
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 5, May 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

23

A Minimum-Process Coordinated Checkpointing Protocol For
Mobile Distributed System

Praveen Kumar1 and Ajay Khunteta2

1 Department of Computer Science & Engineering
Meerut Institute of Engineering & Technology, Meerut, India, Pin-125005

2Singhaniya University

Pechri, Rajasthan, India

Abstract
While dealing with Mobile Distributed systems, we come across
some issues like: mobility, low bandwidth of wireless channels
and lack of stable storage on mobile nodes, disconnections,
limited battery power and high failure rate of mobile nodes.
These issues make traditional checkpointing techniques designed
for Distributed systems unsuitable for Mobile environments. In
this paper, we design a minimum process algorithm for Mobile
Distributed systems, where no useless checkpoints are taken and
an effort has been made to optimize the blocking of processes.
We propose to delay the processing of selective messages at the
receiver end only during the checkpointing period. A Process is
allowed to perform its normal computations and send messages
during its blocking period. In this way, we try to keep blocking
of processes to bare minimum. We captured the transitive
dependencies during the normal execution by piggybacking
dependency vectors onto computational messages. In this way,
we try to reduce the Checkpointing time by avoiding formation
of Checkpointing tree. The Z-dependencies are well taken care of.
The proposed scheme forces zero useless checkpoints at the cost
of very small blocking.

1. Introduction

Checkpoint is defined as a designated place in a program
at which normal process is interrupted specifically to
preserve the status information necessary to allow
resumption of processing at a later time. A checkpoint is a
local state of a process saved on stable storage. By
periodically invoking the checkpointing process, one can
save the status of a program at regular intervals [3], [4]. If
there is a failure, one may restart computation from the
last checkpoints, thereby, avoiding repeating
computation from the beginning. The process of
resuming computation by rolling back to a saved state is
called rollback recovery [6]. In a distributed system, since

the processes in the system do not share memory, a global
state of the system is defined as a set of local states, one
from each process. The state of channels corresponding to
a global state is the set of messages sent but not yet
received [7].
A message whose receive event is recorded, but its send
event is lost. A global state is said to be “consistent” if it
contains no orphan message. To recover from a failure, the
system restarts its execution from a previous consistent
global state saved on the stable storage during fault-free
execution. In distributed systems, checkpointing can be
independent, coordinated [3], [8], [11], [15] or quasi-
synchronous [2], [9]. Message Logging is also used for
fault tolerance in distributed systems [7], [14]. Under the
asynchronous approach, checkpoints at each process are
taken independently without any synchronization among
the processes. Because of absence of synchronization,
there is no guarantee that a set of local checkpoints taken
will be a consistent set of checkpoints. It may require
cascaded rollbacks that may lead to the initial state due to
domino-effect [7].
In coordinated or synchronous Checkpointing, processes
take checkpoints in such a manner that the resulting global
state is consistent. Mostly it follows two-phase commit
structure [3], [8], [11], [22]. In the first phase, processes
take tentative checkpoints and in the second phase, these
are made permanent. The main advantage is that only one
permanent checkpoint and at most one tentative
checkpoint is required to be stored. In the case of a fault,
processes rollback to the last checkpointed state.
It avoids the domino-effect without requiring all
checkpoints to be coordinated [2], [7], [9]. In these
protocols, processes take two kinds of checkpoints, local
and forced. Local checkpoints can be taken
independently, while forced checkpoints are taken to
guarantee the eventual progress of the recovery line and to

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 5, May 2010
www.IJCSI.org

24

minimize useless checkpoints. Pj is directly dependent
upon Pk only if there exists m such that Pj receives m from
Pk in the current CI and Pk has not taken its permanent
checkpoint after sending m. A process Pi is in the
minimum set only if checkpoint initiator process is
transitively dependent upon it. In minimum-process
coordinated checkpointing algorithms, only a subset of
interacting processes (called minimum set) are required to
take checkpoints in an initiation.
The Chandy-Lamport [6] algorithm is the earliest non-
blocking all-process coordinated checkpointing algorithm.
In this algorithm, markers are sent along all channels in
the network which leads to a message complexity of
O(N2), and requires channels to be FIFO. Elnozahy et al.
[8] proposed an all-process non-blocking synchronous
checkpointing algorithm with a message complexity of
O(N). In coordinated checkpointing protocols, we may
require piggybacking of integer csn (checkpoint sequence
number) on normal messages [5], [8], [13], [19], [22].
The existence of mobile nodes in a distributed system
introduces new issues that need proper handling while
designing a checkpointing algorithm for such systems.
These issues are mobility, disconnection, finite power
source, vulnerable to physical damage, lack of stable
storage etc. These issues make traditional checkpointing
techniques unsuitable to checkpoint mobile distributed
systems [1], [5], [15]. To take a checkpoint, an MH has to
transfer a large amount of checkpoint data to its local MSS
over the wireless network. Since the wireless network has
low bandwidth and MHs have low computation power,
all-process checkpointing will waste the scarce resources
of the mobile system on every checkpoint. Prakash and
Singhal [15] gave minimum-process coordinated
checkpointing protocol for mobile distributed systems.
A good checkpointing protocol for mobile distributed
systems should have low overheads on MHs and wireless
channels and should avoid awakening of MHs in doze
mode operation. The disconnection of MHs should not
lead to infinite wait state. The algorithm should be non-
intrusive and should force minimum number of processes
to take their local checkpoints [15]. In minimum-process
coordinated checkpointing algorithms, some blocking of
the processes takes place [4], [11], or some useless
checkpoints are taken [5], [13], [19].
Cao and Singhal [5] achieved non-intrusiveness in the
minimum-process algorithm by introducing the concept
of mutable checkpoints. The number of useless
checkpoints in [5] may be exceedingly high in some
situations [19]. Kumar et. al [19] and Kumar et. al [13]
reduced the height of the checkpointing tree and the
number of useless checkpoints by keeping non-
intrusiveness intact, at the extra cost of maintaining and
collecting dependency vectors, computing the minimum

