

No. Used

- - 5 1 Rule 2
4 Start-Tag 7 1 td
6 Start-Capture - - (

3 RE-Structure 15 0 .*?

7 End-Capture - -)

5 End-Tag - - td

Fig. 5 Phenotype

Once all the required genes have been decoded, the
resulting RE is repaired to ensure its validity and
efficiency. Fig. 5 shows the complete RE (Phenotype) for
the above example. The additional symbols added by the
repairing function are shown encircled.

The repairing function is an independent function which
scrutinises the Phenotype created in order to guarantee the
validity of the RE2. This function is in charge of tasks like:
closing opening tags, closing opening parentheses,
adding/removing RE structures in cases when there are
fewer genes in the Genotype than required by the XML
rule, adding variable declarations at the beginning of the
program, adding ‘footer’ information where necessary e.g.
when returning the RE to a calling function etc. All this is
achieved through the use of a STACK programming
structure, which works in a LIFO (Last In First Out)
manner. This is particularly helpful when closing nested
tags and RE structures, for example:

Tag1 + Tag2 + RE-Structure + C-RE + C-Tag2 + C-Tag1

Above, C stands for Closing. The Italic part shows the
part of the RE added by the repairing function.

The XML rules can also determine whether or not a
closing tag is actually needed. This is useful in cases
where the inclusion of a closing tag results in different
results being extracted to the ones needed. For example,
the RE: <tr[\s]?id=”row1”.*?><td.*?>.*?</td> contains
two opening tags (‘tr’ and ‘td’), however, only the ‘td’ tag
needs to be closed for this to work as intended. This is
achieved by including no_end=”true” in the rule (Fig. 4).

2 Many HTML tags come in pairs. The system ensures that the

same closing tag is chosen based on the opening tag evolved,
and the nesting of the tags in the RE hierarchy is preserved.

3.5 XML Mapping – Software Program Statements

This section discusses the changes that needed to be made
to the system for it to work with Software Program
Statements instead of REs. The areas changed were: the
XML rules and the repairing function. The following
explains the changes involved in order to show the
minimum effort required to adapt our system to such an
entirely different domain.

Fig. 7 shows a sample of the XML rules and components
needed to guide the Genotype-Phenotype stage of the
genetic evolution of software program statements. When
compared to the Genotype-Phenotype Mapping system for
REs (Fig. 4), it is clear that the overall logic remains the
same, with each XML rule using the available collections
(in this case: ‘variables’ and ‘comparisons’) to guide the
system through the different components needed for each
rule. Identically, there are a number of components that
have been introduced to simplify and ensure the
consistency of the mapping process for Software Program
Statements, but which do not use any genes from the
Genotype since they do not need to be evolved. Such
components include: the ‘Assign (=) operator, the
‘Addition’ (+) operator, etc.

Table 3: Genotype

Table 4: Genotype to Software Statement Mapping

Component
No.

Component
Gene
Used

Modulo Translation

- - 10 0 If
1 Variable 27 0 x
2 Comparison 7 3 <

1 Variable 13 1 y

- - 19 4 Add

1 Variable 9 0 x

11 Assign - - =

1 Variable 63 0 x

7 Addition - - +

1 Variable 4 1 y

Fig. 6 Phenotype

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 6, May 2010 7
www.IJCSI.org

Fig. 7 Sample of XML Rules for Software Statements

For example, Table 3 shows the Genotype to be translated
using the information in Fig. 7. The value of the first gene
is 10. This represents the statement type to be used. In this
case, there are five different rules (statements) in the XML
file, so 10 mod 5 = 0 means that the statement is an ‘If’.
This statement contains three different components each
requiring the use of a gene to choose from the ‘variables’
and ‘comparisons’ collections. The ‘variables’ collection
has three elements, whereas the ‘comparisons’ has four,
therefore, 27 mod 3 = 0, 7 mod 4 = 3 and 13 mod 3 = 1
give elements ‘x’, ‘<’ and ‘y’ respectively.