set and broadcasting the same on the static network along
with the checkpoint request.
Koo and Toeg [11], and Cao and Singhal [4] proposed
minimum-process blocking coordinated checkpointing
algorithms. Neves et al. [12] gave a loosely synchronized
coordinated protocol that removes the overhead of
synchronization. Higaki and Takizawa [10] proposed a
hybrid checkpointing protocol where the mobile stations
take checkpoints asynchronously and fixed ones
synchronously. Kumar and Kumar [29] proposed a
minimum-process coordinated checkpointing algorithm
where the number of useless checkpoints and blocking are
reduced by using a probabilistic approach. A process takes
its mutable checkpoint only if the probability that it will
get the checkpoint request in the current initiation is high.
To balance the checkpointing overhead and the loss of
computation on recovery, P Kumar [24] proposed a
hybrid-coordinated checkpointing protocol for mobile
distributed systems, where an all-process checkpoint is
taken after executing minimum-process checkpointing
algorithm for a certain number of times.
Transferring the checkpoint of an MH to its local MSS
may have a large overhead in terms of battery
consumption and channel utilization. To reduce such an
overhead, an incremental checkpointing technique could
be used [16]. Only the information, which changed since
last checkpoint, is transferred to the MSS.
In the present study, we purpose a minimum process
coordinated checkpointing algorithm for Mobile
Distributed Systems in which no useless checkpoints are
taken and the blocking of processes is reduced to bare
minimum.

2. System Model

We use the system model presented in [2], [4]. In this
model, a mobile computing system consists of n mobile
hosts (MHs), and m mobile support stations (MSSs),
where n > m. A cell is a logical or geographical coverage
area under an MSS. An MH can directly communicate
with an MSS Mi only if it is present in the cell serviced by
Mi. At any time, an MH belongs to only one cell or may
be disconnected. The static network provides reliable
First-In-First-Out (FIFO) delivery of messages between
any two MSSs with arbitrary message latency. Similarly,
the wireless network within a cell ensures reliable FIFO
delivery of messages between an MSS and an MH.
In this paper, we consider a distributed computation in a
mobile computing system that consists of N processes,
running concurrently on different MHs or MSSs. For
simplicity, we assume that each MH runs one process.
Message passing is the only way of communication. The
computation is asynchronous. The processes do not share
memory or clock. Each process progresses at its own

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 5, May 2010
www.IJCSI.org

25

speed and messages are exchanged through reliable
channels, whose transmission delays are finite but
arbitrary. A process in the cell of MSS means the process
is either running on the MSS or on an MH supported by it.
It also includes the processes of MHs, which have been
disconnected from the MSS but their checkpoint related
information is still with this MSS. We also assume that the
processes are non-deterministic. The ith CI (checkpointing
interval) of a process denotes all the computation
performed between its ith and (i+1)th checkpoint,
including the ith checkpoint but not the (i+1)th checkpoint.

3. Basic Idea

During the execution of checkpointing algorithm, a
process Pi may receive m from Pj such that Pj has taken its
tentative checkpoint for the current initiation whereas Pi
has not taken. If Pi processes m and it receives checkpoint
request later on and takes its checkpoint, then m will
become orphan in the recorded global state. We propose
that such messages should be buffered at the receiver
end. In the present discussion, Pi processes m only after
taking its tentative checkpoint if it is a member of the
minimum set; otherwise, Pi processes m after getting the
exact minimum set and knowing that it is not a member of
the minimum set.

P1 __________________________________
R1[0001]
 t1
P2 __________________________________
R2[0010]

 m2[1100] m3 {after m3, R3 is 1101}
P3 __________________________________
R3[0100]
 m1[1000]
P4 __________________________________
R4[1000]

 Time

Fig. 3.1 Basic Idea

In the figure 3.1 P4 sends m1 to P3 along with its own
dependency vector R4[1000]. When P3 receives m1 it
updates its own dependency vector by taking logical OR
of R4 & R3[0100], which comes out to be 1100. When P3
send m2 to P2, it appends R3[1100] along with m2. When
P2 receive m2, it updates its own dependency vector R2 by
taking logical OR of R2 and R3, which comes out to be
[1110]. In this way, partial transitive dependencies are
captured during normal computation. It should be noted
that all the transitive dependencies are not captured during
normal computation. At time t1, the dependency vector of

P2 shows that P2 is not transitively dependent upon P1, due
to m3 and m2.

3.1 Example

We explain our algorithm with an example. P1, P2, P3, P4
and P5 are processes with initial dependency set [00001],
[00010], [00100], [01000] and [10000], respectively.

P1___
R1[00001] m1, [00001]

P2___
R2[00010]
 m2, [00011] t1 t2
P3___
R3[00100]
 m3 [01000] m4
P4___
R4[01000]

P5___
R5[10000]

Fig 3.2 An Example
{ indicate message, indicate request of
checkpoint, Ri represent the set of dependency.}

At time t1, P3 initiates checkpointing with dependency set
[00111], therefore it sends the checkpointing request to P1
and P2 only, which in turn takes their tentative
checkpoints. After taking its tentative checkpointing, P3
sends m4 to P4. When P4 receives m4, its find that P3 has
taken its tentative checkpoint before sending m4 because
CSN (checkpoint sequence number) of P3 is 1 at time of
sending m4; therefore, P4 buffers m4. When P2 takes its
tentative checkpoint, it find that it is dependent upon P4
due to m3 and P4 is not in the minimum set of dependency
computed so far; therefore, P2 send checkpoint request to
P4. After taking its tentative checkpoint, P4 process m4. At
time t2, P3 receives response from all processes and sends
commit request to all processes along with exact minimal
set of dependency, which is not shown in the figure.
Hence, the messages, which can become orphan, are
buffered at the receiver end. A process processes the
buffered messages only after taking its tentative
checkpoint or after getting the commit request.

4. Data Structures

Here, we describe the data structures used in the proposed
checkpointing protocol. A process on MH that initiates
checkpointing, is called initiator process and its local MSS
is called initiator MSS. If the initiator process is on an

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 5, May 2010
www.IJCSI.org

26

MSS, then the MSS is the initiator MSS. All data
structures are initialized on completion of a checkpointing
process, if not mentioned explicitly.
Pr_csni: A monotonically increasing integer checkpoint
sequence number for each process. It is incremented by 1
on tentative checkpoint.
td_vecti []: It is a bit array of length n for n process in the
system. td_vecti[j] =1 implies Pi is transitively dependent
upon Pj. When Pi receives m from Pj such that Pj has not
taken any permanent checkpoint after sending m then Pi

sets td_vecti[j]=1. When Pi commit its checkpoint, it sets
td_vecti[] =0 for all processes except for itself which is
initialized to 1.
chkpt-sti: A boolean which is set to ‘1’ when Pi takes a
tentative checkpoint; on commit or abort, it is reset to zero
m_vect[]: A bit array of size n for n processes in the
systems. When Pi starts checkpointing procedures, it
computes tentative minimum set as follows: m_vect[j] =
td_vecti[j] where j=1, 2, …., n.
TC[]: An array of size n to save information about the
processes which have taken their tentative checkpoints.
When process Pj takes its tentative checkpoint then jth bit
of this vector is set to 1. It is initialized to all zeros in the
beginning of the checkpointing process. It is maintained
by the checkpoint initiator MSS only.
Max_time: it is a flag used to provide timing in
checkpointing operation. It is initialized to zero when
timer is set and becomes ‘1’ when maximum allowable
time for collecting global checkpoint expires.
MSS_plist[]: A bit array of length n for n processes which
is maintained at each MSS MSS_plistK[j] =1 implies each
process Pj is running on MSSk. If Pj is disconnected, then it
checkpoint related information is on MSSk.
MSS_chk_taken: A bit array of length n bits maintained
by the MSS. MSS_chk_taken [j]=1 implies Pj which is in
the cell of MSS has taken its tentative checkpoint.
MSS_chk_request: A bit array of length n at each MSS.
The jth bit of this array is set to ‘1’ whenever initiator
sends the checkpoint request to Pj and Pj is in the cell of
this MSS.
MSS_fail_bit: A flag maintained on every MSS,
initialized to ‘0’; set to ‘1’ when any process in the cell of
MSS fails to take tentative checkpoint.
Pin: The process which has initiated the checkpointing
operation.
MSSin: The MSS, which has Pin in its cell.
p_csnin: checkpoint sequence number of initiator process.
g_chkpt: A flag which indicates that some global
checkpoint is being saved.
csn[]: An array of size n, maintained on every MSS, for n
processes. csn[i] represents the most recently committed
checkpoint sequence number of Pi. After the commit
operation, if m_vect[i] =1 then csn[i] is incremented. It
should be noted that entries in this array are updated only

after converting tentative checkpoints in to permanent
checkpoints and not after taking tentative checkpoints.
m_vect1[]: An array of size n maintained on every MSS.
It contains those new processes which are found on getting
checkpoint request from initiator.
m_vect2 []: An array of size n. for all j such that m_vect1

[j] 0, m_vect2= m_vect2 m_vect1.
m_vect3[]: An array of length n; on receiving m_vect3[],
m_vect[], m_vect1[] along with checkpoint request
[c_req] or on the computation of m_vect1[] locally:
m_vect3[]=m_vect3[] c_req.m_vect3[];
m_vect3[]=m_vect3[]m_vect[];
m_vect3[]=m_vect3[]c_req.m_vect1[];
m_vect3[]=m_vect3[] m_vect1[];
m_vect3[] maintains the best local knowledge of the
minimum set at an MSS.

4.1 Computation of m_vect[], m_vect1[],
m_vect2[], m_vect3[]:

1. Suppose a process Pr wants to initiate checkpointing
procedure. Its send its request to its local MSS, say MSSr..
MSSr maintains the dependency vector of Pr (say
td_vectr[]). MSSr coordinates checkpointing on behalf of
Pr. It computes tentative minimum set as follows:

 i=1,n m_vect[i] = td_vectr[i]
2. On receiving m_vect[] from MSSr, any MSS (say MSSS)
computes the m_vect1[] as follows:

Suppose MSSs maintains the process Pj such that Pj

MSSs and Pj m_vect

 m_vect1[i]=1 iff m_vect[i]=0 and td_vectj[i]=1
m_vect1[] maintains the new processes found for the
minimum set when a process receives the checkpoint
request.
m_vect2=m_vect2 U m_vect1

 i, m_vect1[i]=0
3. m_vect3= m_vect U m_vect2
MSSin sends c_req to MSSs along with m_vect[]and some
process (say Pk) is found at MSSs, which takes the
checkpoint to this c_req. All MSSs maintains the
processes of minimum set to the best of their knowledge in
m_vect3. It is required to minimize duplicate checkpoint
requests. Suppose, there exists some process (say Pl) such
that Pk is directly dependent upon Pl and Pl is not in the
m_vect3, then MSSs sends c_req to Pl. The new processes
found for the minimum set while executing a potential
checkpoint request at an MSS are stored in m_vect1.
When an MSS finds that all the local processes, which
were asked to take checkpoints, have taken their
checkpoints, it sends the response to the MSSin along with
m_vect2; so that MSSin may update its knowledge about

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 5, May 2010
www.IJCSI.org

27

minimum set and wait for the new processes before
sending commit. In this way, MSSin sends commit only if
all the processes in the minimum set have taken their
tentative checkpoints.