This is the point where the logic in the Genotype-
Phenotype mapping of REs changes slightly. In this case,
the system knows that although the first statement has
been translated in full, the mapping cannot end here. This
is because, the XML rule for the IF statement includes an
extra attribute: nested = “true” (Fig. 7) which indicates
that the IF statement expects another statement inside. The
following gene (gene 19) in the Genotype is therefore used
to determine the next statement type. Therefore, 19 mod 5
= 4 means that the next statement is ‘Add’. The remaining
components are dealt with in the same manner as
previously (see Table 4).

Once all the required genes have been decoded, the
resulting Phenotype is repaired to ensure it is syntactically
correct. Fig. 6 shows the complete software structure
(Phenotype) for the above example. The additional
symbols and programming keywords added by the
repairing function are shown encircled. The ‘Assign’ and
‘Addition’ operators are also dealt with in the repairing
function, as these are static attributes associated with the
Add statement, thus they do not need to be evolved. The
repairing function retains the same STACK programming
structure and responsibilities as in the REs domain.

A difference noticed between the two domains is that
whilst each rule in Fig. 7 belongs to a different software
statement or structure, all of the rules in Fig. 4 are used for
the extraction of the same piece of information from the
web (the course title in this example). This is because REs
are very diverse and as such an unlimited number of REs
can be written to extract the same piece of information
from a web page. This means that in relation to updating
the XML rules once written, the Software Program
Statements would require much less attention than REs
because these are more rigid structures that need a certain
number of components, in a particular order, at all times.
For example, the Add statement mentioned above may
sum up more than two variables, however, there will
always be need for one variable to which this sum is
assigned, one ‘Assign’ operator and one or more
‘Addition’ operators.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 6, May 2010 8
www.IJCSI.org

4. Discussion

There is a significant difference between the two domains
chosen for this paper. REs are diverse and sometimes
unpredictable, whereas Software Program Statements are
structured and rigid. They do not have any components in
common. It is in fact difficult to find any similarities
between them.

One main difference between the two domains, in relation
to their GP representation, is that each RE is represented
as a linear, string of integers, where all the integers (genes)
are part of the same Genome. A Software Program
Statement, on the other hand, can be represented as either
a string of integers or as a set of strings of integers. The
latter is the case with program structures such as: IF ...
ELSE ... THEN, or FOR ... NEXT etc. which incorporate
other independent software statements or structures within
them. Fig. 3 showed an example of an ‘Add’ statement
being nested within the IF structure.

Withall et al. [28] deals with these cases by having
separate Genomes for each individual statement. Updating
our system to deal with multiple Genomes, would
potentially require a considerable change, thus, all the
Genomes were instead joined to form one single Genome.
Similarly to the example discussed in section 3.5, Fig. 8
shows an example of the Genotype-Phenotype mapping
process treating two Genomes (separated with the vertical
red line) as one and mapping them to the FOR ... Add ...
NEXT structure below. This example works with the data
shown in Fig. 7.

Fig. 8 Single Genome Mapping

The only change required to map joined Genomes to a
valid Phenotype was to alter the system to recognise the
end of one statement and the beginning of the other. In the
above example, the system knows that FOR is a nested
structure; additionally the XML rule tells the system that
the FOR structure needs only two variables, thus the
system deduces that the fourth gene (gene 9) must belong
to a different statement or structure nested within the FOR
loop. Gene 9 corresponds to the ‘Add’ statement, thus the
genes following this one will be mapped according to the
XML rule for ‘Add’. The repairing function is executed at

the end to tidy up the solution by closing the FOR
structure.

The above change took the longest to complete – nearly
three hours – as it involved altering message calls within
two different classes in our Object Oriented System. The
changes stated in section 3.5 were all fairly simple to
implement and took under 30 minutes to change. Thus
overall, this has been a 3.5 hour effort, which considering
the significant differences in both domains, we consider
this to be a minimal effort.

Results from the execution of our full genetic system in
the evolution of REs for the extraction of course names
from web pages can be found in [31]. This system would
not have to change to work with any other domain that
requires the use of REs. However, running the full system
on the Software Program Statements domain, or other RE-
unrelated domains, would require an additional change – a
different Fitness test.