5. The Checkpointing Protocol

As the wireless bandwidth is a scarce commodity in
mobile systems; therefore; we impose minimum burdon on
wireless channels. The local MSS of an MH acts on behalf
of the process running on MH.
We piggyback checkpoint sequence numbers and
dependency vectors onto normal computation messages,
but this information is not sent on wireless channels. The
local MSS of an MH, strips all the additional information
from the computation message and sends it to the
concerned MH. The dependency vector of a process
running on an MH is maintained by its local MSS.
Our algorithm is distributed in nature in the sense that any
process can initiate checkpointing. If two processes initiate
checkpointing concurrently, then the checkpoint imitator
of the lower process ID will prevail. The local MSS of a
process coordinates checkpointing on its behalf. Suppose
two processes Pi and Pj starts checkpointing concurrently
and MSSp and MSSq are their local MSS respectively then
MSSp and MSSq will send checkpoint requests along with
tentative minimum set to all the MSS’s. MSSp will receive
the checkpoint request of MMSq and MMSq will receive
the checkpoint request of MSSp. Suppose Process-ID of Pi
is less than Process-ID of Pj, then the checkpoint initiates
of Pi will prevail. Any other MSS will automatically
ignore the request of Pj because every MSS will compare
the process id of Pi and Pj.
 We propose that any process in the system can initiate the
checkpointing operation. When a process Pin starts
checkpointing procedure, it send its request to its local
MSS say MSSin. MSSin computes the tentative minimum
set m_vect[] as follows:

i=1,n m_vect[i] = td_vect[i]

MSSin coordinates checkpointing process on behalf of Pin.

We want to emphasize that td_vectin[] contains the
processes on which Pin transitively depends and the set is
not complete.
MSSin sends c-req to all MSS’s along with m_vectin[].
When an MSS say MSSp receives c-req; it sends the c-req
to all such process which are running in it and are also the
member of m_vectin[]. Suppose Pj gets the checkpoint
request at MSSp Now we find any process Pk such that Pk

does not belong to m_vectin[] and Pk belongs to td_vectj[].
In this case, Pk is also included in the minimum set.
During checkpointing suppose Pi takes it tentative
checkpoint and after that it send m to Pj such that Pj has
not taken it tentative checkpoint at the time of receiving m.

If Pj receive m and it gets checkpoint request later on then
m will become orphan. In order to handle this situation,
we buffer m at Pj. Pj receive m after taking its tentative
checkpoint if it is member of minimum set; otherwise it
process m on commit.
For a disconnected MH that is a member of minimum set,
the MSS that has its disconnected checkpoint, converts its
disconnected checkpoint into tentative one. When a MSS
learns that its concerned processes in its cell have taken
their tentative checkpoints, it sends the response to MSSin.
On receiving positive response from all concerned MSSs,
the MSSin issues the commit request to all MSSs. On
commit when a process learns that it has buffered some
message and has not received the formal tentative
checkpointing request from any process, then it processes
the buffered messages.

5.1 Formal Outline of the checkpointing
Algorithm:

5.1.1 Actions taken when Pi sends m to Pj:
 send(Pi, Pj, m, pr_csni,td_vecti[]);
//Pi piggybacks its own csn and transitive dependency
vector onto m.

5.1.2 Algorithm executed at initiator MSS (say MSSin)
Suppose Pin initiates checkpointing. Pin sends the request
to MSSin. MSSin computes m_vect [Refer section 4.1].
(1)On the basis of computed m_vect, MSSin computes
m_vect1, m_vect2, m_vect3 [Refer section 4.1].
(2) m_vect = m_vect3.
(3) MSSin sends c_req to all MSSs along-with m_vect[].
(4) Set max-time.
(5) Wait for response.
(6) On receiving response (Pin, MSSin, MSSs,
mss_ chk_taken, m_vect2, mss_fail_bit) or at max_time

(a) If (max_time)OR(mss_fail_bit){ send message
abort (Pin, MSSin, pr_csnin} to all MSSs, Exit;
//Maximum allocated time expired or some process
failed to take checkpoint

(b) m_vect[] = m_vect[]U m_vect2[]. [“U” is a set
union operator]

(c) TC[] = TC[] U mss_chk_taken[]
(7) For (k=0;k<n; k++)

 If (k such that TC[k] m_vect[k]) then go to step 5;
(8) Send message commit (Pin, MSSin,pr_csnin, m_vect[])
to all MSSs; // m_vect[] is the exact minimum set//

5.1.3 Algorithm Executed at a process Pj on receiving
of m from Pi:
Case 1: If (m.pr_csni = = csn[i])// Pi has not taken its
tentative checkpoint before sending m
 { rec(m);

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 5, May 2010
www.IJCSI.org

28

 td_vectj[i]=1};
Case 2: If (m.pr_csni<csn[i]; rec (m)); Pi has taken some
permanent checkpoint // after sending m
Case 3: If((m.pr_csni>csn[i]) AND (pr_csnj>csn[j]));
 {rec (m); td_vectj[i]=1} //Pi & Pj, both, have taken
their tentative checkpoints
Case 4: If((m.pr_csni>csn[i]) AND (pr_csnj=csn[j]));
 {Pj buffers m } Pi has taken its tentative
checkpoint // before sending m while Pj has not.

5.1.4 Algorithm executed at any MSS (say MSSs)

(1) Wait for Response
(2) Upon receiving message c_req (Pin, MSSin, p_csni,
m_vect) from MSSin

(i)For any Pi such that mss_plists[i] =1
m_vect[i]=1; send c_req to Pi

(ii) ++pr_csni; mss_chk_request[i]=1, chkpt_sti=1
(iii)Compute m_vect1, m_vect2, m_vect3 //Refer

Section 4.1
(iv) If i such that m_vect1[i]=1;

 send c_req to Pi. //m_vect1 contains the new processes
found for the //minimum set
(3) On receiving c_req from some other MSS say MSSp
i such that((mssp. m_vect1[i] = 1) (mss_p_mss[i]= 1)
 (mss_chk_req=1))
{ send c_req to Pi; compute m_vect1, m_vect2, m_vect3}
If j such that m_vect1[j]=1;
send c_req to Pj;
i, m_vect1[i]=0;
(4) On receiving response to checkpointing from Pj

(i) If (Pj has taken the tentative checkpoint
successfully the mss_chk_taken[j]=1 else mss_set
fail_bit.)

(ii) If (mss_fail_bit) (j mss_chk_taken[j] =
mss_chk_request[j]; Send response (Pin, MSSin,msss,
mss_chk_taken, mss_fail_bit, m_vect2) to MSSin;
(5) On receiving commit().

(i) Convert the tentative checkpoints in to
permanent ones and discard old permanent checkpoints.

(ii) Process buffered messages, if any;.
(iii) j such that m_vect[j]=1, csn[j]++;
(iv) Initialize relevant data structures.

(6) On receiving abort().
Discard the tentative checkpoints and induced
checkpoints, if any.
Update relevant variables.

5.1.5 Algorithm executed at any process Pi;
On receiving tentative checkpoint request,
Take tentative checkpoint and inform local MSS.

6. Handling Node Mobility and
Disconnections

An MH may be disconnected from the network for an
arbitrary period of time. The Checkpointing algorithm
may generate a request for such MH to take a checkpoint.
Delaying a response may significantly increase the
completion time of the checkpointing algorithm. We
propose the following solution to deal with disconnections
that may lead to infinite wait state.
When an MH, say MHi, disconnects from an MSS, say
MSSk, MHi takes its own checkpoint, say disconnect_ckpti,
and transfers it to MSSk. MSSk stores all the relevant data
structures and disconnect_ckpti of MHi on stable storage.
During disconnection period, MSSk acts on behalf of MHi
as follows. In minimum-process checkpointing, if MHi is
in the minset[], disconnect_ckpti is considered as MHi’s
checkpoint for the current initiation. In all-process
checkpointing, if MHi’s disconnect_ckpti is already
converted into permanent one, then the committed
checkpoint is considered as the checkpoint for the current
initiation; otherwise, disconnect_ckpti is considered. On
global checkpoint commit, MSSk also updates MHi’s data
structures, e.g., ddv[], cci etc. On the receipt of messages
for MHi, MSSk does not update MHi’s ddv[] but maintains
two message queues, say old_m_q and new_m_q, to store
the messages as described below.
On the receipt of a message m for MHi at MSSk from
any other process:
if((m.cci= = ccii (m.cci= =ncii) (matd[j, m.cci]= =1))
 add (m, new_m_q); // keep the message in new_m_q
else
 add(m, old_m_q);
On all-process checkpoint commit:
Merge new_m_q to old_m_q;
Free(new_m_q);
When MHi, enters in the cell of MSSj, it is connected to the
MSSj if g_chkptj is reset. Otherwise, it waits for g_chkptj to
be reset. Before connection, MSSj collects MHi’s ddv[],
cci, new_m_q, old_m_q from MSSk; and MSSk discards
MHi’s support information and disconnect_ckpti. MSSj

sends the messages in old_m_q to MHi without updating
the ddv[], but messages in new_m_q, update ddv[] of
MHi.

6.1 Handling Failures during checkpointing

An MH may fail during checkpointing process. If an MH
fails after taking its tentative checkpoint or if it is not a
member of minimum set, then the checkpointing
procedure can be completed uninterruptedly. If a process
fails during checkpointing, then our straight forward
approach is to discard the whole checkpointing operation.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 5, May 2010
www.IJCSI.org

29

The failed process will not be able to respond to the
initiator’s request and the initiator will detect the failure by
timeout and will discard the complete checkpointing
operation. If the initiator fails after sending commit, the
checkpointing process can be considered complete. If the
initiator fails during checkpointing, then some processes,
waiting for commit will time out and will issue abort on
his own.
Kim and Park [17] proposed that a process commits its
tentative checkpoints if none of the processes, on which it
transitively depends, fails; and the consistent recovery line
is advanced for those processes that committed their
checkpoints. The initiator and other processes, which
transitively depend on the failed process, have to abort
their tentative checkpoints. Thus, in case of a node failure
during checkpointing, total abort of the checkpointing is
avoided.

7. Correctness Proof

In this section, we prove that our checkpoint algorithm
collects a consistent global checkpointing state. We
assume that the system is in consistent state when a
process initiates checkpointing.
Theorem: The global checkpointing state created by the
ith

 iteration of the checkpointing protocol is consistent.
Proof: Let global_csi ={C1,x, C2,y,............,Cn,z} be some
consistent global state created by our algorithm, where Ci,x
is the xth checkpoint of Pi.
The collected global checkpointing state will be
inconsistent only if there is a orphan message m sent by Pi
to Pj such that Ci,x and Cj,y are in the global state for some
iteration of the checkpointing operation. We prove by
contradiction that no such message exists. There are
following four cases:

Case 1: Pi m_vect[] Pj m_vect[] (Pi belongs to the
minimum set and Pj not)
As Pi has taken the permanent checkpoint in the current
initiation and Pj has taken the permanent checkpoint in
some previous initiation; therefore we can say that

Cjy Cix ; (‘ ‘ is the Lamport’s happened before

relation); we have already assumed that rec(m) Cjy

Cix send (m)

 rec(m) Cjy Cix send(m)

 rec (m) send (m)

Hence it is a contradiction.