5. Conclusions

This paper has discussed an innovative approach to
mapping Genotypes to Phenotypes through XML rules.
The different steps involved in the process are explained
through examples. Two entirely different domains were
considered – REs and Software Program Statements - in
order to show the amount of effort and time required to
adapt the original system to work with a new domain.

Results show that the effort involved in the alterations was
minimal, with all the changes taking under 3.5 hours.
More time, however, needs to be spent to optimise the
translation of constant variables.

The next stage of the research will concentrate on using
our Genotype-Phenotype mapping process together with
the rest of the GP system to evolve REs for the extraction
of other training course details such as prices, dates and
locations. Analysis of some preliminary web pages has
indicated a partial dependence amongst this data, which
will need to be reflected in the Fitness test produced.

Acknowledgments

We would like to thank the whole team at ATM for their
support and help. Also, thank you to ATM, the Centre for
Innovative and Collaborative Engineering (CICE) and
Loughborough University for funding our work. We
would also like to thank Daniel Sills for his help with
some technical .NET concepts.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 6, May 2010 9
www.IJCSI.org

References
[1] Back, T., Hammel, U. & Schwefel, H-P. 1997. Evolutionary

Computation: Comments on the History and Current State.
IEEE Transactions on Evolutionary Computation.

[2] Banzhaf, W. 1994. Genotype-Phenotype-Mapping and Neutral
Variation – A case study in Genetic Programming.
Proceedings of the International Conference on Evolutionary
Computation. Springer-Verlag, 322-332.

[3] Barrero, D., Camacho, D. & R-Moreno, M. 2009. Automatic
Web Data Extraction Based on Genetic Algorithms and
Regular Expressions. Data Mining and Multi-agent
Integration. ISBN 978-1-4419-0523-9, Springer-Verlag US,
143.

[4] Clarke, M., Hinde, C.J., Whithall, M.S., Jackson, T.W.,
Phillips, I.W., Brown, S & Watson, R. 2009. Allocating
Railway Platforms using a Genetic Algorithm. Research and
Development in Intelligent Systems XXVI, Springer London,
421-434.

[5] Conrad, E. 2007. Detecting Spam with Genetic Regular
Expressions. SANS Institute Reading Room. Available online
at:
http://www.giac.org/certified_professionals/practicals/GCIA/0
0793.php

[6] De Kunder, M. 2010. The size of the World Wide Web
(Tilburg University). Retrieved February 23rd, 2010 from
http://www.worldwidewebsize.com

[7] Dyer, J. & Bentley, P. 2002. PLANTWORLD: Population
Dynamics in Contrasting Environments. In Cantu-Paz E.,
GECCO, 122-129.

[8] Fogel, D.B. 1994. An Introduction to Simulated Evolutionary
Optimisation. IEEE Transactions on Neural Networks.

[9] Fogel, D.B. 1998. The Fossil Record. Fogel, D.B., Ed., IEEE
Press

[10] Friedl, J. 2006. Mastering Regular Expressions, Third Edition.
O’Reilly & Associates (Aug 2006)

[11] Goyvaerts, J. RegexBuddy. http://www.regular-
expressions.info/regexbuddy.html

[12] Hsu, P-H. 2007. Feature extraction of hyperspectral images
using wavelet and matching pursuit. ISPRS Journal of
Photogrammetry and Remote Sensing. Elsevier Science,
Amsterdam, vol. 62 (2), 78-92.

[13] Jackson, D. 2005. Evolving Defence Strategies by Genetic
Programming. In Lecture Notes in Computer Science. Springer
Berlin, Vol. 3447, 281-290.

[14] Keaveney, D. & O’Riordan, C. 2009. Evolving Robust
Strategies for an Abstract Real-time Strategy Game.
Proceedings of the 5th International Conference on
Computational Intelligence and Games. 371-378.

[15] Keller, R.E. & Banzhaf, W. 1996. Genetic Programming using
Genotype-Phenotype Mapping from Linear Genomes into
Linear Phenotypes. Proceedings of the First Annual
Conference on Genetic Programming, California. 116-122.