Case 2: Pi m_vect[] Pj m_vect[] (Pi and Pj both
belong to the minimum set)

Both Pi and Pj have taken their permanent checkpoints
during the current initiation; the following possibilities can
take place:
Pi sends m after commit and Pj receives m before taking

the tentative checkpoint. As Pj m_vect[], the initiator
MSS can issue commit only after Pj has taken its tentative
checkpoint and inform the initiator. Therefore rec(m) at Pj
can not take place before Pj takes its tentative checkpoint.
Suppose Pi sends m after taking the tentative checkpoint
and Pj receive m before taking its tentative checkpoint. In
this case, when Pj will receive m, it will check the
piggybacked Pr_csn of Pi along with m and will conclude
that Pi has taken tentative checkpoint for the new
initiations and Pj has not taken its tentative checkpoint for
this initiation. Therefore, Pj will process m only after Pj
takes it tentative checkpoint. Hence the receiver of m at Pj
can not occur before taking its tentative checkpointing.

Case 3: Pi m_vect[] Pj m_vect[] (Pj belongs to the
minimum set and Pi not)

Checkpoint Cix has been taken by Pi in some previous
initiation and checkpoint Cjy has been taken by Pj in the
current initiation. When Pj has taken its tentative
checkpoint, it will find that Pj is dependent upon Pi and Pi
is not in the minimum set computed so far. Therefore, Pj

will send the c_req to Pi and Pi will be included in the
minimum set. Hence it is a contradiction.

Case 4: Pi m_vect[] Pj m_vect[](Pi and Pj both do
not belong to the minimum set)
In this case, Pi and Pj will not take checkpoints and
therefore no orphan message can exist from Pi to Pj.

Hence it is proved that no such orphan message is
possible in the recorded global state collected by the
proposed algorithm. Hence, the proposed algorithm
leads to the consistent global state.

8. A Performance Evaluation

We compare our algorithm with the Koo and Toueg (KT)
[11] algorithm, and Cao and Singhal (CS) [4] algorithm on
different parameters.
(1) In CS algorithm, all processes are blocked. In the KT
and the proposed algorithm only selective processes are
blocked.
(2) In KT algorithm, a process is blocked, during the time,
when it takes its tentative checkpoint and receives commit
or abort from the initiator process.
(3) In CS algorithm, a process is blocked during the time,
it sends its dependency vector to the initiator MSS and
receives checkpoint request along with the minimum set.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 5, May 2010
www.IJCSI.org

30

In the proposed protocol, a process is blocked during the
period, it receives m of higher CSN and it recues
checkpoint request or commit message.
In CS algorithm, initiator MSS collects dependency
vectors of all processes, computes minimum set and
broadcasts minimum set to all MSSs. In KT algorithm and
in the proposed protocol, no such step is taken.
In KT algorithm, transitive dependencies are captured by
traversing direct dependencies and have a checkpoint tree
is formed. It may lead to exceedingly high time for global
checkpoint collection and the blocking period may also be
high. In our algorithm, Transitive dependencies are
captured during normal processing and hence
checkpointing tree is not formed. Therefore, the time to
collect the global checkpoint will be low as compared to
KT algorithm. In CS algorithm, direct dependency vectors
are collected in the initiation of the checkpointing
algorithm. Therefore, this algorithm suffers from high
synchronization message overhead.
(4) In KT algorithm and in the proposed protocol, an
integer number is piggybacked onto normal messages. In
CS algorithm, no such information is piggybacked onto
normal messages. It can not handle the following situation.
Pi receives m from Pj in the current CI such that Pj has
taken some permanent checkpoint after sending m. In this
case, Pi does not become causally dependent upon Pj due to
receipt of m. In this case, if Pi is in the minimum set, Pj

will unnecessarily be included in the minimum set.
(5) Blocking of processes takes place differently in these
three protocols as follows. In KT algorithm, processes are
not allowed to send any messages. In CS algorithm,
processes are not allowed to send or receive any messages.
In the proposed protocol, a few processes are not allowed
to process the selective messages received only during the
checkpointing period. A process is allowed to send
messages and perform normal computations during its
blocking period. It is even allowed to receive selected
messages.
(6) We maintain exact dependencies among processes and
a best possible knowledge of the minimum set, computed
so far, at the local MSS. In this way, number of duplicate
checkpoint requests is reduced as compared to the KT
algorithm and no useless checkpoint requests are sent.

8.1 General Comparison with existing non-
blocking minimum process algorithms:

In the algorithms [13], [19], initiator process/MSS
collects dependency vectors for all the processes and
computes the minimum set and sends the checkpointing
request to all the processes with minimum set. These
algorithms are non-blocking; the message received during
checkpointing may add processes to the minimum set. It

suffers from additional message overhead of sending
request to all processes to send their dependency vectors
and all processes send dependency vectors to the initiator
process. But in our algorithm, no such overhead is
imposed. The Cao-Singhal [5] suffers from the formation
of checkpointing tree. In our algorithm, theoretically, we
can say that the length of the checkpointing tree will be
considerably low as compared to algorithm [2], as most of
the transitive dependencies are captured during the normal
processing. We do not compare our algorithm with
Prakash-Singhal [15], as Cao-Singhal proved that there no
such algorithm exists [4].
Furthermore, in algorithm [4], transitive dependencies are
captured by direct dependencies. Hence the average
number of useless checkpoints requests will be
significantly higher than the proposed algorithm. In [5],
huge data structures are piggybacked along with
checkpointing request, because they are unable to maintain
exact dependencies among processes. Incorrect
dependencies are solved by these huge data structures. In
our case, no such data structures are piggybacked on
checkpointing request and no such useless checkpoint
requests are sent, because we are able to maintain exact
dependencies among processes and furthermore, are able
to capture transitive dependencies during normal
computation at the cost of piggybacking bit vector of
length n for n processes onto normal computation
messages.

8.2 Comparison with other Algorithms:

We use following notations to compare our algorithm with
other algorithms:
Nmss: number of MSSs.
Nmh: number of MHs.
Cpp: cost of sending a message from one process to
another
Cst: cost of sending a message between any two MSSs.
Cwl: cost of sending a message from an MH to its local
MSS (or vice versa).
Cbst: cost of broadcasting a message over static
network.
Csearch: cost incurred to locate an MH and forward a
message to its current local MSS, from a source MSS.
Tst: average message delay in static network.
Twl: average message delay in the wireless network.
Tch: average delay to save a checkpoint on the stable
storage. It also includes the time to transfer the
checkpoint from an MH to its local MSS.
N: total number of processes
Nmin: number of minimum processes required to take
checkpoints.
Nmut: number of useless mutable checkpoints [2].

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 5, May 2010
www.IJCSI.org

31

Tsearch: average delay incurred to locate an MH and
forward a message to its current local MSS.
Nucr: average number of useless checkpoint requests in [2].
Ndep: average number of processes on which a process
depends.
h1: height of the checkpointing tree in Koo-Toueg
algorithm [4].
h2: height of the checkpointing tree in the proposed
algorithm.:
In Koo-Toueg algorithm [4] and in the proposed one, the
checkpoint initiator process, say Pin sends the checkpoint
request to any process Pi if Pin is causally dependent upon
Pi. Similarly, Pi sends the checkpoint request to any
process Pj if Pi is causally dependent upon Pj. In this way,
a checkpointing tree is formed. Theoretically, we can say
that checkpointing tree will not be formed in our
algorithm. But due to Z-dependencies, a low order
checkpointing tree can be formed, because during normal
computations all the transitive dependencies are not
captured. Hence, the checkpointing tree in the proposed
scheme will be negligible as compared to KT and CS
algorithm in most of the practical situations.

8.3 Performance of our algorithm

8.3.1 The Synchronization message overhead:
In the first phase, a process taking a tentative checkpoint
needs two system messages: request and reply. A process
may receive more than one request for the same
checkpoint initiation from different processes. However,
we have used some techniques to reduce the duplicate
checkpoint requests. Thus the system overhead is
approximately 2*Nmin*Cpp in the first phase. In the second
phase, the commit requested is broadcasted on the static
network; and the system overhead is Cbst.
8.3.2 Number of processes taking checkpoints: In our
algorithm, only minimum number of processes is required
to take their checkpoints.

8.4 A Comparative Study

The blocking time of the Koo-Toueg [11] protocol is
highest, followed by Cao-Singhal [4] algorithm. In the
algorithms proposed in [5], [8], no blocking of processes
takes place, but some useless checkpoints are taken, which
are discarded on commit. In Elnozahy et al [8] algorithm,
all processes take checkpoints. In the protocols [4], [11],
and the proposed one, only minimum numbers of
processes record their checkpoints. The message overhead
in the proposed protocol is greater than [8], but less than
[4], [5] and [11]. In algorithm [5], concurrent executions
of the algorithm are allowed, but it may lead to
inconsistencies in doing so [20]. We avoid concurrent

executions of the proposed algorithm. In case, two
processes concurrently initiate checkpointing, then the

initiation of the process with lower process-ID will
prevail.

Table 1: A Comparison of System Performance

9. Conclusion

We have proposed a minimum process coordinated
checkpointing algorithm for mobile distributed system,
where no useless checkpoints are taken and an effort is
made to minimize the blocking of processes. The number
of processes that take checkpoints is minimized to avoid
awakening of MHs in doze mode of operation and
thrashing of MHs with checkpointing activity. Further, it
saves limited battery life of MHs and low bandwidth of
wireless channels. We have used the concept of delaying
selective messages at the receiver end only during the
checkpointing period. By using this technique, only
selective processes are blocked for a short duration and
processes are allowed to do their normal computations and
send messages in the blocking period. We captured the
transitive dependencies during the normal execution. The
Z-dependencies are well taken care of in this protocol. We
also avoided collecting dependency vectors of all
processes to compute the minimum set. Thus, the
proposed protocol is simultaneously able to reduce the
useless checkpoints to zero and tries to optimize the
blocking of processes at very less cost of maintaining
exact dependencies among processes and piggybacking
checkpoint sequence numbers and dependency vectors
onto normal computation messages.