[16] Klank, U., Padoy, N., Feussner, H. and Navab, N. 2008.
Automatic feature generation in endoscopic images.
International Journal of Computer Assisted Radiology and
Surgery. Springer, 3, 331-339

[17] Koza, J.R. 1992. Genetic Programming: On the Programming
of Computers by Means of Natural Selection. MIT Press.

[18] Langdon, W., Poli, R., McPhee, N. & Koza, J.R. 2008.
Genetic Programming: An Introduction and Tutorial with a
Survey of Techniques and Applications. In Studies in
Computational Intelligence. Springer, Berlin, vol. 115, 927-
1028.

[19] Moore, J.P. 2000. Exploring and Exploiting Models of the
Fitness Landscape: A Case against Evolutionary Optimization.
PhD Thesis, University of Plymouth.

[20] O’Neill, M., Brabazon T., Ryan, C. & Collins J.J. 2001.
Developing a Market Timing System using Grammatical
Evolution. Proceedings of GECCO.

[21] Poli, R., Langdon, W. & McPhee. 2008. N. A Field Guide to
Genetic Programming. Published via http://lulu.com (With
contributions from J. R. Koza)

[22] Regular-Expressions.info (Last Update: Jun 2009).
http://www.regular-expressions.info/

[23] Rothlauf, F. 2006. Representations for Genetic and
Evolutionary Algorithms. Springer-Verlag New York.

[24] Sells, C. 2009. RegexDesigner.NET http://regexdesigner-
net.findmysoft.com/

[25] Sun Microsystems. (Last updated: Feb 2008). Lesson: Regular
Expressions.
http://java.sun.com/docs/books/tutorial/essential/regex/index.ht
ml

[26] Thompson, K. 1968. Programming techniques: Regular
expression search algorithm. Commun. ACM, Vol 11(6), 419-
422

[27] Whigham, P.A. 1995. Grammatically-based Genetic
Programming. Workshop on Genetic Programming.

[28] Withall, M.S., Hinde, C.J. & Stone, R.G. 2008. An improved
representation for evolving programs. Journal of Genetic
Programming and Evolvable Machines. Springer Netherlands,
vol. 10(1), 37-70.

[29] Xhemali, D., Hinde, C.J. and Stone, R.G. 2007. Embarking on
a Web Information Extraction Project. UKCI Conference on
Computational Intelligence (London, UK, Jul 02-04, 2007)

[30] Xhemali, D., Hinde, C.J. & Stone, R.G. 2009. Naive Bayes vs.
Decision Trees vs. Neural Networks in the Classification of
Training Web Pages. International Journal of Computer
Science Issues, vol. 4(1), 16-23.

[31] Xhemali, D., Hinde, C.J. & Stone, R.G. 2010. Genetic
Evolution of Regular Expressions for the Automated
Extraction of Course Names from the Web. Internal Report.
Loughborough University, UK.

Daniela Xhemali is an Engineering Doctorate (EngD) student at
Loughborough University, UK. She received a First Class (Honours)
BSc in Software Engineering from Sheffield Hallam University in 2005
and an MSc with Distinction in Engineering Innovation and
Management from Loughborough University in 2008. Daniela Xhemali
has also worked in industry for two years as a Software Engineer,
programming multi-user, object oriented applications, with large
database backend. Her current research focuses on the use of
Genetic Programming principles for the extraction of web information.

Prof. Christopher J. Hinde is the Programme Director of the
Computer Science & Artificial Intelligence group as well as the
Programme Director of the Computer Science & E-business group at
Loughborough University. Prof. Hinde is also the leader of the
Intelligent and Interactive Systems Research division. His research
interests include: Artificial intelligence, fuzzy reasoning, logic
programming, natural language processing, neural nets etc.

Dr. Roger G. Stone is DANS Coordinator and the Quality Manager at
Loughborough University. Dr. Stone is also a member of the
Interdisciplinary Computing Research Division. His research interests
include: Web programming, web accessibility, program specification
techniques, software engineering tools, compiling etc.