10. References

[1] Acharya A. and Badrinath B. R., “Checkpointing Distributed
Applications on Mobile Computers,” Proceedings of the 3rd
International Conference on Parallel and Distributed Information
Systems, pp. 73-80, September 1994.
[2] Baldoni R., Hélary J-M., Mostefaoui A. and Raynal M., “A
Communication-Induced Checkpointing Protocol that Ensures
Rollback-Dependency Trackability,” Proceedings of the

 Cao-Singhal
[4]

Cao-
Singhal [5]

Koo-Toeg
Algorithm
[11]

Elnozahy
et al [8]

Proposed
Algorithm

Avg.
blocking
Time

2Tst 0 h1*Tch 0 h2*Tch

Average No.
of
checkpoints

Nmin Nmin+
Nmut

Nmin N Nmin

Average
Message
Overhead

3Cbst+2Cwirele

ss+2Nmss*Cst

+3Nmh* Cwl

2*Nmin*Cpp
+ Cbst+
Nucr*Cpp

3*Nmin*Cpp*
Ndep

2*Cbst + N
*Cpp

2*Nmin

*Cpp +Cbst

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 5, May 2010
www.IJCSI.org

32

International Symposium on Fault-Tolerant-Computing Systems,
pp. 68-77, June 1997.
[3] Cao G. and Singhal M., “On coordinated checkpointing in
Distributed Systems”, IEEE Transactions on Parallel and
Distributed Systems, vol. 9, no.12, pp. 1213-1225, Dec 1998.
[4] Cao G. and Singhal M., “On the Impossibility of Min-process
Non-blocking Checkpointing and an Efficient Checkpointing
Algorithm for Mobile Computing Systems,” Proceedings of
International Conference on Parallel Processing, pp. 37-44,
August 1998.
[5] Cao G. and Singhal M., “Mutable Checkpoints: A New
Checkpointing Approach for Mobile Computing systems,” IEEE
Transaction On Parallel and Distributed Systems, vol. 12, no. 2,
pp. 157-172, February 2001.
[6] Chandy K. M. and Lamport L., “Distributed Snapshots:
Determining Global State of Distributed Systems,” ACM
Transaction on Computing Systems, vol. 3, No. 1, pp. 63-75,
February 1985.
[7] Elnozahy E.N., Alvisi L., Wang Y.M. and Johnson D.B., “A
Survey of Rollback-Recovery Protocols in Message-Passing
Systems,” ACM Computing Surveys, vol. 34, no. 3, pp. 375-408,
2002.
[8] Elnozahy E.N., Johnson D.B. and Zwaenepoel W., “The
Performance of Consistent Checkpointing,” Proceedings of the
11th Symposium on Reliable Distributed Systems, pp. 39-47,
October 1992.
[9] Hélary J. M., Mostefaoui A. and Raynal M.,
“Communication-Induced Determination of Consistent
Snapshots,” Proceedings of the 28th International Symposium on
Fault-Tolerant Computing, pp. 208-217, June 1998.
[10] Higaki H. and Takizawa M., “Checkpoint-recovery Protocol
for Reliable Mobile Systems,” Trans. of Information processing
Japan, vol. 40, no.1, pp. 236-244, Jan. 1999.
[11] Koo R. and Toueg S., “Checkpointing and Roll-Back
Recovery for Distributed Systems,” IEEE Trans. on Software
Engineering, vol. 13, no. 1, pp. 23-31, January 1987.
[12] Neves N. and Fuchs W. K., “Adaptive Recovery for Mobile
Environments,” Communications of the ACM, vol. 40, no. 1, pp.
68-74, January 1997.
[13] Parveen Kumar, Lalit Kumar, R K Chauhan, V K Gupta “A
Non-Intrusive Minimum Process Synchronous Checkpointing
Protocol for Mobile Distributed Systems” Proceedings of IEEE
ICPWC-2005, pp 491-95, January 2005.
[14] Pradhan D.K., Krishana P.P. and Vaidya N.H., “Recovery in
Mobile Wireless Environment: Design and Trade-off Analysis,”
Proceedings 26th International Symposium on Fault-Tolerant
Computing, pp. 16-25, 1996.
[15] Prakash R. and Singhal M., “Low-Cost Checkpointing and
Failure Recovery in Mobile Computing Systems,” IEEE
Transaction On Parallel and Distributed Systems, vol. 7, no. 10,
pp. 1035-1048, October1996.
[16] Ssu K.F., Yao B., Fuchs W.K. and Neves N. F., “Adaptive
Checkpointing with Storage Management for Mobile
Environments,” IEEE Transactions on Reliability, vol. 48, no. 4,
pp. 315-324, December 1999.
[17] J.L. Kim, T. Park, “An efficient Protocol for checkpointing
Recovery in Distributed Systems,” IEEE Trans. Parallel and
Distributed Systems, pp. 955-960, Aug. 1993.

[18] L. Kumar, M. Misra, R.C. Joshi, “Checkpointing in
Distributed Computing Systems” Book Chapter “Concurrency in
Dependable Computing”, pp. 273-92, 2002.
[19] L. Kumar, M. Misra, R.C. Joshi, “Low overhead optimal
checkpointing for mobile distributed systems” Proceedings. 19th
IEEE International Conference on Data Engineering, pp 686 –
88, 2003.
[20] Ni, W., S. Vrbsky and S. Ray, “Pitfalls in Distributed
Nonblocking Checkpointing”, Journal of Interconnection
Networks, Vol. 1 No. 5, pp. 47-78, March 2004.
[21] L. Lamport, “Time, clocks and ordering of events in a
distributed system” Comm. ACM, vol.21, no.7, pp. 558-565,
July 1978.
[22] Silva, L.M. and J.G. Silva, “Global checkpointing for
distributed programs”, Proc. 11th

 symp. Reliable Distributed
Systems, pp. 155-62, Oct. 1992.
[23] Parveen Kumar, Lalit Kumar, R K Chauhan, “A Non-
intrusive Hybrid Synchronous Checkpointing Protocol for
Mobile Systems”, IETE Journal of Research, Vol. 52 No. 2&3,
2006.
[24] Parveen Kumar, “A Low-Cost Hybrid Coordinated
Checkpointing Protocol for mobile distributed systems”, To
appear in Mobile Information Systems.
[25] Lalit Kumar Awasthi, P.Kumar, “A Synchronous
Checkpointing Protocol for Mobile Distributed Systems:
Probabilistic Approach” International Journal of Information and
Computer Security, Vol.1, No.3 pp 298-314.

